Electroosmotic flow was studied in thin film microchannels with silicon dioxide and silicon nitride sidewalls formed using plasma-enhanced chemical vapor deposition (PECVD). A sacrificial etching process was employed for channel fabrication allowing for cross-sections with heights of 3μm, ranging from 2μm to 50μm in width. Flow rates were measured for single channels and multichannel electroosmotic pump structures for pH levels ranging from 2.6 to 8.3, and zeta potentials were calculated for both silicon dioxide and silicon nitride surfaces. Flow rates as high as 0.086μLmin were measured for nitride multichannel pumps at applied electric fields of 300 V/mm. The surface characteristics of PECVD nitride were analyzed and compared to more well-known oxide surfaces to determine the density of amine sites compared to silanol sites.

1.
S.
Campopiano
,
R.
Bernini
,
L.
Zeni
, and
P. M.
Sarro
,
Opt. Lett.
29
,
1894
(
2004
).
2.
J. P.
Barber
,
E. J.
Lunt
,
Z. A.
George
,
D.
Yin
,
H.
Schmidt
, and
A. R.
Hawkins
,
IEEE Photon. Technol. Lett.
18
,
28
(
2006
).
3.
D.
Yin
,
H.
Schmidt
,
J. P.
Barber
,
E. J.
Lunt
, and
A. R.
Hawkins
,
Opt. Express
13
,
10564
(
2005
).
4.
I. M.
Lazar
and
B. L.
Karger
,
Anal. Chem.
74
,
6259
(
2002
).
5.
C. H.
Chen
and
J. G.
Santiago
,
J. Microelectromech. Syst.
11
,
672
(
2002
).
6.
D. J.
Laser
and
J. G.
Santiago
,
J. Micromech. Microeng.
14
,
R35
(
2004
).
7.
J. D.
Ramsey
,
S. C.
Jacobson
,
C. T.
Culbertson
, and
J. M.
Ramsey
,
Anal. Chem.
75
,
3758
(
2003
).
8.
S. K.
Sia
and
G. M.
Whitesides
,
Electrophoresis
24
,
3563
(
2003
).
9.
M. A.
Burns
,
B. N.
Johnson
,
S. N.
Brahmasandra
,
K.
Handique
,
J. R.
Webster
,
M.
Krishnan
,
T. S.
Sammarco
,
P. M.
Man
,
D.
Jones
,
D.
Heldsinger
,
C. H.
Mastrangelo
, and
D. T.
Burke
,
Science
282
,
484
(
1998
).
10.
B.
Dang
,
P.
Joseph
,
M.
Bakir
,
T.
Spencer
,
P.
Kohl
, and
J.
Meindl
,
Proceedings of the International Interconnect Technology Conference
,
180
(
IEEE
,
New York
,
2005
).
11.
V.
Pamula
and
K.
Chakrabarty
,
Proceedings of the ACM Great Lakes Symposium on VLSI
,
84
(
ACM
,
New York
,
2003
).
12.
B. J.
Kirby
and
E. F.
Hasselbrink
, Jr.
,
Electrophoresis
25
,
187
(
2004
).
13.
B. J.
Kirby
and
E. F.
Hasselbrink
, Jr.
,
Electrophoresis
25
,
203
(
2004
).
14.
L.
Bousse
and
S.
Mostarshed
,
J. Electroanal. Chem. Interfacial Electrochem.
302
,
269
(
1991
).
15.
E.
Lidén
,
M.
Persson
,
E.
Carlström
, and
R.
Carlsson
,
J. Am. Ceram. Soc.
74
,
1335
(
1991
).
16.
N. B.
Hubbard
,
L. L.
Howell
,
J. P.
Barber
,
D. B.
Conkey
,
A. R.
Hawkins
, and
H.
Schmidt
,
J. Micromech. Microeng.
15
,
720
(
2005
).
17.
B. A.
Peeni
,
D. B.
Conkey
,
J. P.
Barber
,
R. T.
Kelly
,
M. L.
Lee
,
A. T.
Woolley
, and
A. R.
Hawkins
,
Lab Chip
5
,
501
(
2005
).
18.
B. A.
Peeni
,
M. L.
Lee
,
A. R.
Hawkins
, and
A. T.
Woolley
,
Electrophoresis
27
,
4888
(
2006
).
19.
J. R.
Lee
,
J. P.
Barber
,
Z. A.
George
,
M. L.
Lee
,
H.
Schmidt
, and
A. R.
Hawkins
,
J. Micro/Nanolith. MEMS MOEMS
6
,
013010
(
2007
).
20.
J. M.
Edwards
 IV
,
M. N.
Hamblin
,
N. V.
Fuentes
,
B. A.
Peeni
,
M. L.
Lee
,
A. T.
Woolley
, and
A. R.
Hawkins
,
Biomicrofluidics
1
,
014101
(
2007
).
21.
M.
Moini
,
P.
Cao
, and
A. J.
Bard
,
Anal. Chem.
71
,
1658
(
1999
).
22.
C. L.
Rice
and
R.
Whitehead
,
J. Phys. Chem.
69
,
4017
(
1965
).
You do not currently have access to this content.