Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control.

1.
A.
Typas
,
M.
Banzhaf
,
C. A.
Gross
, and
W.
Vollmer
,
Nat. Rev. Microbiol.
10
,
123
136
(
2012
).
2.
K. D.
Young
,
Microbiol. Mol. Biol. Rev.
70
,
660
703
(
2006
).
3.
K. D.
Young
,
Curr. Opin. Microbiol.
10
,
596
600
(
2007
).
4.
S. S.
Justice
,
D. A.
Hunstad
,
L.
Cegelski
, and
S. J.
Hultgren
,
Nat. Rev. Microbiol.
6
,
162
168
(
2008
).
5.
M. A.
Wortinger
,
E. M.
Quardokus
, and
Y. V.
Brun
,
Mol. Microbiol.
29
,
963
973
(
1998
).
6.
G. G.
Anderson
,
J. J.
Palermo
,
J. D.
Schilling
,
R.
Roth
,
J.
Heuser
, and
S. J.
Hultgren
,
Science
301
,
105
107
(
2003
).
7.
L.
Dienes
and
H. J.
Weinberger
,
Bacteriol. Rev.
15
,
245
288
(
1951
), available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC180721/#fn1.
8.
W. A.
Glover
,
Y.
Yang
, and
Y.
Zhang
,
PLoS One
4
,
e7316
(
2009
).
9.
G. J.
Domingue
, Sr.
and
H. B.
Woody
,
Clin. Microbiol. Rev.
10
,
320
344
(
1997
), available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC172922/.
10.
R.
Mercier
,
Y.
Kawai
, and
J.
Errington
,
Cell
152
,
997
1007
(
2013
).
11.
12.
D. S.
Weiss
,
J. Bacteriol.
195
,
2449
2451
(
2013
).
13.
D. K.
Ranjit
and
K. D.
Young
,
J. Bacteriol.
195
,
2452
2462
(
2013
).
14.
R.
Mercier
,
P.
Dominguez-Cuevas
, and
J.
Errington
,
Cell Rep.
1
,
417
423
(
2012
).
15.
J.
Mannik
,
R.
Driessen
,
P.
Galajda
,
J. E.
Keymer
, and
C.
Dekker
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
14861
14866
(
2009
).
16.
S.
Takeuchi
,
W. R.
DiLuzio
,
D. B.
Weibel
, and
G. M.
Whitesides
,
Nano Lett.
5
,
1819
1823
(
2005
).
17.
J. P.
Shen
and
C. F.
Chou
,
Biomicrofluidics
8
,
041103
(
2014
).
18.
J. L.
Siefert
and
G. E.
Fox
,
Microbiology
144
,
2803
2808
(
1998
).
19.
W.
Margolin
,
Curr. Biol.
19
,
R812
822
(
2009
).
20.
C.
Jiang
,
P. D.
Caccamo
, and
Y. V.
Brun
,
Bioessays
37
,
413
425
(
2015
).
21.
P.
Szwedziak
and
J.
Lowe
,
Curr. Opin. Microbiol.
16
,
745
751
(
2013
).
22.
S. S.
Justice
,
D. A.
Hunstad
,
P. C.
Seed
, and
S. J.
Hultgren
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
19884
19889
(
2006
).
23.
A.
Chauhan
,
M. V.
Madiraju
,
M.
Fol
,
H.
Lofton
,
E.
Maloney
,
R.
Reynolds
, and
M.
Rajagopalan
,
J. Bacteriol.
188
,
1856
1865
(
2006
).
24.
R. R.
Colwell
and
D. J.
Grimes
,
Nonculturable Microorganisms in the Environment
(
ASM Press
,
2000
).
25.
D. O.
Serra
,
A. M.
Richter
, and
R.
Hengge
,
J. Bacteriol.
195
,
5540
5554
(
2013
).
26.
S.
Eriksson
,
S.
Lucchini
,
A.
Thompson
,
M.
Rhen
, and
J. C.
Hinton
,
Mol. Microbiol.
47
,
103
118
(
2003
).
27.
D. S.
Eto
,
J. L.
Sundsbak
, and
M. A.
Mulvey
,
Cell Microbiol.
8
,
704
717
(
2006
).
28.
J.
Pernthaler
,
Nat. Rev. Microbiol.
3
,
537
546
(
2005
).
29.
G.
Corno
and
K.
Jurgens
,
Appl. Environ. Microbiol.
72
,
78
86
(
2006
).
30.
R. D.
Hayward
,
J. M.
Leong
,
V.
Koronakis
, and
K. G.
Campellone
,
Nat. Rev. Microbiol.
4
,
358
370
(
2006
).
31.
M. A.
Croxen
and
B. B.
Finlay
,
Nat. Rev. Microbiol.
8
,
26
38
(
2010
).
32.
J. M.
Stevens
,
E. E.
Galyov
, and
M. P.
Stevens
,
Nat. Rev. Microbiol.
