We present a sustainable fabrication method for cheap point-of-care microfluidic systems, employing hot embossing of natural shellac as a key feature of an energy-efficient fabrication method that exclusively uses renewable materials as consumables. Shellac is a low-cost renewable biomaterial that features medium hydrophilicity (e.g., a water contact angle of ca. 73°) and a high chemical stability with respect to common solvents such as cyclohexane or toluene, rendering it an interesting candidate for low-cost microfluidics and a competitor to well-known systems such as paper-based or polydimethylsiloxane-based microfluidics. Moreover, its high replication accuracy for small features down to 30 μm lateral feature size and its ability to form smooth surfaces (surface roughness Ra = 29 nm) at low embossing temperatures (glass transition temperature Tg = 42.2 °C) enable energy-efficient hot embossing of microfluidic structures. Proof-of-concept for the implementation of shellac hot embossing as a green fabrication method for microfluidic systems is demonstrated through the successful fabrication of a microfluidic test setup and the assessment of its resource consumption.

1.
M. S.
Branham
and
T. G.
Gutowski
, “
Deconstructing energy use in microelectronics manufacturing: An experimental case study of a mems fabrication facility
,”
Environ. Sci. Technol.
44
,
4295
4301
(
2010
).
2.
E. D.
Williams
,
R. U.
Ayres
, and
M.
Heller
, “
The 1.7 kilogram microchip: Energy and material use in the production of semiconductor devices
,”
Environ. Sci. Technol.
36
,
5504
5510
(
2002
).
3.
M.
Schmidt
,
H.
Hottenroth
,
M.
Schottler
,
G.
Fetzer
, and
B.
Schlüter
, “
Life cycle assessment of silicon wafer processing for microelectronic chips and solar cells
,”
Int. J. Life Cycle Assess.
17
,
126
144
(
2012
).
4.
K.
Buch
,
M.
Penning
,
E.
Wächtersbach
,
M.
Maskos
, and
P.
Langguth
, “
Investigation of various shellac grades: Additional analysis for identity
,”
Drug Dev. Ind. Pharm.
35
,
694
703
(
2009
).
5.
S.
Stauderman
, “
Pictorial guide to sound recording media: Preserving audio collections
,” in
Proceedings of a Symposium in Sound Savings, Austin, Texas
,
24–26 July 2003
, edited by
J.
Matz
(Association of Research Libraries, Washington, D.C., 2004).
6.
S. G.
Almquist
, “
Sound recordings and the library
,”
Occasional papers
(University of Illinois at Urbana-Champaign, Graduate School of Library and Information Science), No. 179 (
1987
).
7.
R. A.
Mittelstaedt
and
R. E.
Stassen
, “
Structural changes in the phonograph record industry and its channels of distribution, 1946-1966
,”
J. Macromark.
14
,
31
44
(
1994
).
8.
N.
Pearnchob
,
J.
Siepmann
, and
R.
Bodmeier
, “
Pharmaceutical applications of shellac: Moisture-protective and taste-masking coatings and extended-release matrix tablets
,”
Drug Dev. Ind. Pharm.
29
,
925
938
(
2003
).
9.
B.
Qussi
and
W.
Suess
, “
Investigation of the effect of various shellac coating compositions containing different water-soluble polymers on in vitro drug release
,”
Drug Dev. Ind. Pharm.
31
,
99
108
(
2005
).
10.
Commission Regulation (EU) 1129/2011, Amending Annex II to Regulation (EC) 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives: L295/1 (
2011
).
11.
U.S. Food and Drug Administration Code of Federal Regulations, Title 21 Chapter I Subchapter B Part 175: Indirect food additives: Adhesives and components of coatings (
2015
).
12.
M.
Irimia-Vladu
,
E. D.
Głowacki
,
G.
Schwabegger
,
L.
Leonat
,
H. Z.
Akpinar
,
H.
Sitter
,
S.
Bauer
, and
N. S.
Sariciftci
, “
Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors
,”
Green Chem.
15
,
1473
1476
(
2013
).
13.
K.
Ren
,
J.
Zhou
, and
H.
Wu
, “
Materials for microfluidic chip fabrication
,”
Acc. Chem. Res.
46
,
2396
2406
(
2013
).
14.
Silmid, Article No. SG18400110, PDMS Sylgard 184: https://www.silmid.com/products/sg18400110-dow-corning-sylgard-184-1-1kg-kit.aspx (last accessed on 13.06.2016).
15.
16.
J. N.
Lee
,
C.
Park
, and
G. M.
