An effective mechanism for rapid and efficient microfluidic particle trapping and concentration is proposed without requiring any mechanically moving parts. When a voltage beyond the threshold atmospheric ionization value is applied on a sharp electrode tip mounted at an angle above a microfluidic liquid chamber, the bulk electrohydrodynamic air thrust that is generated results in interfacial shear and, hence, primary azimuthal liquid surface recirculation. This discharge driven vortex mechanism, in turn, causes a secondary bulk meridional liquid recirculation, which produces an inward radial force near the bottom of the chamber. Particles suspended in the liquid are then rapidly convected by the bulk recirculation toward the bottom, where the inward radial force causes them to spiral in a helical swirl-like fashion toward a stagnation point. In particular, we show that these flows, similar to Batchelor flows occurring in a cylindrical liquid column between a stationary and rotating disk, can be used for the separation of red blood cells from blood plasma in a miniaturized device.

1.
M.
Toner
and
D.
Irimia
,
Annu. Rev. Biomed. Eng.
7
,
77
(
2005
).
2.
C.
Blattert
,
R.
Jurischka
,
I.
Tahhan
,
A.
Schoth
,
P.
Kerth
, and
W.
Menz
, in
Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, 2004
(
IEEE
,
New York
,
2004
).
3.
J.
Guigan
, “
Method and apparatus for obtaining and delivering a predetermined quantity of plasma from a blood sample for analysis purpose
,” U.S. Patent No. 4,788,154 (
1998
).
4.
M. J.
Pugia
,
J. A.
Profitt
,
L. S.
Schulman
,
G.
Blankenstein
and
R.-P.
Peters
, “
Method and apparatus for separation of particles in a microfluidic device
,” W. O. Patent No. 2004/061413 (
2004
).
5.
S.
Haeberle
,
T.
Brenner
,
R.
Zengerle
, and
J.
Ducree
,
Lab Chip
6
,
776
(
2006
).
6.
P.
Wilding
,
J.
Pfahler
,
H. H.
Bau
,
J. N.
Zemel
, and
L. J.
Kricka
,
Clin. Chem.
40
,
43
(
1994
).
7.
J. P.
Brody
,
T. D.
Osborn
,
F. K.
Forster
, and
P.
Yager
,
Sens. Act. A
54
,
704
(
1996
).
8.
P. K.
Yuen
,
L. J.
Kricka
,
P.
Fortina
,
N. J.
Panaro
,
T.
Sakazume
, and
P.
Wilding
,
Genome Res.
11
,
405
(
2001
).
9.
H. A.
Pohl
,
Dielectrophoresis
(
Cambridge University Press
,
Cambridge
,
1978
).
10.
11.
A. R.
Minerick
,
R.
Zhou
,
P.
Takhistov
, and
H.-C.
Chang
,
Electrophoresis
24
,
3703
(
2003
).
12.
S.
Yang
,
A.
Ündar
, and
J. D.
Zahn
,
Lab Chip
6
,
871
(
2006
).
13.
K.
Svanes
and
B. W.
Zweifach
,
Microvasc. Res.
1
,
210
(
1968
).
14.
Y.-C.
Fung
,
Microvasc. Res.
5
,
34
(
1973
).
15.
R. T.
Yen
and
Y.-C.
Fung
,
Am. J. Physiol. Heart Circ. Physiol.
235
,
H251
(
1978
).
16.
L. B.
Loeb
,
Electrical Corona
(
University of California
,
Berkeley
,
1965
).
17.
R.-I.
Ohyama
,
K.
Kaneko
, and
J.-S.
Chang
,
IEEE Trans. Dielectrics Elec. Ins.
10
,
57
(
2003
).
18.
H.
Kawamoto
and
S.
Umezu
,
J. Phys. D
38
,
887
(
2005
).
19.
L. Y.
Yeo
,
D.
Hou
,
S.
Maheshswari
, and
H.-C.
Chang
,
Appl. Phys. Lett.
88
,
233512
(
2006
).
20.
A.
Einstein
,
Naturwiss.
14
,
223
(
1926
).
21.
L. Y.
Yeo
,
J. R.
Friend
, and
D. R.
Arifin
,
Appl. Phys. Lett.
89
,
103516
(
2006
).
22.
M. B.
Gorbet
,
E. L.
Yeo
, and
M. V.
Sefton
,
J. Biomed. Mater. Res.
44
,
289
(
1999
).
23.
S.
Yang
,
A.
Ündar
, and
J. D.
Zahn
,
ASAIO J.
51
,
585
(
2005
).
24.
D. R.
Arifin
and
A. F.
Palmer
,
Biotechnol. Prog.
9
,
1798
(
2003
).
25.
W. G.
Zijlstra
and
E.
van Kampen
,
Clin. Chim. Acta
5
,
719
(
1960
).
26.
E.
van Kampen
and
W. G.
Zijlstra
,
Clin. Chim. Acta
6
,
538
(
1961
).
27.
G. K.
Batchelor
,
Q. J. Mech. Appl. Maths
4
,
29
(
1951
).
28.
H.-P.
Pau
,
Phys. Lett.
15
,
4
(
1972
).
29.
H.-C.
Chang
and
L. Y.
Yeo
(unpublished).
30.
L.
Schouveiler
,
P.
Le Gal
,
M. P.
Chauve
, and
Y.
Takeda
,
Exp. Fluids
26
,
179
(
1999
).
31.
E.
Serre
,
E.
Crespo del Arco
, and
P.
Bontoux
,
J. Fluid Mech.
434
,
65
(
2001
).
32.
D.
Hou
,
S.
Maheshswari
, and
H.-C.
Chang
,
Biomicrofluidics
(submitted).
You do not currently have access to this content.