Correlations between electrical and thermal conduction in polymer composites are blurred due to the complex contribution of charge and heat carriers at the nanoscale junctions of filler particles. Conflicting reports on the lack or existence of thermal percolation in polymer composites have made it the subject of great controversy for decades. Here, we develop a generalized percolation framework that describes both electrical and thermal conductivity within a remarkably wide range of filler-to-matrix conductivity ratios (Yf/Ym), covering 20 orders of magnitude. Our unified theory provides a genuine classification of electrical conductivity with typical Yf/Ym1010 as insulator–conductor percolation with the standard power-law behavior and of thermal conductivity with 102Yf/Ym104 as poor–good conductor percolation characterized by two universal critical exponents. Experimental verification of the universal and unified features of our theoretical framework is conducted by constructing a 3D segregated and well-extended network of multiwalled carbon nanotubes in polypropylene as a model polymer matrix under a carefully designed fabrication method. We study the evolution of the electrical and thermal conductivity in our fabricated composites at different loading levels up to 5 vol. %. Significantly, we find an ultralow electrical percolation threshold at 0.02 vol. % and a record-low thermal percolation threshold at 1.5 vol. %. We also apply our theoretical model to a number of 23 independent experimental and numerical datasets reported in the literature, including more than 350 data points, for systems with different microscopic details, and show that all collapse onto our proposed universal scaling function, which depends only on dimensionality.

1.
S.
Thomas
 et al.,
Polymer Composites, Macro- and Microcomposites
(
Wiley
,
2012
).
2.
R. K.
Gupta
,
E.
Kennel
, and
K. J.
Kim
,
Polymer Nanocomposites Handbook
(
CRC Press
,
2009
).
3.
X.
Huang
and
C.
Zhi
,
Polymer Nanocomposites: Electrical and Thermal Properties
(
Springer International Publishing
,
2016
).
4.
S. K.
Kumar
,
B. C.
Benicewicz
,
R. A.
Vaia
, and
K. I.
Winey
, “
50th anniversary perspective: Are polymer nanocomposites practical for applications?
,”
Macromolecules
50
,
714
731
(
2017
).
5.
I. A.
Kinloch
 et al., “
Composites with carbon nanotubes and graphene: An outlook
,”
Science
362
,
547
553
(
2018
).
6.
Y.
Huang
 et al., “
Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites
,”
Int. Mater. Rev.
65
,
129
163
(
2019
).
7.
K.
Nagata
,
H.
Iwabuki
, and
H.
Nigo
, “
Effect of particle size of graphites on electrical conductivity of graphite/polymer composite
,”
Compos. Interfaces
6
,
483
495
(
1998
).
8.
I.
Balberg
, “
A comprehensive picture of the electrical phenomena in carbon black-polymer composites
,”
Carbon
40
,
139
143
(
2002
).
9.
S. A.
Gordeyev
 et al., “
Transport properties of polymer-vapour grown carbon fibre composites
,”
Physica B
279
,
33
36
(
2000
).
10.
Y. P.
Mamunya
,
V. V.
Davydenko
,
P.
Pissis
, and
E. V.
Lebedev
, “
Electrical and thermal conductivity of polymers filled with metal powders
,”
Eur. Polym. J.
38
,
1887
1897
(
2002
).
11.
W.
Bauhofer
and
J. Z.
Kovacs
, “
A review and analysis of electrical percolation in carbon nanotube polymer composites
,”
Compos. Sci. Technol.
69
,
1486
1498
(
2009
).
12.
A. J.
Marsden
 et al., “
Electrical percolation in graphene-polymer composites
,”
2D Mater.
5
,
032003
(
2018
).
13.
G. A.
Gelves
,
B.
Lin
,
U.
Sundararaj
, and
J. A.
Haber
, “
Low electrical percolation threshold of silver and copper nanowires in polystyrene composites
,”
Adv. Funct. Mater.
16
,
2423
2430
(
2006
).
14.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor & Francis
,
1994
).
15.
M.
Sahimi
,
Applications of Percolation Theory
(
Taylor & Francis
,
2003
).
16.
Z.
Han
and
A.
Fina
, “
Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review
,”
Prog. Polym. Sci.
36
,
914
944
(
2011
).
17.
B. P.
Grady
, “
Thermal conductivity
,” in
Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications
(
Wiley
,
2011
).
18.
N.
Burger
 et al., “
Review of thermal conductivity in composites: Mechanisms, parameters and theory
,”
Prog. Polym. Sci.
61
,
1
28
(
2016
).
19.
H.
Chen
 et al., “
Thermal conductivity of polymer-based composites: Fundamentals and applications
,”
Prog. Polym. Sci.
59
,
41
85
(
2016
).
20.
Y.
Xu
,
X.
Wang
, and
Q.
Hao
, “
A mini review on thermally conductive polymers and polymer-based composites
,”
Compos. Commun.
24
,  
100617
(
2021
).
21.
N.
Shenogina
,
S.
Shenogin
,
L.
Xue
, and
P.
Keblinski
, “
On the lack of thermal percolation in carbon nanotube composites
,”
Appl. Phys. Lett.
87
,
133106
(
2005
).
22.
X.
Xu
,
J.
Chen
,
J.
Zhou
, and
B.
Li
, “
Thermal conductivity of polymers and their nanocomposites
,”
Adv. Mater.
30
,
1705544
(
2018
).
23.
B.
Liu
 et al., “
Thermal transport in organic/inorganic composites
,”
Front. Energy
12
,
72
86
(
2018
).
24.
C.
Huang
,
X.
Qian
, and
R.
Yang
, “
Thermal conductivity of polymers and polymer nanocomposites
,”
Mater. Sci. Eng., R
132
,
1
22
(
2018
).
25.
M.
Shtein
 et al., “
Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects
,”
Chem. Mater.
27
,
2100
2106
(
2015
).
26.
F.
Kargar
 et al., “
Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers
,”
ACS Appl. Mater. Interfaces
10
,
37555
37565
(
2018
).
27.
B.
Garnier
,
B.
Agoudjil
, and
A.
Boudenne
, “
Metallic particle-filled polymer microcomposites
,” in
Polymer Composites
(
Wiley
,
2012
), Vol.
1
.
28.
M.
Moniruzzaman
and
K. I.
Winey
, “
Polymer nanocomposites containing carbon nanotubes
,”
Macromolecules
39
,
5194
5205
(
2006
).
29.
B. P.
Grady
,
Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications
(
Wiley
,
2011
).
30.
R. M.
Mutiso
and
K. I.
Winey
, “
Electrical properties of polymer nanocomposites containing rod-like nanofillers
,”
Prog. Polym. Sci.
40
,
63
84
(
2015
).
31.
A. M.
Marconnet
,
M. A.
Panzer
, and
K. E.
Goodson
, “
Thermal conduction phenomena in carbon nanotubes and related nanostructured materials
,”
Rev. Mod. Phys.
85
,
1295
1326
(
2013
).
32.
K. I.
Winey
,
T.
Kashiwagi
, and
M.
Mu
, “
Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers
,”
MRS Bull.
