Cell-cell interactions play a key role in regeneration, differentiation, and basic tissue function taking place under physiological shear forces. However, current solutions to mimic such interactions by micro-patterning cells within microfluidic devices have low resolution, high fabrication complexity, and are limited to one or two cell types. Here, we present a microfluidic platform capable of laminar patterning of any biotin-labeled peptide using streptavidin-based surface chemistry. The design permits the generation of arbitrary cell patterns from heterogeneous mixtures in microfluidic devices. We demonstrate the robust co-patterning of α-CD24, α-ASGPR-1, and α-Tie2 antibodies for rapid isolation and co-patterning of mixtures of hepatocytes and endothelial cells. In addition to one-step isolation and patterning, our design permits step-wise patterning of multiple cell types and empty spaces to create complex cellular geometries in vitro. In conclusion, we developed a microfluidic device that permits the generation of perfusable tissue-like patterns in microfluidic devices by directly injecting complex cell mixtures such as differentiated stem cells or tissue digests with minimal sample preparation.

1.
Y.
Nahmias
,
F.
Berthiaume
, and
M. L.
Yarmush
,
Adv. Biochem. Eng. Biotechnol.
103
,
309
329
(
2007
).
2.
M.
Shulman
and
Y.
Nahmias
,
Methods Mol. Biol.
945
,
287
302
(
2013
).
3.
S. R.
Khetani
and
S. N.
Bhatia
,
Nat. Biotechnol.
26
(
1
),
120
126
(
2008
).
4.
Y.
Nahmias
and
D. J.
Odde
,
Nat. Protoc.
1
(
5
),
2288
2296
(
2006
).
5.
Y.
Nahmias
,
R. E.
Schwartz
,
W. S.
Hu
,
C. M.
Verfaillie
, and
D. J.
Odde
,
Tissue Eng.
12
(
6
),
1627
1638
(
2006
).
6.
A.
Folch
and
M.
Toner
,
Annu. Rev. Biomed. Eng.
2
,
227
256
(
2000
).
7.
C. A.
Goubko
and
X.
Cao
,
Mater. Sci. Eng. C
29
(
6
),
1855
1868
(
2009
).
8.
J. C.
Culver
,
J. C.
Hoffmann
,
R. A.
Poche
,
J. H.
Slater
,
J. L.
West
, and
M. E.
Dickinson
,
Adv. Mater.
24
(
17
),
2344
2348
(
2012
).
9.
C. M.
Nelson
,
M. M.
Vanduijn
,
J. L.
Inman
,
D. A.
Fletcher
, and
M. J.
Bissell
,
Science
314
(
5797
),
298
300
(
2006
).
10.
T. F.
Didar
,
A. M.
Foudeh
, and
M.
Tabrizian
,
Anal. Chem.
84
(
2
),
1012
1018
(
2012
).
11.
D. R.
Albrecht
,
G. H.
Underhill
,
T. B.
Wassermann
,
R. L.
Sah
, and
S. N.
Bhatia
,
Nat. Methods
3
(
5
),
369
375
(
2006
).
12.
V. L.
Tsang
,
A. A.
Chen
,
L. M.
Cho
,
K. D.
Jadin
,
R. L.
Sah
,
S.
DeLong
,
J. L.
West
, and
S. N.
Bhatia
,
FASEB J.
21
(
3
),
790
801
(
2007
).
13.
A. M.
Kloxin
,
A. M.
Kasko
,
C. N.
Salinas
, and
K. S.
Anseth
,
Science
324
(
5923
),
59
63
(
2009
).
14.
K. R.
Stevens
,
M. D.
Ungrin
,
R. E.
Schwartz
,
S.
Ng
,
B.
Carvalho
,
K. S.
Christine
,
R. R.
Chaturvedi
,
C. Y.
Li
,
P. W.
Zandstra
,
C. S.
Chen
, and
S. N.
Bhatia
,
Nat. Commun.
