Herein we present a microfluidic-multiplexed platform that integrates electrochemical sensors based on carbon nanotubes associated with ferrocene as redox marker (carbon nanotube (CNT)/ferrocene) for direct detection of pathogenic viral DNA from Hepatitis C and genomic DNA from Mycobacterium tuberculosis in clinical isolates. By operating the fluidic device under high flow (150 μl/min), the formation of a very thin depletion layer at the sensor surface (δS = 230 nm) enhances the capture rate up to one DNA strand per second. By comparison, this capture rate is only 0.02 molecule/s in a static regime without flow. This fluidic protocol allows thus enhancing the limit of detection of the electrochemical biosensor from picomolar in bulk solution to femtomolar with a large dynamic range from 0.1 fM to 1 pM. Kinetics analysis also demonstrates an enhancement of the rate constant of electron transfer (kS) of the electrochemical process from 1 s−1 up to 6 s−1 thanks to the geometry of the miniaturized fluidic electrochemical cell. This microfluidic device working under high flow allows selective direct detection of a Mycobacterium tuberculosis (H37Rv) rpoB allele from clinical isolate extracted DNA. We envision that a microfluidic approach under high flow associated with a multiwall CNT/ferrocene sensor could find useful applications as the point-of-care for multi-target diagnostics of biomarkers in real samples.