32
,
348
353
(
2007
).
33.
M. J.
Biercuk
 et al., “
Carbon nanotube composites for thermal management
,”
Appl. Phys. Lett.
80
,
2767
2769
(
2002
).
34.
S. T.
Huxtable
 et al., “
Interfacial heat flow in carbon nanotube suspensions
,”
Nat. Mater.
2
,
731
734
(
2003
).
35.
S.
Shenogin
 et al., “
Role of thermal boundary resistance on the heat flow in carbon-nanotube composites
,”
J. Appl. Phys.
95
,
8136
8144
(
2004
).
36.
Y.
Chalopin
,
S.
Volz
, and
N.
Mingo
, “
Upper bound to the thermal conductivity of carbon nanotube pellets
,”
J. Appl. Phys.
105
,
084301
(
2009
).
37.
R. S.
Prasher
 et al., “
Turning carbon nanotubes from exceptional heat conductors into insulators
,”
Phys. Rev. Lett.
102
,
105901
(
2009
).
38.
A. N.
Volkov
and
L. V.
Zhigilei
, “
Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials
,”
Phys. Rev. Lett.
104
,
215902
(
2010
).
39.
Y.
Chalopin
,
S.
Volz
, and
N.
Mingo
, “
Erratum: Upper bound to the thermal conductivity of carbon nanotube pellets [J. Appl. Phys. (2009) 105 (084301)]
,”
J. Appl. Phys.
108
,
039902
(
2010
).
40.
H.
Abbasi
,
M.
Antunes
, and
J. I.
Velasco
, “
Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding
,”
Prog. Mater Sci.
103
,
319
373
(
2019
).
41.
X.
Huang
 et al., “
Thermal conductivity of graphene-based polymer nanocomposites
,”
Mater. Sci. Eng., R
142
,
100577
(
2020
).
42.
A. A.
Balandin
, “
Phononics of graphene and related materials
,”
ACS Nano
14
,
5170
5178
(
2020
).
43.
X.
Sun
 et al., “
Recent progress in graphene/polymer nanocomposites
,”
Adv. Mater.
33
,
2001105
(
2021
).
44.
X.
Shen
,
Q.
Zheng
, and
J. K.
Kim
, “
Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications
,”
Prog. Mater Sci.
115
,
100708
(
2021
).
45.
J.
Li
,
X.
Liu
,
Y.
Feng
, and
J.
Yin
, “
Recent progress in polymer/two-dimensional nanosheets composites with novel performances
,”
Prog. Polym. Sci.
126
,
101505
(
2022
).
46.
J. S.
Lewis
 et al., “
Thermal interface materials with graphene fillers: Review of the state of the art and outlook for future applications
,”
Nanotechnology
32
,
142003
(
2021
).
47.
H. Y.
Zhao
 et al., “
Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites
,”
Nano-Micro Lett.
14
,
129
(
2022
).
48.
A. A.
Balandin
, “
Thermal properties of graphene and nanostructured carbon materials
,”
Nat. Mater.
10
,
569
581
(
2011
).
49.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
, “
Thermal properties of graphene: Fundamentals and applications
,”
MRS Bull.
37
,
1273
1281
(
2012
).
50.
K. M. F.
Shahil
and
A. A.
Balandin
, “
Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials
,”
Nano Lett.
12
,
861
867
(
2012
).
51.
B.
Tang
,
G.
Hu
,
H.
Gao
, and
L.
Hai
, “
Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials
,”
Int. J. Heat Mass Transfer
85
,
420
429
(
2015
).
52.
J.
Wang
 et al., “
A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites
,”
Carbon
175
,
259
270
(
2021
).
53.
H. S.
Kim
 et al., “
Volume control of expanded graphite based on inductively coupled plasma and enhanced thermal conductivity of epoxy composite by formation of the filler network
,”
Carbon
119
,
40
46
(
2017
).
54.
S.
Bhanushali
,
P. C.
Ghosh
,
G. P.
Simon
, and
W.
Cheng
, “
Copper nanowire-filled soft elastomer composites for applications as thermal interface materials
,”
Adv. Mater. Interfaces
4
,
1700387
(
2017
).
55.
N.
Ghahramani
,
S. A.
Seyed Esfahani
,
M.
Mehranpour
, and
H.
Nazockdast
, “
The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride
,”
J. Mater. Sci.
53
,
16146
16159
(
2018
).
56.
P.
Bonnet
,
D.
Sireude
,
B.
Garnier
, and
O.
Chauvet
, “
Thermal properties and percolation in carbon nanotube-polymer composites
,”
Appl. Phys. Lett.
91
,
201910
(
2007
).
57.
A.
Yu
,
M. E.
Itkis
,
E.
Bekyarova
, and
R. C.
Haddon
, “
Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites
,”
Appl. Phys. Lett.
89
,
133102
(
2006
).
58.
A.
Yu
 et al., “
Graphite nanoplatelet-epoxy composite thermal interface materials
,”
J. Phys. Chem. C
111
,
7565
7569
(
2007
).
59.
A.
Yu
 et al., “
Enhanced thermal conductivity in a hybrid graphite nanoplatelet—Carbon nanotube filler for epoxy composites
,”
Adv. Mater.
20
,
4740
4744
(
2008
).
60.
B. W.
Kim
,
S. H.
Park
,
R. S.
Kapadia
, and
P. R.
Bandaru
, “
Evidence of percolation related power law behavior in the thermal conductivity of nanotube/polymer composites
,”
Appl. Phys. Lett.
102
,
243105
(
2013
).
61.
B. W.
Kim
,
S. H.
Park
, and
P. R.
Bandaru
, “
Anomalous decrease of the specific heat capacity at the electrical and thermal conductivity percolation threshold in nanocomposites
,”
Appl. Phys. Lett.
105
,
253108
(
2014
).
62.
R.
Gulotty
 et al., “
Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites
,”
ACS Nano
7
,
5114
5121
(
2013
).
63.
F. H.
Gojny
 et al., “
Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites
,”
Polymers
47
,
2036
2045
(
2006
).
64.
A.
Moisala
,
Q.
Li
,
I. A.
Kinloch
, and
A. H.
Windle
, “
Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites
,”
Compos. Sci. Technol.
66
,
1285
1288
(
2006
).
65.
Y.
Mamunya
 et al., “
Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites
,”
Compos. Sci. Technol.
68
,
1981
1988
(
2008
).
66.
Y.
Yang
,
M. C.
Gupta
,
J. N.
Zalameda
, and
W. P.
Winfree
, “
Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites
,”
Micro Nano Lett.
3
,
35
40
(
2008
).
67.
J.
Bouchard
,
A.
Cayla
,
E.
Devaux
, and
C.
Campagne
, “
Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites
,”
Compos. Sci. Technol.
86
,
177
184
(
2013
).
68.
X.
Gao
 et al., “
Topological design of inorganic–organic thermoelectric nanocomposites based on ‘electron–percolation phonon–insulator’ concept
,”
ACS Appl. Energy Mater.
1
,
2927
2933
(
2018
).
69.
J.
Chen
,
J.
