Currently, microbiological techniques such as culture enrichment and various plating techniques are used for detection of pathogens. These expensive and time consuming methods can take several days. Described below is the design, fabrication, and testing of a rapid and inexpensive sensor, involving the use of microelectrodes in a microchannel, which can be used to detect single bacterial cells electrically (label-free format) in real time. As a proof of principle, we have successfully demonstrated real-time detection of target yeast cells by measuring instantaneous changes in ionic impedance. We have also demonstrated the selectivity of our sensors in responding to target cells while remaining irresponsive to nontarget cells. Using this technique, it can be possible to multiplex an array of these sensors onto a chip and probe a complex mixture for various types of bacterial cells.

1.
D.
McClain
and
W. H.
Lee
, Laboratory Communication No. 57. (U.S. Department of Agriculture, FSIS, Microbiology Division, Beltsville, Maryland
1989
).
2.
P. M.
Griffin
, “
Infections of the gastrointestinal tract
,” in
Escherichia Coli O157:H7 and Other Enterohemorrhagic Escherichia Coli
, edited by
M. J.
Blaser
,
P. D.
Smith
,
J. I.
Ravdin
,
H. B.
Greenberg
, and
R. L.
Guerrant
(
Raven
,
New York
,
1995
), pp.
739
761
.
3.
J. B.
Kaper
and
A. D.
O’Brien
,
Escherichia Coli O157:H7 and Other Shiga Toxin-Producing E. Coli Strains
(
ASM
,
Washington, D.C.
,
1998
).
4.
P. S.
Mead
,
L.
Slutsker
,
V.
Dietz
,
L. F.
McCaig
,
J. S.
Bresee
,
C.
Shapiro
,
P. M.
Griffin
, and
R. V.
Tauxe
,
Emerg. Infect. Dis.
5
,
607
(
1999
).
5.
S. B.
March
and
S.
Ratnam
,
J. Clin. Microbiol.
23
,
869
(
1986
).
6.
S. M.
Radke
and
E. C.
Alocilja
,
IEEE Sens. J.
5
,
744
(
2005
).
7.
R.
Gomez
,
R.
Bashir
,
A.
Sarikaya
,
M. R.
Ladisch
,
J.
Sturgis
,
J. P.
Robinson
,
T.
Geng
,
A.
Bhunia
,
H. L.
Apple
, and
S.
Wereley
,
Biomed. Microdevices
3
,
201
(
2001
).
8.
S. M.
Radke
and
E. C.
Alocilja
,
IEEE Sens. J.
4
,
434
(
2004
).
9.
L.
Yang
,
Y.
Li
,
C. L.
Griffis
, and
M. G.
Johnson
,
Biosens. Bioelectron.
19
,
1139
(
2004
).
10.
L.
Yang
,
L. Y. C.
Ruan
, and
Y.
Li
,
Biosens. Bioelectron.
19
,
495
(
2003
).
11.
Y.
Liu
,
T. M.
Walter
,
W.
Chang
,
K. S.
Lim
,
L.
Yang
,
S. W.
Lee
,
A.
Aronson
, and
R.
Bashir
,
Lab Chip
7
,
603
(
2007
).
12.
R.
Gómez-Sjöberg
,
D. T.
Morisette
, and
R.
Bashir
,
J. Microelectromech. Syst.
14
,
829
(
2005
).
13.
S.
Sengupta
,
D. A.
Battigelli
, and
H. C.
Chang
,
Lab Chip
6
,
682
(
2006
).
14.
W. H.
Coulter
,
US
Pat
., 2656508 (
1953
).
15.
O. A.
Saleh
and
L. L.
Sohn
,
Rev. Sci. Instrum.
72
,
4449
(
2001
).
16.
O. A.
Saleh
and
L. L.
Sohn
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
820
(
2003
).
17.
A.
Carbonaro
and
L. L.
Sohn
,
Lab Chip
5
,
1155
(
2005
).
18.
S.
Gawad
,
L.
Schild
, and
Ph.
Renaud
,
Lab Chip
1
,
76
(
2001
).
19.
H. E.
Ayliffe
,
A. B.
Frazier
, and
R. D.
Rabbitt
,
J. Microelectromech. Syst.
8
,
50
(
1999
).
20.
I. F.
Cheng
,
H. C.
Chang
,
D.
Hou
, and
H. C.
Chang
,
Biomicrofluidics
1
,
021503
(
2007
).
21.
J.
Wu
,
Y.
Ben
, and
H. C.
Chang
,
Microfluid. Nanofluid.
1
,
161
(
2005
).
22.
J.
Wu
,
Y.
Ben
,
D.
Battigelli
, and
H.-C.
Chang
,
Ind. Eng. Chem. Res.
44
,
2815
(
2005
).
23.
E.
Katz
and
I.
Wilner
,
Electroanalysis
15
,
913
(
2003
).
24.
B. K.
Oh
,
Y. K.
Kim
,
K. W.
Park
,
W. H.
Lee
, and
J. W.
Choi
,
Biosens. Bioelectron.
19
,
1497
(
2004
).
25.
C. J.
Felice
,
R. E.
Madrid
, and
M. E.
Valentinuzzi
,
Biomed. Eng. Online
4
,
22
(
2005
).
26.
S.
Pal
,
E.
Alocilja
, and
F. P.
Downes
,
Biosens. Bioelectron.
22
,
2329
(
2007
).
You do not currently have access to this content.