Herein we present a microfluidic-multiplexed platform that integrates electrochemical sensors based on carbon nanotubes associated with ferrocene as redox marker (carbon nanotube (CNT)/ferrocene) for direct detection of pathogenic viral DNA from Hepatitis C and genomic DNA from Mycobacterium tuberculosis in clinical isolates. By operating the fluidic device under high flow (150 μl/min), the formation of a very thin depletion layer at the sensor surface (δS = 230 nm) enhances the capture rate up to one DNA strand per second. By comparison, this capture rate is only 0.02 molecule/s in a static regime without flow. This fluidic protocol allows thus enhancing the limit of detection of the electrochemical biosensor from picomolar in bulk solution to femtomolar with a large dynamic range from 0.1 fM to 1 pM. Kinetics analysis also demonstrates an enhancement of the rate constant of electron transfer (kS) of the electrochemical process from 1 s−1 up to 6 s−1 thanks to the geometry of the miniaturized fluidic electrochemical cell. This microfluidic device working under high flow allows selective direct detection of a Mycobacterium tuberculosis (H37Rv) rpoB allele from clinical isolate extracted DNA. We envision that a microfluidic approach under high flow associated with a multiwall CNT/ferrocene sensor could find useful applications as the point-of-care for multi-target diagnostics of biomarkers in real samples.
Skip Nav Destination
Article navigation
January 2016
Research Article|
February 02 2016
A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates
B. Zribi;
B. Zribi
1Laboratoire de Photonique et de Nanostructures (LPN), CNRS,
Université Paris-Saclay
, route de Nozay, F-91460 Marcoussis, France
2
Université Paris-Saclay
, UMR-CNRS 8182, Institue de Chimie Moléculaires et Matériaux d'Orsay (ICMMO), Equipe de Chimie Bioorganique et Bioinorganique (ECBB), Bâtiment 420, 91405, Orsay, France
3Laboratoire de Physique des Matériaux, LPM FSS, Faculté des Sciences de Sfax,
Université de Sfax
, Sfax, Tunisia
Search for other works by this author on:
E. Roy;
E. Roy
1Laboratoire de Photonique et de Nanostructures (LPN), CNRS,
Université Paris-Saclay
, route de Nozay, F-91460 Marcoussis, France
Search for other works by this author on:
A. Pallandre;
A. Pallandre
1Laboratoire de Photonique et de Nanostructures (LPN), CNRS,
Université Paris-Saclay
, route de Nozay, F-91460 Marcoussis, France
4
Université Paris-Saclay
, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
Search for other works by this author on:
S. Chebil;
S. Chebil
1Laboratoire de Photonique et de Nanostructures (LPN), CNRS,
Université Paris-Saclay
, route de Nozay, F-91460 Marcoussis, France
Search for other works by this author on:
M. Koubaa;
M. Koubaa
3Laboratoire de Physique des Matériaux, LPM FSS, Faculté des Sciences de Sfax,
Université de Sfax
, Sfax, Tunisia
Search for other works by this author on:
N. Mejri;
N. Mejri
2
Université Paris-Saclay
, UMR-CNRS 8182, Institue de Chimie Moléculaires et Matériaux d'Orsay (ICMMO), Equipe de Chimie Bioorganique et Bioinorganique (ECBB), Bâtiment 420, 91405, Orsay, France
Search for other works by this author on:
H. Magdinier Gomez;
H. Magdinier Gomez
5UMR-CNRS 9198, Institut de Biologie Intégrative de la Cellule (I2BC),
Université Paris-Saclay
, Bat 400, 91405 Orsay, France
Search for other works by this author on:
C. Sola;
C. Sola
5UMR-CNRS 9198, Institut de Biologie Intégrative de la Cellule (I2BC),
Université Paris-Saclay
, Bat 400, 91405 Orsay, France
Search for other works by this author on:
H. Korri-Youssoufi;
H. Korri-Youssoufi
a)
2
Université Paris-Saclay
, UMR-CNRS 8182, Institue de Chimie Moléculaires et Matériaux d'Orsay (ICMMO), Equipe de Chimie Bioorganique et Bioinorganique (ECBB), Bâtiment 420, 91405, Orsay, France
Search for other works by this author on:
A.-M. Haghiri-Gosnet
A.-M. Haghiri-Gosnet
1Laboratoire de Photonique et de Nanostructures (LPN), CNRS,
Université Paris-Saclay
, route de Nozay, F-91460 Marcoussis, France
Search for other works by this author on:
a)
H. Korri-Youssoufi and A.-M. Haghiri-Gosnet contributed equally to this work.
b)
Author to whom correspondence should be addressed. Electronic mail: [email protected]
Biomicrofluidics 10, 014115 (2016)
Article history
Received:
November 26 2015
Accepted:
January 14 2016
Citation
B. Zribi, E. Roy, A. Pallandre, S. Chebil, M. Koubaa, N. Mejri, H. Magdinier Gomez, C. Sola, H. Korri-Youssoufi, A.-M. Haghiri-Gosnet; A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics 1 January 2016; 10 (1): 014115. https://doi.org/10.1063/1.4940887
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Processing and inspection of high-pressure microfluidics systems: A review
Jiangyi Song, Shaoxin Meng, et al.
Design of 3D printed chip to improve sensitivity of platelet adhesion through reinjection: Effect of alcohol consumption on platelet adhesion
Haebeen Kim, Hae-Ryoun Park, et al.
Impact of dcEF on microRNA profiles in glioblastoma and exosomes using a novel microfluidic bioreactor
Hsieh-Fu Tsai, Amy Q. Shen
Related Content
Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection
Appl. Phys. Lett. (March 2010)
Quantitative detection of cells expressing BlaC using droplet-based microfluidics for use in the diagnosis of tuberculosis
Biomicrofluidics (August 2015)
Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection
Appl. Phys. Lett. (October 2011)
Predictive Detection of Tuberculosis using Electronic Nose Technology
AIP Conference Proceedings (May 2009)