Han
, and
D.
Xu
, “
Thermal and electrical properties of the epoxy nanocomposites reinforced with purified carbon nanotubes
,”
Mater. Lett.
246
,
20
23
(
2019
).
70.
B.
Krause
,
P.
Rzeczkowski
, and
P.
Pötschke
, “
Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers
,”
Polymers
11
,
1073
(
2019
).
71.
G.
Zhao
 et al., “
Flame synthesis of carbon nanotubes on glass fibre fabrics and their enhancement in electrical and thermal properties of glass fibre/epoxy composites
,”
Composites, Part B
198
,
108249
(
2020
).
72.
J. U.
Jang
 et al., “
Electrically and thermally conductive carbon fibre fabric reinforced polymer composites based on nanocarbons and an in-situ polymerizable cyclic oligoester
,”
Sci. Rep.
8
,
7659
(
2018
).
73.
O.
Maruzhenko
 et al., “
Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers
,”
Int. J. Heat Mass Transfer
138
,
75
84
(
2019
).
74.
M.
Cierpisz
,
J.
McPhedran
,
Y.
He
, and
A.
Edrisy
, “
Characterization of graphene-filled fluoropolymer coatings for condensing heat exchangers
,”
J. Compos. Mater.
55
,
4305
4320
(
2021
).
75.
S.
Yang
 et al., “
The fabrication of polyethylene/graphite nanoplatelets composites for thermal management and electromagnetic interference shielding application
,”
J. Mater. Sci.
57
,
1084
1097
(
2022
).
76.
A.
Mirabedini
 et al., “
Scalable production and thermoelectrical modeling of infusible functional graphene/epoxy nanomaterials for engineering applications
,”
Ind. Eng. Chem. Res.
61
,
5141
5157
(
2022
).
77.
A. I.
Misiura
,
Y. P.
Mamunya
, and
M. P.
Kulish
, “
Metal-filled epoxy composites: Mechanical properties and electrical/thermal conductivity
,”
J. Macromol. Sci., Part B
59
,
121
136
(
2020
).
78.
C.
Muhammed Ajmal
 et al., “
In-situ reduced non-oxidized copper nanoparticles in nanocomposites with extraordinary high electrical and thermal conductivity
,”
Mater. Today
48
,
59
71
(
2021
).
79.
R.
Haggenmueller
 et al., “
Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity
,”
Macromolecules
40
,
2417
2421
(
2007
).
80.
S. Y.
Kwon
 et al., “
A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena
,”
Carbon
55
,
285
290
(
2013
).
81.
A.
Shayganpour
 et al., “
Stacked-cup carbon nanotube flexible paper based on soy lecithin and natural rubber
,”
Nanomaterials
9
,
824
(
2019
).
82.
G.
Shachar-Michaely
 et al., “
Mixed dimensionality: Highly robust and multifunctional carbon-based composites
,”
Carbon
176
,
339
348
(
2021
).
83.
J.
Huang
 et al., “
Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend
,”
Compos. Sci. Technol.
129
,
160
165
(
2016
).
84.
D.
An
 et al., “
A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections
,”
Carbon
155
,
258
267
(
2019
).
85.
F.
Kargar
 et al., “
Dual-functional graphene composites for electromagnetic shielding and thermal management
,”
Adv. Electron. Mater.
5
,
1800558
(
2019
).
86.
Z.
Wu
 et al., “
Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites
,”
Adv. Mater.
31
,
e1900199
(
2019
).
87.
Z.
Barani
 et al., “
Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures
,”
Adv. Electron. Mater.
6
,
2000520
(
2020
).
88.
S.
Naghibi
 et al., “
Noncuring graphene thermal interface materials for advanced electronics
,”
Adv. Electron. Mater.
6
,
1901303
(
2020
).
89.
K. M.
Burzynski
 et al., “
Graphite nanocomposite substrates for improved performance of flexible, high-power AlGaN/GaN electronic devices
,”
ACS Appl. Electron. Mater.
3
,
1228
1235
(
2021
).
90.
W.
Dai
 et al., “
Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management
,”
Adv. Sci.
8
,
2003734
(
2021
).
91.
J.-U.
Jang
 et al., “
Thermal percolation behavior in thermal conductivity of polymer nanocomposite with lateral size of graphene nanoplatelet
,”
Polymers
14
,
323
(
2022
).
92.
J. U.
Jang
 et al., “
Enhanced thermal conductivity of graphene nanoplatelet filled polymer composite based on thermal percolation behavior
,”
Compos. Commun.
31
,
101110
(
2022
).
93.
S.
Shi
 et al., “
3D printed polylactic acid/graphene nanocomposites with tailored multifunctionality towards superior thermal management and high-efficient electromagnetic interference shielding
,”
Chem. Eng. J.
450
,
138248
(
2022
).
94.
M.
Shtein
,
R.
Nadiv
,
M.
Buzaglo
, and
O.
Regev
, “
Graphene-based hybrid composites for efficient thermal management of electronic devices
,”
ACS Appl. Mater. Interfaces
7
,
23725
23730
(
2015
).
95.
A.
Gurijala
 et al., “
Castable and printable dielectric composites exhibiting high thermal conductivity via percolation-enabled phonon transport
,”
Matter
2
,
1015
1024
(
2020
).
96.
S. H.
Ryu
 et al., “
Quasi-isotropic thermal conduction in percolation networks: Using the pore-filling effect to enhance thermal conductivity in polymer nanocomposites
,”
ACS Appl. Polym. Mater.
3
,
1293
1305
(
2021
).
97.
B.
Shi
 et al., “
Thermal percolation in composite materials with electrically conductive fillers
,”
Appl. Phys. Lett.
113
,
041902
(
2018
).
98.
D.
Suh
 et al., “
Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers
,”
Phys. Chem. Chem. Phys.
21
,
2453
2462
(
2019
).
99.
H.
Bark
,
M. W. M.
Tan
,
G.
Thangavel
, and
P. S.
Lee
, “
Deformable high loading liquid metal nanoparticles composites for thermal energy management
,”
Adv. Energy Mater.
11
,
2101387
(
2021
).
100.
I. Y.
Forero-Sandoval
 et al., “
Percolation threshold of the thermal, electrical and optical properties of carbonyl-iron microcomposites
,”
Appl. Compos. Mater.
28
,
447
463
(
2021
).
101.
B. S.
Chang
 et al., “
Thermal percolation in well-defined nanocomposite thin films
,”
ACS Appl. Mater. Interfaces
14
,
14579
14587
(
2022
).
102.
M. C.
Vu
 et al., “
High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds
,”
ACS Appl. Mater. Interfaces
12
,
23388
23398
(
2020
).
103.
S.
Kumar
,
M. A.
Alam
, and
J. Y.
Murthy
, “
Effect of percolation on thermal transport in nanotube composites
,”
Appl. Phys. Lett.
90
,
104105
(
2007
).
104.
W.
Tian
and
R.
Yang
, “
Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites
,”
Appl. Phys. Lett.
90
,
263105
(
2007
).
105.
A.