1.
V.
Gubala
,
L. F.
Harris
,
A. J.
Ricco
,
M. X.
Tan
, and
D. E.
Williams
,
Anal. Chem.
84
,
487
(
2012
).
2.
J. C.
Jokerst
,
J. M.
Emory
, and
C. S.
Henry
,
Analyst
137
,
24
(
2012
).
3.
Y. T.
Atalay
,
S.
Vermeir
,
D.
Witters
,
N.
Vergauwe
,
B.
Verbruggen
,
P.
Verboven
,
B. M.
Nicolaï
, and
J.
Lammertyn
,
Trends Food Sci. Technol.
22
,
386
(
2011
).
4.
D.
Falconnet
,
J.
She
,
R.
Tornay
,
E.
Leimgruber
,
D.
Bernasconi
,
L.
Lagopoulos
,
P.
Renaud
,
N.
Demierre
, and
P.
van den Bogaard
,
Anal. Chem.
87
,
1582
(
2015
).
5.
A.
Floris
,
S.
Staal
,
S.
Lenk
,
E.
Staijen
,
D.
Kohlheyer
,
J.
Eijkel
, and
A.
van den Berg
,
Lab Chip
10
,
1799
(
2010
).
6.
R.
Gorkin
,
J.
Park
,
J.
Siegrist
,
M.
Amasia
,
B. S.
Lee
,
J.-M.
Park
,
J.
Kim
,
H.
Kim
,
M.
Madou
, and
Y.-K.
Cho
,
Lab Chip
10
,
1758
(
2010
).
7.
R. H.
Liu
,
J.
Yang
,
R.
Lenigk
,
J.
Bonanno
, and
P.
Grodzinski
,
Anal. Chem.
76
,
1824
(
2004
).
8.
B. S.
Ferguson
,
S. F.
Buchsbaum
,
T. T.
Wu
,
K.
Hsieh
,
Y.
Xiao
,
R.
Sun
, and
H. T.
Soh
,
J. Am. Chem. Soc.
133
,
9129
(
2011
).
9.
T. T.
Goodrich
,
H. J.
Lee
, and
R. M.
Corn
,
Anal. Chem.
76
,
6173
(
2004
).
11.
M.
Musameh
,
J.
Wang
,
A.
Merkoci
, and
Y.
Lin
,
Electrochem. Commun.
4
,
743
(
2002
).
12.
H.
Cai
,
X.
Cao
,
Y.
Jiang
,
P.
He
, and
Y.
Fang
,
Anal. Bioanal. Chem.
375
,
287
(
2003
).
13.
J. N.
Tiwari
,
V.
Vij
,
K. C.
Kemp
, and
K. S.
Kim
,
ACS Nano
10
,
46
(
2016
).
14.
J. J.
Gooding
,
A.
Chou
,
J.
Liu
,
D.
Losic
,
J. G.
Shapter
, and
D. B.
Hibbert
,
Electrochem. Commun.
9
,
1677
(
2007
).
15.
R. E.
Ruther
,
Q.
Cui
, and
R. J.
Hamers
,
J. Am. Chem. Soc.
135
,
5751
(
2013
).
16.
D. M.
Adams
,
L.
Brus
,
C. E. D.
Chidsey
,
S.
Creager
,
C.
Creutz
,
C. R.
Kagan
,
P. V.
Kamat
,
M.
Lieberman
,
S.
Lindsay
,
R. A.
Marcus
,
R. M.
Metzger
,
M. E.
Michel-Beyerle
,
J. R.
Miller
,
M. D.
Newton
,
D. R.
Rolison
,
O.
Sankey
,
K. S.
Schanze
,
J.
Yardley
, and
X.
Zhu
,
J. Phys. Chem. B
107
,
6668
(
2003
).
17.
A.
Bouchet
,
C.
Chaix
,
C. A.
Marquette
,
L. J.
Blum
, and
B.
Mandrand
,
Biosens. Bioelectron.
23
,
735
(
2007
).
18.
Y.
Du
,
C.
Chen
,
B.
Li
,
M.
Zhou
,
E.
Wang
, and
S.
Dong
,
Biosens. Bioelectron.
25
,
1902
(
2010
).
19.
T.-H.
Kim
,
K.
Abi-Samra
,
V.
Sunkara
,
D.-K.
Park
,
M.
Amasia
,
N.
Kim
,
J.
Kim
,
H.
Kim
,
M.
Madou
, and
Y.-K.
Cho
,
Lab Chip
13
,
3747
(
2013
).
20.
T. M.
Squires
,
R. J.
Messinger
, and
S. R.
Manalis
,
Nat. Biotechnol.
26
,
417
(
2008
).
21.
M. R.
Leyden
,
R. J.
Messinger
,
C.
Schuman
,
T.
Sharf
,
V. T.
Remcho
,
T. M.
Squires
, and
E. D.
Minot
,
Lab Chip
12
,
954
(
2012
).
22.
H.
Parsa
,
C. D.
Chin
,
P.
Mongkolwisetwara
,
B. W.
Lee
,
J. J.
Wang
, and
S. K.
Sia
,
Lab Chip
8
,
2062
(
2008
).
23.
H.
Korri-Youssoufi
and
B.
Makrouf
,
Anal. Chim. Acta
469
,
85
(
2002
).
24.
M. K.
Gomgnimbou
,
E.
Abadia
,
J.
Zhang
,
G.
Refregier
,
S.
Panaiotov
,
E.
Bachiyska
, and
C.
Sola
,
J. Clin. Microbiol.
50
,
3172
(
2012
).
25.
M. G.
Murray
,
W. F.
Thompson
, and
S. L.
City
,
Nucleic Acids Res.
8
,
4321
(
1980
).
26.
E.
Laviron
,
J. Electroanal. Chem.
101
,
19
(
1979
).
27.
E. C.
Landis
and
R. J.
Hamers
,
J. Phys. Chem. C
112
,
16910
(
2008
).
28.
A.
Miodek
,
G.
Castillo
,
T.
Hianik
, and
H.
Korri-Youssoufi
,
Biosens. Bioelectron.
56
,
104
(
2014
).
29.
M. M.
Rahman
,
Y. J.
Kim
, and
J.-J.
Lee
,
J. Electrochem. Soc.
162
,
B159
(
2015
).
30.
Z.
Nie
,
C. A.
Nijhuis
,
J.
Gong
,
X.
Chen
,
A.
Kumachev
,
A. W.
Martinez
,
M.
Narovlyansky
, and
G. M.
Whitesides
,
Lab Chip
10
,
477
(
2010
).
31.
D.
Taller
,
K.
Richards
,
Z.
Slouka
,
S.
Senapati
,
R.
Hill
,
D. B.
Go
, and
H.-C.
Chang
,
Lab Chip
15
,
1656
(
2015
).
32.
H.
Ben-Yoav
,
P. H.
Dykstra
,
W. E.
Bentley
, and
R.
Ghodssi
,
Biosens. Bioelectron.
38
,
114
(
2012
).
33.
E.
Pavlovic
,
R. Y.
Lai
,
T. T.
Wu
,
B. S.
Ferguson
,
R.
Sun
,
K. W.
Plaxco
, and
H. T.
Soh
,
Langmuir
24
,
1102
(
2008
).
34.
N.
Triroj
,
P.
Jaroenapibal
,
H.
Shi
,
J. I.
Yeh
, and
R.
Beresford
,
Biosens. Bioelectron.
26
,
2927
(
2011
).
35.
M. A.
Ali
,
S.
Srivastava
,
P. R.
Solanki
,
V.
Reddy
,
V. V.
Agrawal
,
C.
Kim
,
R.
John
, and
B. D.
Malhotra
,
Sci. Rep.
3
,
2661
(
2013
).
36.
S.
Basuray
,
S.
Senapati
,
A.
Aijian
,
A. R.
Mahon
, and
H.
Chang
,
ACS Nano
3
,
1823
(
2009
).
37.
A. R.
Mahon
,
M. A.
Barnes
,
S.
Senapati
,
J. L.
Feder
,
J. A.
Darling
,
H. C.
Chang
, and
D. M.
Lodge
,
PLoS One
6
,
e17280
(
2011
).
38.
A.
Miodek
,
N.
Mejri
,
M.
Gomgnimbou
,
C.
Sola
, and
H.
Korri-Youssoufi
,
Anal. Chem.
87
,
9257
(
2015
).
39.
S. S. W.
Yeung
,
T. M. H.
Lee
, and
I.
Hsing
,
Anal. Chem.
80
,
363
(
2008
).
40.
B. S.
Ferguson
,
S. F.
Buchsbaum
,
J. S.
Swensen
,
K.
Hsieh
,
X.
Lou
, and
H. T.
Soh
,
Anal. Chem.
81
,
6503
(
2009
).
41.
J.
Zhang
,
S.
Song
,
L.
Zhang
,
L.
Wang
,
H.
Wu
,
D.
Pan
, and
C.
Fan
,
J. Am. Chem. Soc.
128
,
8575
(
2006
).
42.
M. A.
Bangar
,
D. J.
Shirale
,
H. J.
Purohit
,
W.
Chen
,
N. V.
Myung
, and
A.
Mulchandani
,
Electroanalysis
23
,
371
(
2011
).
43.
See supplementary material at http://dx.doi.org/10.1063/1.4940887 for a description of the microfluidic chamber, fluidic parameters, XPS analyses, impedance measurements and characterization of the sensor's kinetics.

Supplementary Material

You do not currently have access to this content.