The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion—polysodium-4-styrenesulphonate and polycation—poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of tested nanocapsules can result from the type of last PE layer and their different surface charge.

1.
M.
Ghanbari
,
A. S.
Nezhad
,
C. G.
Agudelo
,
M.
Packirisamy
, and
A.
Geitmann
,
J. Biosci. Bioeng.
117
,
504
(
2014
).
2.
P.
Ertl
,
D.
Sticker
,
V.
Charwat
,
C.
Kasper
, and
G.
Lepperdinger
,
Trends Biotechnol.
32
,
245
(
2014
).
3.
E.
Primiceri
,
M. S.
Chiriacò
,
E.
D'Amone
,
E.
Urso
,
R. E.
Ionescu
,
A.
Rizzello
,
M.
Maffia
,
R.
Cingolani
,
R.
Rinaldi
, and
G.
Maruccio
,
Biosens. Bioelectron.
25
,
2711
(
2010
).
4.
J.
Nilsson
,
M.
Evander
,
B.
Hammarström
, and
T.
Laurell
,
Anal. Chim. Acta
649
,
141
(
2009
).
5.
D. B.
Weibel
and
G. M.
Whitesides
,
Curr. Opin. Chem. Biol.
10
,
584
(
2006
).
6.
N. T.
Nguyen
,
S. A.
Shaegh
,
N.
Kashaninejad
, and
D. T.
Phan
,
Adv. Drug. Delivery Rev.
65
,
1403
(
2013
).
7.
N. K.
Inamdar
and
J. T.
Borenstein
,
Curr. Opin. Biotechnol.
22
,
681
(
2011
).
8.
M.
Hamon
and
J. W.
Hong
,
Mol. Cells
36
,
485
(
2013
).
9.
C.
Luni
,
E.
Serena
, and
N.
Elvassore
,
Curr. Opin. Biotechnol.
25
,
45
(
2014
).
10.
D.
Kim
,
X.
Wu
,
A. T.
Young
, and
C. L.
Haynes
,
Acc. Chem. Res.
47
,
1165
(
2014
).
11.
D.
Huh
,
B. D.
Matthews
,
A.
Mammoto
,
M.
Montoya-Zavala
,
H. Y.
Hsin
, and
D. E.
Ingber
,
Science
328
,
1662
(
2010
).
12.
P. M.
Valencia
,
O. C.
Farokhzad
,
R.
Karnik
, and
R.
Langer
,
Nat. Nanotechnol.
7
,
623
(
2012
).
13.
H. J.
Kim
,
D.
Huh
,
G.
Hamilton
, and
D. E.
Ingber
,
Lab Chip
12
,
2165
(
2012
).
14.
J. H.
Sung
,
C.
Kam
, and
M. L.
Shuler
,
Lab Chip
10
,
446
(
2010
).
15.
P.
Agostinis
,
K.
Berg
,
K. A.
Cengel
,
T. H.
Foster
,
A. W.
Girotti
,
S. O.
Gollnick
,
S. M.
Hahn
,
M. R.
Hamblin
,
A.
Juzeniene
,
D.
Kessel
,
M.
Korbelik
,
J.
Moan
,
P.
Mroz
,
D.
Nowis
,
J.
Piette
,
B. C.
Wilson
, and
J.
Golab
,
CA Cancer J. Clin.
61
,
250
(
2011
).
16.
E.
Jastrzębska (Jędrych)
,
I.
Grabowska-Jadach
,
M.
Chudy
,
A.
Dybko
, and
Z.
Brzózka
,
Biomicrofluidics
6
,
44116
(
2012
).
17.
G. V.
Roblero-Bartolón
and
E.
Ramón-Gallegos
,
Gac. Med. Mex.
151
,
78
(
2015
).
18.
S. K.
Mahto
,
T. H.
Yoon
, and
S. W.
Rhee
,
Biomicrofluidics
4
,
034111
(
2010
).
19.
D.
Bechet
,
P.
Couleaud
,
C.
Frochot
,
M.
Viriot
,
F.
Guillemin
, and
M.
Barberi-Heyob
,
Trends Biotechnol.
26
,
612
(
2008
).
20.
F.
Yan
and
R.
Kopelman
,
Photochem. Photobiol.
78
,
587
(
2003
).
21.
R.
Allison
,
H.
Mota
,
V.
Bagnato
, and
C.
Sibata
,
Photodiagn. Photodyn. Ther.
5
,
19
(
2008
).
22.
F.
Marcucci
and
F.
Lefoulon
,
Drug Discovery Today
9
,
219
(
2004
).
23.
K.
Cho
,
X.
Wang
,
S.
Nie
,
Z. G.
Chen
, and
D. M.
Shin
,
Clin. Cancer Res.
14
,
1310
(
2008
).
24.
W.
Tang
,
H.
Xu
,
E. J.
Park
,
M. A.
Philbert
, and
R.
Kopelman
,
Biochem. Biophys. Res. Commun.
369
,
579
(
2008
).
25.
E.
Paszko
,
C.
Ehrhardt
,
M. O.
Senge
,
D. P.
Kelleher
, and
J. V.
Reynolds
,
Photodiagn. Photodyn. Ther.
8
,
14
(
2011
).
26.
A.
Kumari
,
S. K.
Yadav
, and
S. C.
Yadav
,
Colloids Surf., B
75
,
1
(
2010
).
27.
J.
Nicolas
,
S.
Mura
,
D.