Khoubani
,
T. M.
Evans
, and
T. S.
Yun
, “
Thermal percolation in mixtures of monodisperse spheres
,”
Granular Matter
22
,
60
(
2020
).
106.
S.
Chen
,
Q.
Liu
,
L.
Gorbatikh
, and
D.
Seveno
, “
Does thermal percolation exist in graphene-reinforced polymer composites? A molecular dynamics answer
,”
J. Phys. Chem. C
125
,
1018
1028
(
2021
).
107.
I. Y.
Forero-Sandoval
 et al., “
Electrical and thermal percolation in two-phase materials: A perspective
,”
J. Appl. Phys.
131
,
230901
(
2022
).
108.
J. P.
Clerc
 et al., “
La percolation-modeles, simulations analogiques et numériques
,”
Ann. Phys.
8
,
3
105
(
1983
).
109.
V. K. S.
Shante
and
S.
Kirkpatrick
, “
An introduction to percolation theory
,”
Adv. Phys.
20
,
325
357
(
1971
).
110.
H. L.
Frisch
and
J. M.
Hammersley
, “
Percolation processes and related topics
,”
J. Soc. Ind. Appl. Math.
11
,
894
918
(
1963
).
111.
J.
Yang
 et al., “
Contact thermal resistance between individual multiwall carbon nanotubes
,”
Appl. Phys. Lett.
96
,
023109
(
2010
).
112.
J.
Yang
 et al., “
Phonon transport through point contacts between graphitic nanomaterials
,”
Phys. Rev. Lett.
112
,
205901
(
2014
).
113.
H.
Deng
 et al., “
Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials
,”
Prog. Polym. Sci.
39
,
627
655
(
2014
).
114.
H.
Pang
,
L.
Xu
,
D. X.
Yan
, and
Z. M.
Li
, “
Conductive polymer composites with segregated structures
,”
Prog. Polym. Sci.
39
,
1908
1933
(
2014
).
115.
S. N.
Leung
, “
Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships
,”
Composites, Part B
150
,
78
92
(
2018
).
116.
G.
Deutscher
,
O.
Entin-Wohlman
,
S.
Fishman
, and
Y.
Shapira
, “
Percolation description of granular superconductors
,”
Phys. Rev. B
21
,
5041
5047
(
1980
).
117.
H. J.
Herrmann
,
B.
Derrida
, and
J.
Vannimenus
, “
Superconductivity exponents in two- and three-dimensional percolation
,”
Phys. Rev. B
30
,
4080
4082
(
1984
).
118.
M.
Sahimi
, “
Finite-size scaling calculation of conductivity of three-dimensional conductor-superconductor networks at percolation threshold
,”
J. Phys. C
17
,
L355
L358
(
1984
).
119.
C. W.
Nan
,
Y.
Shen
, and
J.
Ma
, “
Physical properties of composites near percolation
,”
Annu. Rev. Mater. Res.
40
,
131
151
(
2010
).
120.
N. A.
Mohd Radzuan
,
A. B.
Sulong
, and
J.
Sahari
, “
A review of electrical conductivity models for conductive polymer composite
,”
Int. J. Hydrogen Energy
42
,
9262
9273
(
2017
).
121.
A. L.
Efros
and
B. I.
Shklovskii
, “
Critical behaviour of conductivity and dielectric constant near the metal
-non
-metal transition threshold
,”
Phys. Status Solidi B
76
,
475
485
(
1976
).
122.
J. P.
Straley
, “
Critical phenomena in resistor networks
,”
J. Phys. C
9
,
783
795
(
1976
).
123.
D.
Stauffer
, “
Scaling theory of percolation clusters
,”
Phys. Rep.
54
,
1
74
(
1979
).
124.
D. C.
Hong
,
H. E.
Stanley
,
A.
Coniglio
, and
A.
Bunde
, “
Random-walk approach to the two-component random-conductor mixture: Perturbing away from the perfect random resistor network and random superconducting-network limits
,”
Phys. Rev. B
33
,
4564
4573
(
1986
).
125.
J. P.
Clerc
,
G.
Giraud
,
J. M.
Laugier
, and
J. M.
Luck
, “
The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models
,”
Adv. Phys.
39
,
191
309
(
1990
).
126.
D. J.
Bergman
and
D.
Stroud
, “
Physical properties of macroscopically inhomogeneous media
,” in
Solid State Physics—Advances in Research and Applications
, edited by
H.
Ehrenreich
and
D.
Turnbull
(
Academic Press
,
1992
), Vol.
46
, pp.
147
269
.
127.
C. W.
Nan
, “
Physics of inhomogeneous inorganic materials
,”
Prog. Mater Sci.
37
,
1
116
(
1993
).
128.
A. A.
Snarskii
 et al.,
Transport Processes in Macroscopically Disordered Media: From Mean Field Theory to Percolation
(
Springer
,
New York
,
2016
).
129.
J. P.
Straley
, “
Cooperative phenomena resistor networks inhomogeneous conductors
,”
AIP Conf. Proc.
40
,
118
127
(
1978
).
130.
I.
Balberg
, “
The physical fundamentals of the electrical conductivity in nanotube-based composites
,”
J. Appl. Phys.
128
,
204304
(
2020
).
131.
N.
Goldenfeld
,
Lectures on Phase Transitions and the Renormalization Group
(
CRC Press
,
2018
).
132.
P.
Keblinski
and
F.
Cleri
, “
Contact resistance in percolating networks
,”
Phys. Rev. B
69
,
184201
(
2004
).
133.
J.
Li
and
S.-L.
Zhang
, “
Conductivity exponents in stick percolation
,”
Phys. Rev. E
81
,
021120
(
2010
).
134.
M.
Zezelj
and
I.
Stanković
, “
From percolating to dense random stick networks: Conductivity model investigation
,”
Phys. Rev. B
86
,
134202
(
2012
).
135.
R. M.
Mutiso
and
K. I.
Winey
, “
Electrical percolation in quasi-two-dimensional metal nanowire networks for transparent conductors
,”
Phys. Rev. E
88
,
032134
(
2013
).
136.
I.
Balberg
,
D.
Azulay
,
Y.
Goldstein
, and
J.
Jedrzejewski
, “
Possible origin of the smaller-than-universal percolation-conductivity exponent in the continuum
,”
Phys. Rev. E
93
,
062132
(
2016
).
137.
J.
Hone
,
M.
Whitney
,
C.
Piskoti
, and
A.
Zettl
, “
Thermal conductivity of single-walled carbon nanotubes
,”
Phys. Rev. B
59
,
R2514
R2516
(
1999
).
138.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Dover Publications
,
1954
), Vol.
1
.
139.
T. C.
Choy
,
Effective Medium Theory: Principles and Applications
(
OUP
,
Oxford
,
2015
).
140.
V. A.
Markel
, “
Introduction to the Maxwell Garnett approximation: Tutorial
,”
J. Opt. Soc. Am. A
33
,
1244
1256
(
2016
).
141.
D. A. G.
Bruggeman
, “
Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen
,”
Ann. Phys.
416
,
636
664
(
1935
).
142.
R.
