We designed and built a microfluidic device for the generation of liquid jets produced by thermocavitation. A continuous wave (CW) laser was focused inside a micro-chamber filled with a light-absorbing solution to create a rapidly expanding vapor bubble. The chamber is connected to a micro-channel which focuses and ejects the liquid jet through the exit. The bubble growth and the jet velocity were measured as a function of the devices geometry (channel diameter D and chamber width A). The fastest jets were those for relatively large chamber size with respect to the channel diameter. Elongated and focused jets up to 29 m/s for a channel diameter of 250μm and chamber size of 700μm were obtained. The proposed CW laser-based device is potentially a compact option for a practical and commercially feasible needle-free injector.

1.
Y.
Chartier
,
J.
Emmanuel
,
U.
Pieper
,
A.
Prüss
,
P.
Rushbrook
,
R.
Stringer
,
W.
Townend
,
S.
Wilburn
, and
R.
Zghondi
,
Safe Management of Wastes from Health-Care Activities
(
World Health Organization
,
2014
).
2.
S. Q.
Wilburn
and
G.
Eijkemans
, “
Preventing needlestick injuries among healthcare workers: A WHO-ICN Collaboration
,”
Int. J. Occup. Environ. Health
10
,
451
456
(
2004
).
3.
Y.
Guo
,
J.
Shiao
,
Y.
Chuang
, and
K.
Huang
, “
Needlestick and sharps injuries among health-care workers in Taiwan
,”
Epidemiol. Infect.
122
(
2
),
259
265
(
1999
).
4.
B. P.
Lanphear
,
C. C.
Linnemann
,
C. G.
Cannon
,
M. M.
DeRonde
,
L.
Pendy
, and
L. M.
Kerley
, “
Hepatitis C virus infection in healthcare workers: Risk of exposure and infection
,”
Infect. Control Hosp. Epidemiol.
15
,
745
750
(
1994
).
5.
A. P.
Raphael
,
O. R. L.
Wright
,
H. A.
Benson
, and
T. W.
Prow
, “
Recent advances in physical delivery enhancement of topical drugs
,”
Curr. Pharm. Des.
21
,
2830
2847
(
2015
).
6.
J.
Schramm-Baxter
and
S.
Mitragotri
, “
Needle-free jet injections: Dependence of jet penetration and dispersion in the skin on jet power
,”
J. Controlled Release
97
,
527
535
(
2004
).
7.
A.
Adamo
,
O.
Roushdy
,
R.
Dokov
,
A.
Sharei
, and
K. F.
Jensen
, “
Microfluidic jet injection for delivering macromolecules into cells
,”
J. Micromech. Microeng.
23
,
035026
(
2013
).
8.
A.
Arora
,
I.
Hakim
,
J.
Baxter
,
R.
Rathnasingham
,
R.
Srinivasan
,
D. A.
Fletcher
, and
S.
Mitragotri
, “
Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
4255
4260
(
2007
).
9.
N. C.
Hogan
,
B. D.
Hemond
,
D. M.
Wendell
,
A. J.
Taberner
, and
I. W.
Hunter
, “
Delivery of active collagenase to skin using a lorentz-force actuated needle-free injector
,” in
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
2006
), Vol.
1
, pp.
5611
5616
.
10.
J. C.
Stachowiak
,
T. H.
Li
,
A.
Arora
,
S.
Mitragotri
, and
D. A.
Fletcher
, “
Dynamic control of needle-free jet injection
,”
J. Controlled Release
135
,
104
112
(
2009
).
11.
C. M. G. J.
Houtzagers
,
A. P.
Visser
,
P. A.
Berntzen
,
R. J.
Heine
, and
E. A.
Veen
, “
The Medi-Jector II: Efficacy and acceptability in insulin-dependent diabetic patients with and without needle phobia
,”
Diabetic Med.
5
,
135
138
(
1988
).
12.
A.
Taberner
,
N. C.
Hogan
, and
I. W.
Hunter
, “
Needle-free jet injection using real-time controlled linear Lorentz-force actuators
,”
Med. Eng. Phys.
34
,
1228
1235
(
2012
).
13.
M.
Kendall
,
T.
Mitchell
, and
P.
Wrighton-Smith
, “
Intradermal ballistic delivery of micro-particles into excised human skin for pharmaceutical applications
,”
J. Biomech.
37
,
1733
1741
(
2004
).
14.
M.
Kendall
, “
Engineering of needle-free physical methods to target epidermal cells for DNA vaccination
,”
Vaccine
24
,
4651
4656
(
2006
).
15.
J.
Myschik
,
W. T.
McBurney
,
T.
Hennessy
,
T.
Rades
, and
S.
Hook
,
Pharm. - Int. J. Pharm. Sci.
63
(9),
686
(
2008
).
16.
A. C.
Sintov
,
I.
Krymberk
,
D.
Daniel
,
T.
Hannan
,
Z.
Sohn
, and
G.
Levin
, “
Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs
,”
J. Controlled Release
89
,
311
320
(
2003
).
17.
G.
Levin
,
A.
Gershonowitz
,
H.
Sacks
,
M.
Stern
,
A.
Sherman
,
S.
Rudaev
,
I.
Zivin
, and
M.