4
,
91
101
(
2006
).
33.
O.
Marches
,
V.
Covarelli
,
S.
Dahan
,
C.
Cougoule
,
P.
Bhatta
,
G.
Frankel
, and
E.
Caron
,
Cell Microbiol.
10
,
1104
1115
(
2008
).
34.
D. A.
Rosen
,
T. M.
Hooton
,
W. E.
Stamm
,
P. A.
Humphrey
, and
S. J.
Hultgren
,
PLoS Med.
4
,
e329
(
2007
).
35.
S.
Bhatt
,
T.
Romeo
, and
D.
Kalman
,
Trends Microbiol.
19
,
217
224
(
2011
).
36.
B. G.
Spratt
and
K. D.
Cromie
,
Rev. Infect. Dis.
10
,
699
711
(
1988
).
37.
C.
Miller
,
L. E.
Thomsen
,
C.
Gaggero
,
R.
Mosseri
,
H.
Ingmer
, and
S. N.
Cohen
,
Science
305
,
1629
1631
(
2004
).
38.
N.
Markova
,
G.
Slavchev
,
L.
Michailova
, and
M.
Jourdanova
,
Int. J. Biol. Sci.
6
,
303
315
(
2010
).
39.
J.
Errington
,
Nat. Rev. Microbiol.
13
,
241
248
(
2015
).
40.
J.
Dominguez-Escobar
,
A.
Chastanet
,
A. H.
Crevenna
,
V.
Fromion
,
R.
Wedlich-Soldner
, and
R.
Carballido-Lopez
,
Science
333
,
225
228
(
2011
).
41.
P. N.
Rather
,
Environ. Microbiol.
7
,
1065
1073
(
2005
).
42.
M.
Ackermann
,
Nat. Rev. Microbiol.
13
,
497
508
(
2015
).
43.
B. R.
Boles
,
M.
Thoendel
, and
P. K.
Singh
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
16630
16635
(
2004
).
44.
A. D.
Goldberg
,
C. D.
Allis
, and
E.
Bernstein
,
Cell
128
,
635
638
(
2007
).
45.
R.
Thuenauer
,
K.
Juhasz
,
R.
Mayr
,
T.
Fruhwirth
,
A.-M.
Lipp
,
Z.
Balogi
, and
A.
Sonnleitner
,
Lab Chip
11
,
3064
3071
(
2011
).
46.
F.
Wang
,
Y.
Li
,
L.
Chen
,
D.
Chen
,
X.
Wu
, and
H.
Wang
,
Biomicrofluidics
6
,
014120
(
2012
).
47.
K. Y.
Lo
,
Y.
Zhu
,
H. F.
Tsai
, and
Y. S.
Sun
,
Biomicrofluidics
7
,
064108
(
2013
).
48.
L. J.
Cheng
and
H. C.
Chang
,
Biomicrofluidics
5
,
046502
(
2011
).
49.
H. W.
Wu
,
C. C.
Lin
, and
G. B.
Lee
,
Biomicrofluidics
5
,
013401
(
2011
).
50.
K.
Shahzad
and
J. J.
Loor
,
Curr. Genomics
13
,
379
394
(
2012
).
51.
A. K.
White
,
M.
VanInsberghe
,
O. I.
Petriv
,
M.
Hamidi
,
D.
Sikorski
,
M. A.
Marra
,
J.
Piret
,
S.
Aparicio
, and
C. L.
Hansen
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
13999
14004
(
2011
).
52.
A.
De
,
W.
Sparreboom
,
A.
van den Berg
, and
E. T.
Carlen
,
Biomicrofluidics
8
,
054119
(
2014
).
53.
T.
Matsuoka
,
B.
Choul Kim
,
C.
Moraes
,
M.
Han
, and
S.
Takayama
,
Biomicrofluidics
7
,
041301
(
2013
).
54.
P. K.
Wong
,
F.
Yu
,
A.
Shahangian
,
G.
Cheng
,
R.
Sun
, and
C. M.
Ho
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
5105
5110
(
2008
).
55.
P.
Nowak-Sliwinska
,
A.
Weiss
,
X.
Ding
,
P. J.
Dyson
,
H.
van den Bergh
,
A. W.
Griffioen
, and
C. M.
Ho
,
Nat. Protoc.
11
,
302
315
(
2016
).
56.
H.
Tsutsui
,
B.
Valamehr
,
A.
Hindoyan
,
R.
Qiao
,
X.
Ding
,
S.
Guo
,
O. N.
Witte
,
X.
Liu
,
C. M.
Ho
, and
H.
Wu
,
Nat. Commun.
2
,
167
(
2011
).
57.
Y.
Honda
,
X.
Ding
,
F.
Mussano
,
A.
Wiberg
,
C. M.
Ho
, and
I.
Nishimura
,
Sci. Rep.
3
,
3420
(
2013
).
You do not currently have access to this content.