Polydimethylsiloxane (PDMS), due to its remarkable properties, is one of the most widely used polymers in many industrial and medical applications. In this work, a technique based on a flow focusing technique is used to produce PDMS spherical particles with sizes of a few microns. PDMS precursor is injected through a hypodermic needle to form a film/reservoir over the needle's outer surface. This film flows towards the needle tip until a liquid ligament is steadily ejected thanks to the action of a coflowing viscous liquid stream. The outcome is a capillary jet which breaks up into PDMS precursor droplets due to the growth of capillary waves producing a micrometer emulsion. The PDMS liquid droplets in the solution are thermally cured into solid microparticles. The size distribution of the particles is analyzed before and after curing, showing an acceptable degree of monodispersity. The PDMS liquid droplets suffer shrinkage while curing. These microparticles can be used in very varied technological fields, such as biomedicine, biotechnology, pharmacy, and industrial engineering.

1.
A.
Mata
,
A.
Fleischman
, and
S.
Roy
, “
Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems
,”
Biomed. Microdevices
7
,
281
293
(
2005
).
2.
R.
Lima
,
S.
Wada
,
S.
Tanaka
,
M.
Takeda
,
T.
Ishikawa
,
K.
Tsubota
,
Y.
Imai
, and
T.
Yamaguchi
, “
In vitro blood flow in a rectangular PDMS microchannel: Experimental observations using a confocal micro-piv system
,”
Biomed. Microdevices
10
,
153
167
(
2008
).
3.
H. W.
Hou
,
A. A.
Bhagat
,
A. G.
Chong
,
P.
Mao
,
K. S.
Tan
,
J.
Han
, and
C. T.
Lim
, “
Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation
,”
Lab Chip
10
,
2605
2613
(
2010
).
4.
T.
Tanaka
,
T.
Ishikawa
,
K.
Numayama-Tsuruta
,
Y.
Imai
,
H.
Ueno
,
N.
Matsuki
, and
T.
Yamaguchi
, “
Separation of cancer cells from a red blood cell suspension using inertial force
,”
Lab Chip
12
,
4336
4343
(
2012
).
5.
D.
Pinho
,
T.
Yaginuma
, and
R.
Lima
, “
A microfluidic device for partial cell separation and deformability assessment
,”
BioChip J.
7
,
367
374
(
2013
).
6.
R. O.
Rodrigues
,
D.
Pinho
,
V.
Faustino
, and
R.
Lima
, “
A simple microfluidic device for the deformability assessment of blood cells in a continuous flow
,”
Biomed. Microdevices
17
,
108
(
2015
).
7.
T.
Yaginuma
,
M. S. N.
Oliveira
,
R.
Lima
,
T.
Ishikawa
, and
T.
Yamaguchi
, “
Human red blood cell behaviour under homogeneous extensional flow in a hyperbolic-shaped microchannel
,”
Biomicrofluidics
7
,
054110
(
2013
).
8.
V.
Faustino
,
D.
Pinho
,
T.
Yaginuma
,
R.
Calhelha
,
I.
Ferreira
, and
R.
Lima
, “
Extensional flow-based microfluidic device: Deformability assessment of red blood cells in contact with tumor cells
,”
BioChip J.
8
,
42
47
(
2014
).
9.
M.
Shin
,
K.
Matsuda
,
O.
Ishii
,
H.
Terai
,
M.
Kaazempur-Mofrad
,
J.
Borenstein
,
M.
Detmar
, and
J. P.
Vacanti
, “
Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane)
,”
Biomed. Microdevices
6
,
269
278
(
2004
).
10.
T.
Ohashi
and
M.
Sato
, “
Endothelial cell responses to fluid shear stress: From methodology to applications
,” in
Single and Two-phase Flows on Chemical and Biomedical Engineering
(
Bentham Science Publishers
,
2012
), pp.
579
599
.
11.
D.
Huh
,
Y. S.
Torisawa
,
G. A.
Hamilton
,
H. J.
Kim
, and
D. E.
Ingber
, “
Microengineered physiological biomimicry: Organs-on-chips
,”
Lab Chip
12
,
2156
2164
(
2012
).
12.
M.
Abkarian
,
M.
Faivre
,
R.
Horton
,
K.
Smistrup
,
C. A.
Best-Popescu
, and
H. A.
Stone
, “
Cellular-scale hydrodynamics
,”
Biomed. Mater.
3
,
034011
(
2008
).
13.
V.
Leble
,
R.
Lima
,
R.
Dias
,
C.
Fernandes
,
T.
Ishikawa
,
Y.
Imai
, and
T.
Yamaguchi
, “
Asymmetry of red blood cell motions in a microchannel with diverging and converging bifurcation
,”
Biomicrofluidics
5
,
044120
(
2011
).
14.
R.
Lima
,
T.
Ishikawa
,
Y.
Imai
, and
T.
Yamaguchi
, “
Blood flow behavior in microchannels: Past, current and future trends
,” in
Single and Two-phase Flows on Chemical and Biomedical Engineering
(
Bentham Science Publishers
,
2012
), pp.
513
547
.
15.
K.
Jiang
,
P. C.
Thomas
,
S. P.
Forry
,
D. L.
DeVoe
, and
S. R.
Raghavan
, “
Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors
,”
Soft Matter
8
,
923
926
(
2012
).
16.
L.-B.
Zhao
,
S.-Z.
Li
,
H.
Hu
,
Z.-X.
Guo
,
F.