4
,
1847
(
2013
).
15.
K.
Jakab
,
C.
Norotte
,
F.
Marga
,
K.
Murphy
,
G.
Vunjak-Novakovic
, and
G.
Forgacs
,
Biofabrication
2
(
2
),
022001
(
2010
).
16.
V.
Mironov
,
R. P.
Visconti
,
V.
Kasyanov
,
G.
Forgacs
,
C. J.
Drake
, and
R. R.
Markwald
,
Biomaterials
30
(
12
),
2164
2174
(
2009
).
17.
S.
Takayama
,
J. C.
McDonald
,
E.
Ostuni
,
M. N.
Liang
,
P. J.
Kenis
,
R. F.
Ismagilov
, and
G. M.
Whitesides
,
Proc. Natl. Acad. Sci. U.S.A.
96
(
10
),
5545
5548
(
1999
).
18.
P. J.
Kenis
,
R. F.
Ismagilov
,
S.
Takayama
,
G. M.
Whitesides
,
S.
Li
, and
H. S.
White
,
Acc. Chem. Res.
33
(
12
),
841
847
(
2000
).
19.
X.
Luo
,
D.
Mitra
,
R. J.
Sullivan
,
B. S.
Wittner
,
A. M.
Kimura
,
S.
Pan
,
M. P.
Hoang
,
B. W.
Brannigan
,
D. P.
Lawrence
,
K. T.
Flaherty
,
L. V.
Sequist
,
M.
McMahon
,
M. W.
Bosenberg
,
S. L.
Stott
,
D. T.
Ting
,
S.
Ramaswamy
,
M.
Toner
,
D. E.
Fisher
,
S.
Maheswaran
, and
D. A.
Haber
,
Cell Rep.
7
(
3
),
645
653
(
2014
).
20.
B.
Zhu
,
Y.
Nahmias
,
M. L.
Yarmush
, and
S. K.
Murthy
,
Stem Cells Transl. Med.
3
(
11
),
1354
1362
(
2014
).
21.
T.
Thorsen
,
S. J.
Maerkl
, and
S. R.
Quake
,
Science
298
(
5593
),
580
584
(
2002
).
22.
S.
Koutsopoulos
,
L. D.
Unsworth
,
Y.
Nagai
, and
S.
Zhang
,
Proc. Natl. Acad. Sci. U.S.A
106
(
12
),
4623
4628
(
2009
).
23.
E.
Keinan
,
E.
Ezra
, and
Y.
Nahmias
,
Appl. Phys. Lett.
103
(
6
),
63507
(
2013
).
24.
Q.
Cheng
,
K.
Komvopoulos
, and
S.
Li
,
J. Biomed. Mater. Res. A
96
(
3
),
507
512
(
2011
).
25.
S. K.
Murthy
,
A.
Sin
,
R. G.
Tompkins
, and
M.
Toner
,
Langmuir
20
(
26
),
11649
11655
(
2004
).
26.
E. P.
Diamandis
and
T. K.
Christopoulos
,
Clin. Chem.
37
(
5
),
625
636
(
1991
).
27.
E.
Coulstock
,
J.
Sosabowski
,
M.
Ovecka
,
R.
Prince
,
L.
Goodall
,
C.
Mudd
,
A.
Sepp
,
M.
Davies
,
J.
Foster
,
J.
Burnet
,
G.
Dunlevy
, and
A.
Walker
,
PLoS One
8
(
2
),
e57263
(
2013
).
28.
R. E.
Schwartz
,
K.
Trehan
,
L.
Andrus
,
T. P.
Sheahan
,
A.
Ploss
,
S. A.
Duncan
,
C. M.
Rice
, and
S. N.
Bhatia
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
7
),
2544
2548
(
2012
).
29.
K.
Si-Tayeb
,
F. K.
Noto
,
M.
Nagaoka
,
J.
Li
,
M. A.
Battle
,
C.
Duris
,
P. E.
North
,
S.
Dalton
, and
S. A.
Duncan
,
Hepatology
51
(
1
),
297
305
(
2010
).
30.
R.
Gaebel
,
N.
Ma
,
J.
Liu
,
J.
Guan
,
L.
Koch
,
C.
Klopsch
,
M.
Gruene
,
A.
Toelk
,
W.
Wang
,
P.
Mark
,
F.
Wang
,
B.
Chichkov
,
W.
Li
, and
G.
Steinhoff
,
Biomaterials
32
(
35
),
9218
9230
(
2011
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4944741 for CAD design, optical device characterization, experimental validation of numerical results, optimization of antibody concentration, whole device capture characterization, and cross-patterning of 11 × 11 microdevice.

Supplementary Material

You do not currently have access to this content.