Pal
,
Electromagnetic, Mechanical, and Transport Properties of Composite Materials
(
Taylor & Francis
,
2014
).
143.
P.
Cosenza
 et al., “
Effective medium theories for modelling the relationships between electromagnetic properties and hydrological variable in geomaterials: A review
,”
Near Surf. Geophys.
7
,
563
578
(
2009
).
144.
S.
Kirkpatrick
, “
Percolation and conduction
,”
Rev. Mod. Phys.
45
,
574
588
(
1973
).
145.
A.
Davidson
and
M.
Tinkham
, “
Phenomenological equations for the electrical conductivity of microscopically inhomogeneous materials
,”
Phys. Rev. B
13
,
3261
3267
(
1976
).
146.
C. G.
Granqvist
and
O.
Hunderi
, “
Conductivity of inhomogeneous materials: Effective-medium theory with dipole-dipole interaction
,”
Phys. Rev. B
18
,
1554
1561
(
1978
).
147.
D. S.
McLachlan
,
M.
Blaszkiewicz
, and
R. E.
Newnham
, “
Electrical resistivity of composites
,”
J. Am. Ceram. Soc.
73
,
2187
2203
(
1990
).
148.
D. S.
McLachlan
, “
Evaluating the microstructure of conductor-insulator composites using effective media and percolation theories
,”
MRS Proc.
411
,
309
(
1995
).
149.
J. P.
Straley
, “
Thermoelectric properties of inhomogeneous materials
,”
J. Phys. D
14
,
2101
2105
(
1981
).
150.
O.
Levy
and
D. J.
Bergman
, “
Scaling behaviour of the thermopower in a two-component composite near a percolation threshold
,”
J. Phys. A.
25
,
1875
1884
(
1992
).
151.
D. S.
McLachlan
, “
The percolation exponents for electrical and thermal conductivities and the permittivity and permeability of binary composites
,”
Physica B
606
,
412658
(
2021
).
152.
M. A. J.
Michels
, “
Scaling relations and the general effective-medium equation for isolator-conductor mixtures
,”
J. Phys.: Condens. Matter
4
,
3961
3966
(
1992
).
153.
D.
McLachlan
,
W.
Heiss
,
C.
Chiteme
, and
J.
Wu
, “
Analytic scaling functions applicable to dispersion measurements in percolative metal-insulator systems
,”
Phys. Rev. B
58
,
13558
13564
(
1998
).
154.
M.
Sahimi
,
Heterogeneous Materials I: Linear Transport and Optical Properties
(
Springer
New York
,
2006
).
155.
I.
Balberg
, “
Principles of the theory of continuum percolation
,” in
Encyclopedia of Complexity and Systems Science
, edited by
R. A.
Meyers
(
Springer
,
2020
), pp.
1
61
.
156.
A. A.
Saberi
, “
Application of percolation theory to statistical topographies
,” in
Encyclopedia of Complexity and Systems Science
, edited by
R. A.
Meyers
(
Springer
,
2020
), pp.
1
19
.
157.
Z.
Ju
 et al., “
Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems
,”
Appl. Phys. Rev.
7
,
041405
(
2020
).
158.
Y.
Oh
and
M. F.
Islam
, “
Preformed nanoporous carbon nanotube scaffold-based multifunctional polymer composites
,”
ACS Nano
9
,
4103
4110
(
2015
).
159.
I.
Balberg
,
C. H.
Anderson
,
S.
Alexander
, and
N.
Wagner
, “
Excluded volume and its relation to the onset of percolation
,”
Phys. Rev. B
30
,
3933
3943
(
1984
).
160.
G.
Ambrosetti
 et al., “
Solution of the tunneling-percolation problem in the nanocomposite regime
,”
Phys. Rev. B
81
,
155434
(
2010
).
161.
C. H.
Kiang
 et al., “
Size effects in carbon nanotubes
,”
Phys. Rev. Lett.
81
,
1869
1872
(
1998
).
162.
O. V.
Kharissova
and
B. I.
Kharisov
, “
Variations of interlayer spacing in carbon nanotubes
,”
RSC Adv.
4
,
30807
30815
(
2014
).
163.
S.
Dresselhaus
,
G.
Dresselhaus
, and
P. C.
Eklund
,
Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications
(
Elsevier Science
,
1996
).
164.
S. D.
Bergin
 et al., “
Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures
,”
ACS Nano
3
,
2340
2350
(
2009
).
165.
O.
Zhou
 et al., “
Defects in carbon nanostructures
,”
Science
263
,
1744
1747
(
1994
).
166.
D.
Reznik
,
C.
Olk
,
D.
Neumann
, and
J.
Copley
, “
X-ray powder diffraction from carbon nanotubes and nanoparticles
,”
Phys. Rev. B
52
,
116
(
1995
).
167.
Y.
Maniwa
 et al., “
Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study
,”
Phys. Rev. B
64
,
073105
(
2001
).
168.
Z. Q.
Li
 et al., “
X-ray diffraction patterns of graphite and turbostratic carbon
,”
Carbon
45
,
1686
1695
(
2007
).
169.
R.
Mitsuyama
 et al., “
Chirality fingerprinting and geometrical determination of single-walled carbon nanotubes: Analysis of fine structure of x-ray diffraction pattern
,”
Carbon
75
,
299
306
(
2014
).
170.
See https://www.us-nano.com/inc/sdetail/249 for “
Technical Data Sheet: MWCNTs (>95%, OD: 30–50 nm)
” (last accessed February 10, 2022).
171.
J. B.
Wu
 et al., “
Raman spectroscopy of graphene-based materials and its applications in related devices
,”
Chem. Soc. Rev.
47
,
1822
1873
(
2018
).
172.
Á.
Kukovecz
,
G.
Kozma
, and
Z.
Kónya
, “
Multi-walled carbon nanotubes
,” in
Springer Handbook of Nanomaterials
(
Springer
,
2013
), pp.
147
-
188
.
173.
J.-B.
Wu
,
M.-L.
Lin
, and
P.-H.
Tan
, “
Raman spectroscopy of monolayer and multilayer graphenes
,” in
Raman Spectroscopy of Two-Dimensional Materials
, edited by
P.-H.
Tan
(
Springer
,
2019
), pp.
1
27
.
174.
A.
Jorio
and
R.
Saito
, “
Raman spectroscopy for carbon nanotube applications
,”
J. Appl. Phys.
129
,
021102
(
2021
).
175.
A. C.
Ferrari
and
D. M.
Basko
, “
Raman spectroscopy as a versatile tool for studying the properties of graphene
,”
Nat. Nanotechnol.
8
,
235
246
(
2013
).
176.
A.
Jorio
,
M. S.
Dresselhaus
,
R.
Saito
, and
G.
Dresselhaus
,
Raman Spectroscopy in Graphene Related Systems
(
Wiley
,
2011
).
177.
B.
Ellis
and
R.
Smith
,
Polymers: A Property Database
(
CRC Press/Taylor & Francis Group
,
2008
).
178.
S. H.
Lee
,
E.
Cho
,
S. H.
Jeon
, and
J. R.
Youn
, “
Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers
,”
Carbon
45
,
2810
2822
(
2007
).