Guo
,
N.-G.
Zhang
,
X.-H.
Ji
,
W.
Liu
,
K.
Liu
,
S.-S.
Guo
, and
X.-Z.
Zhao
, “
A novel method for generation of amphiphilic PDMS particles by selective modification
,”
Microfluid. Nanofluid.
10
,
453
458
(
2011
).
17.
P. C.
Sousa
,
F. T.
Pinho
,
M. S. N.
Oliveira
, and
M. A.
Alves
, “
Extensional flow of blood analog solutions in microfluidic devices
,”
Biomicrofluidics
5
,
014108
(
2011
).
18.
A. D.
Anastasioua
,
A. S.
Spyrogiannia
,
K. C.
Koskinasb
,
G. D.
Giannogloub
, and
S. V.
Parasa
, “
Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery
,”
Med. Eng. Phys.
34
,
211
218
(
2012
).
19.
L.
Campo-Deaño
,
R. P. A.
Dullens
,
D. G. A. L.
Aarts
,
F. T.
Pinho
, and
M. S. N.
Oliveira
, “
Viscoelasticity of blood and viscoelastic blood analogues for use in polydimethylsiloxane in vitro models of the circulatory system
,”
Biomicrofluidics
7
,
034102
(
2013
).
20.
J.
Calejo
,
D.
Pinho
,
F. J.
Galindo-Rosales
,
R.
Lima
, and
L.
Campo-Deaño
, “
Particulate blood analogues reproducing the erythrocytes cell free layer in a microfluidic device containing a hyperbolic contraction
,”
Micromachines
7
,
4
(
2016
).
21.
A. M.
Gañán-Calvo
, “
Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams
,”
Phys. Rev. Lett.
80
,
285
288
(
1998
).
22.
A. M.
Gañán-Calvo
and
P.
Riesco-Chueca
, “
Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: The minimum flow rate in flow focusing
,”
J. Fluid Mech.
553
,
75
84
(
2006
).
23.
L.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1–10
,
4
13
(
1878
).
24.
S.
Tomotika
, “
On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid
,”
Proc. R. Soc. London
150
,
322
337
(
1935
).
25.
A. J.
Acero
,
N.
Rebollo-Muñoz
,
J. M.
Montanero
,
A. M.
Gañán-Calvo
, and
E. J.
Vega
, “
A new flow focusing technique to produce very thin jets
,”
J. Micromech. Microeng.
23
,
065009
(
2013
).
26.
M. A.
Herrada
,
A. M.
Gañán-Calvo
,
A.
Ojeda-Monge
,
B.
Bluth
, and
P.
Riesco-Chueca
, “
Liquid flow focused by a gas: Jetting, dripping, and recirculation
,”
Phys. Rev. E
78
,
036323
(
2008
).
27.
J. M.
Montanero
,
N.
Rebollo-Muñoz
,
M. A.
Herrada
, and
A. M.
Gañán-Calvo
, “
Global stability of the focusing effect of fluid jet flows
,”
Phys. Rev. E
83
,
036309
(
2011
).
28.
A. M.
Gañán-Calvo
,
J. M.
Montanero
,
L.
Martín-Banderas
, and
M.
Flores-Mosquera
, “
Building functional materials for health care and pharmacy from microfluidic principles and flow focusing
,”
Adv. Drug Delivery Rev.
65
,
1447
1469
(
2013
).
29.
S.
Tomotika
, “
Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate
,”
Proc. R. Soc. London
153
,
302
318
(
1936
).
30.
J.
Eggers
, “
Universal pinching of 3D axisymmetric free-surface flow
,”
Phys. Rev. Lett.
71
,
3458
3460
(
1993
).
31.
M.
Tjahjadi
,
H. A.
Stone
, and
J. M.
Ottino
, “
Satellite and subsatellite formation in capillary breakup
,”
J. Fluid Mech.
243
,
297
317
(
1992
).
32.
O.
Carrier
,
E.
Dervin
,
D.
Funfschilling
, and
H.-Z.
Li
, “
Formation of satellite droplets in flow-focusing junctions: Volume and neck rupture
,”
Microsyst. Technol.
21
,
499
507
(
2015
).
33.
X.
Zhang
and
O. A.
Basaran
, “
An experimental study of dynamics of drop formation
,”
Phys. Fluids
7
,
1184
1203
(
1995
).
34.
C.
Moraes
,
Y.
Sun
, and
C. A.
Simmons
, “
Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography
,”
J. Micromech. Microeng.
19
,
065015
(
2009
).
35.
S. W.
Lee
and
S. S.
Lee
, “
Shrinkage ratio of PDMS and its alignment method for the wafer level process
,”
Microsyst. Technol.
14
,
205
208
(
2007
).
36.
O. C.
Jeong
and
S.
Konishi
, “
Controlling the size of replicable polydimethylsiloxane (PDMS) molds/stamps using a stepwise thermal shrinkage process
,”
Microelectron. Eng.
88
,
2286
2289
(
2011
).
37.
J. N.
Lee
,
C.
Park
, and
G. M.
Whitesides
, “
Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices
,”
Anal. Chem.
75
(
23
),
6544
6554
(
2003
).
38.
E.
Pinto
,
V.
Faustino
,
R. O.
Rodrigues
,
D.
Pinho
,
V.
Garcia
,
J. M.
Miranda
, and
R.
Lima
, “
A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis
,”
Micromachines
6
,
121
135
(
2015
).
You do not currently have access to this content.