Brambilla
,
N.
Mackiewicz
, and
P.
Couvreur
,
Chem. Soc. Rev.
42
,
1147
(
2013
).
28.
B.
Daglar
,
E.
Ozgur
,
M. E.
Corman
,
L.
Uzun
, and
G. B.
Dermiel
,
RSC Adv.
4
,
48639
(
2014
).
29.
K.
Szczepanowicz
,
U.
Bazylińska
,
J.
Pietkiewicz
,
L.
Szyk-Warszyńska
,
K. A.
Wilk
, and
P.
Warszyński
,
Adv. Colloid Interface Sci.
222
,
678
(
2015
).
30.
B. V.
Parakhonskiy
,
A. M.
Yashchenok
,
M.
Konrad
, and
A. G.
Skirtach
,
Adv. Colloid Interface Sci.
207
,
253
(
2014
).
31.
E. M.
Shchukina
and
D. G.
Shchukin
,
Curr. Opin. Colloid Interface Sci.
17
,
281
(
2012
).
32.
D. O.
Grigoriev
and
R.
Miller
,
Curr. Opin. Colloid Interface Sci.
14
,
48
(
2009
).
33.
U.
Bazylińska
,
J.
Pietkiewicz
,
J.
Saczko
,
M.
Nattich-Rak
,
J.
Rossowska
,
A.
Garbiec
, and
K. A.
Wilk
,
Eur. J. Pharm. Sci.
47
,
406
(
2012
).
34.
U.
Bazylińska
,
R.
Skrzela
,
K.
Szczepanowicz
,
P.
Warszyński
, and
K. A.
Wilk
,
Soft Matter
7
,
6113
(
2011
).
35.
U.
Bazylińska
,
R.
Skrzela
,
M.
Piotrowski
,
K.
Szczepanowicz
,
P.
Warszyński
, and
K. A.
Wilk
,
Bioelectrochemistry
87
,
147
(
2012
).
36.
G.
Chapman
,
M.
Henary
, and
G.
Patonay
,
Anal. Chem. Insights
6
,
29
(
2011
).
37.
C.
Zhang
,
T.
Liu
,
Y.
Su
,
S.
Luo
,
Y.
Zhu
,
X.
Tan
,
S.
Fan
,
L.
Zhang
,
Y.
Zhou
,
T.
Cheng
, and
C.
Shi
,
Biomaterials
31
,
6612
(
2010
).
38.
N. S.
James
,
Y.
Chen
,
P.
Joshi
,
T. Y.
Ohulchanskyy
,
M.
Ethirajan
,
M.
Henary
,
L.
Strekowski
, and
R. K.
Pandy
,
Theranostics
3
,
692
(
2013
).
39.
U.
Bazylińska
,
A.
Lewińska
,
L.
Lamch
, and
K. cA.
Wilk
,
Colloids Surf., A
442
,
42
(
2014
).
40.
K.
Kassab
,
J. Photochem. Photobiol. B
68
,
15
(
2002
).
41.
U.
Bazylińska
,
J.
Kulbacka
, and
K. A.
Wilk
,
Colloids Surf., A
460
,
312
(
2014
).
42.
E.
Jedrych
,
Z.
Pawlicka
,
M.
Chudy
,
A.
Dybko
, and
Z.
Brzozka
,
Anal. Chim. Acta
683
,
149
(
2011
).
43.
F.
Cuomo
,
F.
Lopez
, and
A.
Cegle
,
Adv. Colloid Interface Sci.
205
,
124
(
2014
).
44.
S.
Barua
and
S.
Mitragotri
,
Nano Today
9
,
223
(
2014
).
45.
See supplementary material at http://dx.doi.org/10.1063/1.4941681 for (1) UV–Vis absorption spectra and a picture of empty and IR-780-loaded nanocapsules 1 and cyanine IR-780 dissolved in acetone:water (1:1) mixture, (2) photooxidation of human serum albumin (0.8 mg/ml) upon irradiation in the presence of native and encapsulated in nanocapsules 2 IR-780 cyanine, (3) in vitro release profiles of IR-780 from multilayer nanocapsules in the presence and absence of HSA for synthesized nanocapsules, (4) intracellular distribution of nanocapsules 1 and 2 in A549 and MRC-5 cells, (5) images of MRC-5 and A549 cells after PDT procedures, and (6) photooxidation rate constants (kv) of HSA sensitized by the free end encapsulated IR-780 cyanine at different concentrations.
46.
B.
Zhao
,
J. J.
Yin
,
P. J.
Bilski
,
C. F.
Chignell
,
J. E.
Roberts
, and
Y. Y.
He
,
Toxicol. Appl. Pharmacol.
241
,
163
(
2009
).
47.
L. S.
Murakami
,
L. P.
Ferreira
,
J. S.
Santos
,
R. S.
da Silva
,
A.
Nomizo
,
V. A.
Kuzmin
, and
I. E.
Borissevitch
,
Biochim. Biophys. Acta
1850
,
1150
(
2015
).

Supplementary Material

You do not currently have access to this content.