Whitesides
, “
Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices
,”
Anal. Chem.
75
,
6544
6554
(
2003
).
17.
T.
Honda
,
M.
Miyazaki
,
H.
Nakamura
, and
H.
Maeda
, “
Controllable polymerization of n-carboxy anhydrides in a microreaction system
,” Supporting information,
Lab Chip
5
,
812
818
(
2005
).
18.
X.
Li
,
D. R.
Ballerini
, and
W.
Shen
, “
A perspective on paper-based microfluidics: Current status and future trends
,”
Biomicrofluidics
6
,
011301
(
2012
).
19.
Š.
Selimović
and
A.
Khademhosseini
, “
Research highlights
,”
Lab Chip
11
,
3029
(
2011
).
20.
R.
Lausecker
,
V.
Badilita
, and
U.
Wallrabe
, “
Natural shellac for green microfluidic applications
,” in
TRANSDUCERS 2015 - 18th International Solid-State Sensors, Actuators and Microsystems Conference
(
2015
), pp.
1680
1683
.
21.
H.
Becker
and
U.
Heim
, “
Hot embossing as a method for the fabrication of polymer high aspect ratio structures
,”
Sens. Actuators, A
83
,
130
135
(
2000
).
22.
L.
Peng
,
Y.
Deng
,
P.
Yi
, and
X.
Lai
, “
Micro hot embossing of thermoplastic polymers: A review
,”
J. Micromech. Microeng.
24
,
013001
(
2014
).
23.
J. M.
Hutchinson
, “
Characterising the glass transition and relaxation kinetics by conventional and temperature-modulated differential scanning calorimetry
,”
Thermochim. Acta
324
,
165
174
(
1998
).
24.
B. C.
Hancock
,
S. L.
Shamblin
, and
G.
Zografi
, “
Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures
,”
Pharm. Res.
12
,
799
806
(
1995
).
25.
Y.
Farag
and
C. S.
Leopold
, “
Physicochemical properties of various shellac types
,”
Dissolution Technol.
16
,
33
39
(
2009
).
26.
C.
Capello
,
U.
Fischer
, and
K.
Hungerbühler
, “
What is a green solvent? A comprehensive framework for the environmental assessment of solvents
,”
Green Chem.
9
,
927
934
(
2007
).
27.
E.
Delamarche
,
A.
Bernard
,
H.
Schmid
,
A.
Bietsch
,
B.
Michel
, and
H.
Biebuyck
, “
Microfluidic networks for chemical patterning of substrates: Design and application to bioassays
,”
J. Am. Chem. Soc.
120
,
500
508
(
1998
).
28.
B.-H.
Jo
,
L.
van Lerberghe
,
K.
Motsegood
, and
D.
Beebe
, “
Three-dimensional micro-channel fabrication in polydimethylsiloxane (pdms) elastomer
,”
J. Microelectromech. Syst.
9
,
76
81
(
2000
).
29.
SSB Stroever Schellack Bremen, Germany, personal correspondence via email on 26.11.2015.
30.
S.
Mueller
, “
2008 national dry mill corn ethanol survey
,”
Biotechnol. Lett.
32
,
1261
1264
(
2010
).
31.
M.
Suhr
,
G.
Klein
,
I.
Kourti
,
M. R.
Gonzalo
,
G. G.
Santonja
,
S.
Roudier
, and
L. D.
Sancho
, “
Jrc science and policy reports - best available techniques (bat) reference document for the production of pulp, paper and board: Industrial emissions directive 2010/75/eu integrated pollution prevention and control
,” Luxembourg: Publications Office of the European Union
(
2015
), p.
79
.
32.
B. M.
Scalet
,
M.
Garcia Munoz
,
A. Q. R. S.
Sissa
, and
L.
Delgado Sancho
, “
Jrc reference report - best available techniques (bat) reference document for the manufacture of glass: Industrial emissions directive 2010/75/eu (integrated pollution prevention and control)
,”
Luxembourg: Publications Office of the European Union
(
2013
), p.
95
.
33.
The European IPPC Bureau
, “
Reference document on best available techniques for the production of speciality inorganic chemicals: Integrated pollution prevention and control
,” p. 211 (2007), see http://eippcb.jrc.ec.europa.eu/reference/BREF/sic_bref_0907.pdf (last accessed December 2015).
34.
N.
Spengler
,
A.
Moazenzadeh
,
R. C.
Meier
,
V.
Badilita
,
J. G.
Korvink
, and
U.
Wallrabe
, “
Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance
,”
J. Micromech. Microeng.
24
,
034004
(
2014
).
35.
S.
Ghoshal
,
M.
Khan
,
F.
Gul-E-Noor
, and
R.
Khan
, “
Gamma radiation induced biodegradable shellac films treated by acrylic monomer and ethylene glycol
,”
J. Macromol. Sci., Part A: Pure Appl. Chem.
46
,
975
982
(
2009
).

Supplementary Material

You do not currently have access to this content.