Phillip
, “
Transdermal delivery of human growth hormone through RF-microchannels
,”
Pharm. Res.
22
,
550
555
(
2005
).
18.
S.
Mitragotri
and
J.
Kost
, “
Low-frequency sonophoresis: A review
,”
Adv. Drug Delivery Rev.
56
,
589
601
(
2004
).
19.
L. M.
Strambini
,
A.
Longo
,
A.
Diligenti
, and
G.
Barillaro
, “
A minimally invasive microchip for transdermal injection/sampling applications
,”
Lab Chip
12
,
3370
3379
(
2012
).
20.
R. K.
Sivamani
,
D.
Liepmann
, and
H. I.
Maibach
, “
Microneedles and transdermal applications
,”
Expert Opin. Drug Delivery
4
,
19
25
(
2007
).
21.
D. V.
McAllister
,
M. G.
Allen
, and
M. R.
Prausnitz
, “
Microfabricated microneedles for gene and drug delivery
,”
Annu. Rev. Biomed. Eng.
2
,
289
313
(
2000
).
22.
A.
Arora
,
M. R.
Prausnitz
, and
S.
Mitragotri
, “
Micro-scale devices for transdermal drug delivery
,”
Int. J. Pharm.
364
,
227
236
(
2008
).
23.
C.
Pegoraro
,
S.
MacNeil
, and
G.
Battaglia
, “
Transdermal drug delivery: From micro to nano
,”
Nanoscale
4
,
1881
1894
(
2012
).
24.
Y.
Tagawa
,
N.
Oudalov
,
C. W.
Visser
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
A.
Prosperetti
, and
D.
Lohse
, “
Highly focused supersonic microjets
,”
Phys. Rev. X
2
,
031002
(
2012
).
25.
Y.
Tagawa
,
N.
Oudalov
,
A.
El Ghalbzouri
,
C.
Sun
, and
D.
Lohse
, “
Needle-free injection into skin and soft matter with highly focused microjets
,”
Lab Chip
13
,
1357
1363
(
2013
).
26.
T.
Han
and
J. J.
Yoh
, “
A laser based reusable microjet injector for transdermal drug delivery
,”
J. Appl. Phys.
107
,
103110
(
2010
).
27.
M.
Park
,
H.
Jang
,
F. V.
Sirotkin
, and
J. J.
Yoh
, “
Er:YAG laser pulse for small-dose splashback-free microjet transdermal drug delivery
,”
Opt. Lett.
37
,
3894
(
2012
).
28.
H.
Jang
,
M.
Park
,
F. V.
Sirotkin
, and
J. J.
Yoh
, “
Laser-induced microjet: Wavelength and pulse duration effects on bubble and jet generation for drug injection
,”
Appl. Phys. B
113
,
417
421
(
2013
).
29.
H.
Jang
,
H.
Yu
,
S.
Lee
,
E.
Hur
,
Y.
Kim
,
S.-H.
Lee
,
N.
Kang
, and
J. J.
Yoh
, “
Towards clinical use of a laser-induced microjet system aimed at reliable and safe drug delivery
,”
J. Biomed. Opt.
19
,
058001
(
2014
).
30.
T.-H.
Han
,
J.-M.
Hah
, and
J. J.
Yoh
, “
Drug injection into fat tissue with a laser based microjet injector
,”
J. Appl. Phys.
109
(
9
),
093105
(
2011
).
31.
J. P.
Padilla-Martinez
,
J. C.
Ramirez-San-Juan
,
N.
Korneev
,
D.
Banks
,
G.
Aguilar
, and
R.
Ramos-Garcia
, “
Breaking the Rayleigh-Plateu instability limit using thermocavitation within a droplet
,”
Atomization Sprays
23
(
6
),
487
503
(
2013
).
32.
D.
Fernandez Rivas
and
J. G. E.
Gardeniers
, “
On the resilience of PDMS microchannels after violent optical breakdown microbubble cavitation
,” in
6th International Conference on Nanochannels, Microchannels, and Minichannels
(
ASME
,
2008
), Paper No. ICNMM2008-62385, pp.
1939
1942
.
33.
T.-H.
Wu
,
L.
Gao
,
Y.
Chen
,
K.
Wei
, and
P.-Y.
Chiou
, “
Pulsed laser triggered high speed microfluidic switch
,”
Appl. Phys. Lett.
93
,
144102
(
2008
).
34.
S. F.
Rastopov
and
A. T.
Sukhodolsky
, “
Sound generation by thermocavitation induced CW-laser in solutions
,”
Proc. SPIE
1440
,
127
134
(
1991
).
35.
J. C.
Ramirez-San-Juan
,
E.
Rodriguez-Aboytes
,
A. E.
Martinez-Canton
,
O.
Baldovino-Pantaleon
,
A.
Robledo-Martinez
,
N.
Korneev
, and
R.
Ramos-Garcia
, “
Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids
,”
Opt. Express
18
,
8735
8742
(
2010
).
36.
P. A.
Quinto-Su
,
K. Y.
Lim
, and
C.-D.
Ohl
, “
Cavitation bubble dynamics in microfluidic gaps of variable height
,”
Phys. Rev. E
80
,
047301
(
2009
).
You do not currently have access to this content.