179.
P.
Pötschke
,
F.
Mothes
,
B.
Krause
, and
B.
Voit
, “
Melt-mixed PP/MWCNT composites: Influence of CNT incorporation strategy and matrix viscosity on filler dispersion and electrical resistivity
,”
Polymers
11
,
189
(
2019
).
180.
C. C.
Chu
 et al., “
Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets
,”
Carbon
50
,
4711
4721
(
2012
).
181.
J.
Wang
 et al., “
More dominant shear flow effect assisted by added carbon nanotubes on crystallization kinetics of isotactic polypropylene in nanocomposites
,”
ACS Appl. Mater. Interfaces
7
,
1364
1375
(
2015
).
182.
A.
Funck
and
W.
Kaminsky
, “
Polypropylene carbon nanotube composites by in situ polymerization
,”
Compos. Sci. Technol.
67
,
906
915
(
2007
).
183.
A. A.
Koval'chuk
 et al., “
Synthesis and properties of polypropylene/multiwall carbon nanotube composites
,”
Macromolecules
41
,
3149
3156
(
2008
).
184.
S. H.
Park
 et al., “
High areal capacity battery electrodes enabled by segregated nanotube networks
,”
Nat. Energy
4
,
560
567
(
2019
).
185.
X.
Zhang
 et al., “
Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels
,”
ACS Appl. Mater. Interfaces
7
,
6125
6138
(
2015
).
186.
H. Y.
Wu
 et al., “
Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding
,”
Compos. Sci. Technol.
156
,
87
94
(
2018
).
187.
H. Y.
Wu
 et al., “
Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding
,”
Ind. Eng. Chem. Res.
57
,
12378
12385
(
2018
).
188.
K. A.
Imran
,
J.
Lou
, and
K. N.
Shivakumar
, “
Enhancement of electrical and thermal conductivity of polypropylene by graphene nanoplatelets
,”
J. Appl. Polym. Sci.
135
,
45833
(
2018
).
189.
J. E.
Mark
,
Polymer Data Handbook
(
Oxford University Press
,
2009
).
190.
H.
Dai
,
E. W.
Wong
, and
C. M.
Lieber
, “
Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes
,”
Science
272
,
523
526
(
1996
).
191.
T. W.
Ebbesen
 et al., “
Electrical conductivity of individual carbon nanotubes
,”
Nature
382
,
54
56
(
1996
).
192.
B.
Bourlon
 et al., “
Determination of the intershell conductance in multiwalled carbon nanotubes
,”
Phys. Rev. Lett.
93
,
176806
(
2004
).
193.
A.
Stetter
,
J.
Vancea
, and
C. H.
Back
, “
Determination of the intershell conductance in a multiwall carbon nanotube
,”
Appl. Phys. Lett.
93
,
172103
(
2008
).
194.
B. P.
Grady
, “
Electrical properties
,” in
Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications
(
Wiley
,
2011
).
195.
N. F.
Zorn
and
J.
Zaumseil
, “
Charge transport in semiconducting carbon nanotube networks
,”
Appl. Phys. Rev.
8
,
041318
(
2021
).
196.
R.
Hanus
 et al., “
Thermal transport in defective and disordered materials
,”
Appl. Phys. Rev.
8
,
031311
(
2021
).
197.
T.
Hu
and
B. I.
Shklovskii
, “
Theory of hopping conductivity of a suspension of nanowires in an insulator
,”
Phys. Rev. B
74
,
054205
(
2006
).
198.
A. B.
Kaiser
and
V.
Skakalova
, “
Electronic conduction in polymers, carbon nanotubes and graphene
,”
Chem. Soc. Rev.
40
,
3786
3801
(
2011
).
199.
P.
Pipinys
and
A.
Kiveris
, “
Variable range hopping and/or phonon-assisted tunneling mechanism of electronic transport in polymers and carbon nanotubes
,”
Cent. Eur. J. Phys.
10
,
271
281
(
2012
).
200.
L.
He
and
S. C.
Tjong
, “
Zener tunneling in polymer nanocomposites with carbonaceous fillers
,” in
Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications
(
Elsevier
,
2014
), pp.
377
406
.
201.
S.
Gong
,
Z. H.
Zhu
, and
Z.
Li
, “
Electron tunnelling and hopping effects on the temperature coefficient of resistance of carbon nanotube/polymer nanocomposites
,”
Phys. Chem. Chem. Phys.
19
,
5113
5120
(
2017
).
202.
R.
Hull
 et al., “
Stochasticity in materials structure, properties, and processing—A review
,”
Appl. Phys. Rev.
5
,
011302
(
2018
).
203.
T. W.
Ebbesen
and
P. M.
Ajayan
, “
Large-scale synthesis of carbon nanotubes
,”
Nature
358
,
220
222
(
1992
).
204.
D. J.
Yang
 et al., “
Thermal conductivity of multiwalled carbon nanotubes
,”
Phys. Rev. B
66
,
165440
(
2002
).
205.
B.
Marinho
 et al., “
Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder
,”
Powder Technol.
221
,
351
358
(
2012
).
206.
M.
Ghislandi
 et al., “
Electrical conductivities of carbon powder nanofillers and their latex-based polymer composites
,”
Composites, Part A
53
,
145
151
(
2013
).
207.
S. H.
Ryu
 et al., “
The effect of polymer particle size on three-dimensional percolation in core-shell networks of PMMA/MWCNTs nanocomposites: Properties and mathematical percolation model
,”
Compos. Sci. Technol.
165
,
1
8
(
2018
).
208.
F.
Lux
, “
Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials
,”
J. Mater. Sci.
28
,
285
301
(
1993
).
209.
L.
Berhan
and
A. M.
Sastry
, “
Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models
,”
Phys. Rev. E
75
,
041120
(
2007
).
210.
R. M.
Mutiso
and
K. I.
Winey
, “
Electrical conductivity of polymer nanocomposites
,” in
Polymer Science: A Comprehensive Reference
(
Elsevier
,
2012
), Vol.
7
, pp.
327
344
.
211.
C.
Li
,
E. T.
Thostenson
, and
T. W.
Chou
, “
Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites
,”
Appl. Phys. Lett.
91
,
223114
(
2007
).
212.
I.
Balberg
, “
The importance of bendability in the percolation behavior of carbon nanotube and graphene-polymer composites
,”
J. Appl. Phys.
112
,
066104
(
2012
).
213.
I.
Balberg
, “
Unified model for pseudononuniversal behavior of the electrical conductivity in percolation systems
,”
Phys. Rev. Lett.
119
,
080601
(
2017
).
214.
A. A.
Saberi
, “
Recent advances in percolation theory and its applications
,”
Phys. Rep.
578
,
1
32
(
2015
).
215.
M.
Li
 et al., “
Percolation on complex networks: Theory and application
,”
Phys. Rep.
907
,
1
68
(
2021
).
216.
H. F.
Mark
,
Encyclopedia of Polymer Science and Technology
(
Wiley-Interscience
,
2007
).
217.
M.
Fujii
 et al., “
Measuring the thermal conductivity of a single carbon nanotube
,”
Phys. Rev. Lett.
95
,
065502
(
2005
).
218.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
McEuen
, “
Thermal transport measurements of individual multiwalled nanotubes
,”
Phys. Rev. Lett.
87
,
215502
(
2001
).
219.
P.
Wang
,
R.
Xiang
, and
S.
Maruyama
, “
Thermal conductivity of carbon nanotubes and assemblies
,”
Adv. Heat Transfer
50
,
43
122
(
2018
).
220.
X. J.
Hu
 et al., “
3-omega measurements of vertically oriented carbon nanotubes on silicon
,”
J. Heat Transfer
128
,
1109
1113
(
2006
).
221.
Y.
Xu
,
Y.
Zhang
,
E.
Suhir
, and
X.
Wang
, “
Thermal properties of carbon nanotube array used for integrated circuit cooling
,”
J. Appl. Phys.
100
,
074302
(
2006
).
222.
Y.
Son
 et al., “
Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate
,”
J. Appl. Phys.
103
,
024911
(
2008
).
223.
M. B.
Jakubinek
 et al., “
Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns
,”
Carbon
50
,
244
248
(
2012
).
224.
A. N.
Volkov
and
L. V.
Zhigilei
, “
Heat conduction in carbon nanotube materials: Strong effect of intrinsic thermal conductivity of carbon nanotubes
,”
Appl. Phys. Lett.
101
,
043113
(
2012
).
225.
X.
Zhao
 et al., “
Thermal conductivity model for nanofiber networks
,”
J. Appl. Phys.
123
,
085103
(
2018
).
226.
V.
Vavilov
and
D.
Burleigh
,
Infrared Thermography and Thermal Nondestructive Testing
(
Springer
,
2020
).
227.
T. L.
Bergman
,
A. S.
Lavine
,
F. P.
Incropera
, and
D. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
2020
).
228.
K.
Kloppstech
 et al., “
Giant heat transfer in the crossover regime between conduction and radiation
,”
Nat. Commun.
8
,
14475
(
2017
).
229.
A.
Fiorino
 et al., “
Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces
,”
Nano Lett.
18
,
3711
3715
(
2018
).
230.
J.
Yang
 et al., “
Observing of the super-Planckian near-field thermal radiation between graphene sheets
,”
Nat. Commun.
9
,
4033
(
2018
).
231.
K.
Kim
 et al., “
Radiative heat transfer in the extreme near field
,”
Nature
528
,
387
391
(
2015
).
232.
V.
Chiloyan
,
J.
Garg
,
K.
Esfarjani
, and
G.
Chen
, “
Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps
,”
Nat. Commun.
6
,
6755
(
2015
).
233.
A.
Malekan
,
S.
Saber
, and
A. A.
Saberi
, “
Exact finite-size scaling for the random-matrix representation of bond percolation on square lattice
,”
Chaos
32
,
023112
(
2022
).
234.
D. G.
Cahill
 et al., “
Nanoscale thermal transport
,”
J. Appl. Phys.
93
,
793
818
(
2003
).
235.
D. G.
Cahill
 et al., “
Nanoscale thermal transport. II. 2003-2012
,”
Appl. Phys. Rev.
1
,
011305
(
2014
).
236.
I. L.
Spain
, “
The electronic properties of graphite
,” in
Chemistry and Physics of Carbon, a Series of Advances
, edited by
P. L.
Walker
and
Peter A.
Thrower
(
Marcel Dekker, Inc
.,
1973
), Vol.
8
, pp.
87
94
.
237.
M. S.
Dresselhaus
and
G.
Dresselhaus
, “
Intercalation compounds of graphite
,”
Adv. Phys.
51
,
1
186
(
2002
).
238.
D. D. L.
Chung
, “
Review graphite
,”
J. Mater. Sci.
37
,
1475
1489
(
2002
).
239.
D. D. L.
Chung
, “
Graphite
,” in
Carbon Materials: Science and Applications
(
World Scientific Publishing Company PTE Limited
,
2019
), pp.
21
83
.
240.
Z.
Wei
 et al., “
Phonon mean free path of graphite along the c-axis
,”
Appl. Phys. Lett.
104
,
081903
(
2014
).
241.
Q.
Fu
 et al., “
Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite
,”
Appl. Phys. Lett.
106
,
031905
(
2015
).
242.
H.
Zhang
,
X.
Chen
,
Y. D.
Jho
, and
A. J.
Minnich
, “
Temperature-dependent mean free path spectra of thermal phonons along the c-axis of graphite
,”
Nano Lett.
16
,
1643
1649
(
2016
).
243.
T.
Nakayama
,
K.
Yakubo
, and
R. L.
Orbach
, “
Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations
,”
Rev. Mod. Phys.
66
,
381
443
(
1994
).
244.
J. T.
Gostick
and
A. Z.
Weber
, “
Resistor-network modeling of ionic conduction in polymer electrolytes
,”
Electrochim. Acta
179
,
137
145
(
2015
).
245.
K.
Tanaka
, “
Structural phase transitions in chalcogenide glasses
,”
Phys. Rev. B
39
,
1270
1279
(
1989
).
246.
R.
Zallen
,
The Physics of Amorphous Solids
(
Wiley
,
2008
).
247.
W.
Lin
, “
Modeling of thermal conductivity of polymer nanocomposites
,” in
Modeling and Prediction of Polymer Nanocomposite Properties
(
Wiley
,
2013
), pp.
169
200
.
248.
Z.
Hashin
and
S.
Shtrikman
, “
A variational approach to the theory of the effective magnetic permeability of multiphase materials
,”
J. Appl. Phys.
33
,
3125
3131
(
1962
).
249.
D. P. H.
Hasselman
and
L. F.
Johnson
, “
Effective thermal conductivity of composites with interfacial thermal barrier resistance
,”
J. Compos. Mater.
21
,
508
515
(
1987
).
250.
Y.
Benveniste
, “
Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case
,”
J. Appl. Phys.
61
,
2840
2843
(
1987
).
251.
H.
Fricke
, “
A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids
,”
Phys. Rev.
24
,
575
587
(
1924
).
252.
H.
Hatta
and
M.
Taya
, “
Effective thermal conductivity of a misoriented short fiber composite
,”
J. Appl. Phys.
58
,
2478
2486
(
1985
).
253.
C. W.
Nan
,
R.
Birringer
,
D. R.
Clarke
, and
H.
Gleiter
, “
Effective thermal conductivity of particulate composites with interfacial thermal resistance
,”
J. Appl. Phys.
81
,
6692
6699
(
1997
).
254.
C. W.
Nan
,
Z.
Shi
, and
Y.
Lin
, “
A simple model for thermal conductivity of carbon nanotube-based composites
,”
Chem. Phys. Lett.
375
,
666
669
(
2003
).
255.
C. W.
Nan
,
G.
Liu
,
Y.
Lin
, and
M.
Li
, “
Interface effect on thermal conductivity of carbon nanotube composites
,”
Appl. Phys. Lett.
85
,
3549
3551
(
2004
).
256.
A. G.
Every
,
Y.
Tzou
,
D. P. H.
Hasselman
, and
R.
Raj
, “
The effect of particle size on the thermal conductivity of ZnS/diamond composites
,”
Acta Metall. Mater.
40
,
123
129
(
1992
).
257.
R. L.
Hamilton
and
O. K.
Crosser
, “
Thermal conductivity of heterogeneous two-component systems
,”
Ind. Eng. Chem. Fundam.
1
,
187
191
(
1962
).
258.
X.
Yang
 et al., “
A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods
,”
Adv. Compos. Hybrid Mater.
1
,
207
230
(
2018
).
259.
R.
Prasher
 et al., “
Effect of aggregation on thermal conduction in colloidal nanofluids
,”
Appl. Phys. Lett.
89
,
143119
(
2006
).
260.
P.
Keblinski
, “
Modeling of heat transport in polymers and their nanocomposites
,” in
Handbook of Materials Modeling: Applications: Current and Emerging Materials
, edited by
W.
Andreoni
and
S.
Yip
(
Springer
,
2018
), pp.
1
23
.
261.
M.
Foygel
 et al., “
Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity
,”
Phys. Rev. B
71
,
104201
(
2005
).
262.
E. P.
Mamunya
,
V. V.
Davidenko
, and
E. V.
Lebedev
, “
Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black
,”
Compos. Interfaces
4
,
169
176
(
1996
).
263.
J.
Huang
 et al., “
Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes
,”
Compos. Sci. Technol.
95
,
16
20
(
2014
).
264.
G.
Zhang
 et al., “
A percolation model of thermal conductivity for filled polymer composites
,”
J. Compos. Mater.
44
,
963
970
(
2010
).
265.
K.
Lichtenecker
, “
The electrical output resistance of artificial and natural aggregates—The influence of the composition of ‘building blocks’ in flat lattice arrays
,”
Phys. Z.
25
,
193
204
(
1924
).
266.
Y.
Agari
and
T.
Uno
, “
Estimation on thermal conductivities of filled polymers
,”
J. Appl. Polym. Sci.
32
,
5705
5712
(
1986
).
267.
D. M.
Bigg
, “
Thermal conductivity of heterophase polymer compositions
,” in
Thermal and Electrical Conductivity of Polymer Materials
(
Springer
,
1995
), pp.
1
-
30
.
268.
H. W.
Russell
, “
Principles of heat flow in porous insulators
,”
J. Am. Ceram. Soc.
18
,
1
5
(
1935
).
269.
R. C.
Progelhof
,
J. L.
Throne
, and
R. R.
Ruetsch
, “
Methods for predicting the thermal conductivity of composite systems: A review
,”
Polym. Eng. Sci.
16
,
615
625
(
1976
).
270.
S. C.
Cheng
and
R. I.
Vachon
, “
The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures
,”
Int. J. Heat Mass Transfer
12
,
249
264
(
1969
).
271.
T. B.
Lewis
and
L. E.
Nielsen
, “
Dynamic mechanical properties of particulate
-filled composites
,”
J. Appl. Polym. Sci.
14
,
1449
1471
(
1970
).
272.
H. E.
Stanley
,
Introduction to Phase Transitions and Critical Phenomena
(
Oxford University Press
,
1987
).
273.
S. H. E.
Rahbari
,
A. A.
Saberi
,
H.
Park
, and
J.
Vollmer
, “
Characterizing rare fluctuations in soft particulate flows
,”
Nat. Commun.
8
,
11
(
2017
).
274.
J.
Fan
 et al., “
Universal gap scaling in percolation
,”
Nat. Phys.
16
,
455
461
(
2020
).
275.
S.
Hahne
and
U.
Schindewolf
, “
Temperature and pressure dependence of the nonmetal-metal transition in sodium–ammonia solutions (electrical conductivity and pressure–volume–temperature data up to 150 °C and 1000 bars)
,”
J. Phys. Chem.
79
,
2922
2928
(
1975
).
276.
I.
Webman
,
J.
Jortner
, and
M. H.
Cohen
, “
Numerical simulation of electrical conductivity in microscopically inhomogeneous materials
,”
Phys. Rev. B
11
,
2885
2892
(
1975
).
277.
J.
Jortner
and
M. H.
Cohen
, “
Metal-nonmetal transition in metal-ammonia solutions
,”
Phys. Rev. B
13
,
1548
1568
(
1976
).
278.
M.
Hirasawa
,
Y.
Nakamura
, and
M.
Shimoji
, “
Electrical conductivity and thermoelectric power of concentrated lithium-ammonia solutions
,”
Ber. Bunsenges./Phys. Chem. Chem. Phys.
82
,
815
818
(
1978
).
279.
S.
Sunde
, “
Calculation of conductivity and polarization resistance of composite SOFC electrodes from random resistor networks
,”
J. Electrochem. Soc.
142
,
L50
L52
(
1995
).
280.
G. J.
Lee
,
K. D.
Suh
, and
S. S.
Im
, “
Study of electrical phenomena in carbon black-filled HDPE composite
,”
Polym. Eng. Sci.
38
,
471
477
(
1998
).
281.
Z.
R̈ímská
,
V.
Křuesálek
, and
J.
S̈pac̈ek
, “
AC conductivity of carbon fiber–polymer matrix composites at the percolation threshold
,”
Polym. Compos.
23
,
95
103
(
2002
).
282.
S.
Ju
,
T. Y.
Cai
, and
Z. Y.
Li
, “
Percolative magnetotransport and enhanced intergranular magnetoresistance in a correlated resistor network
,”
Phys. Rev. B
72
,
184413
(
2005
).
283.
E.
Kymakis
and
G. A. J.
Amaratunga
, “
Electrical properties of single-wall carbon nanotube-polymer composite films
,”
J. Appl. Phys.
99
,
084302
(
2006
).
284.
T. B.
Murtanto
,
S.
Natori
,
J.
Nakamura
, and
A.
Natori
, “
AC conductivity and dielectric constant of conductor-insulator composites
,”
Phys. Rev. B
74
,
115206
(
2006
).
285.
I.
Singh
 et al., “
Optical and electrical characterization of conducting polymer-single walled carbon nanotube composite films
,”
Carbon
46
,
1141
1144
(
2008
).
286.
J.
Zhang
,
M.
Mine
,
D.
Zhu
, and
M.
Matsuo
, “
Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold
,”
Carbon
47
,
1311
1320
(
2009
).
287.
M.
Abu-Abdeen
,
A. S.
Ayesh
, and
A. A.
Al Jaafari
, “
Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites
,”
J. Polym. Res.
19
,
9839
(
2012
).
288.
J.
Sun
 et al., “
Parallel algorithm for the effective electromagnetic properties of heterogeneous materials on 3D RC network model
,” in
Proceedings of the 10th International Symposium on Antennas, Propagation, and EM Theory (ISAPE2012) Xi'an, China
(
2012
) (
IEEE
,
Piscataway, NJ
), pp.
1214
1218
.
289.
E.
Persky
 et al., “
Non-universal current flow near the metal-insulator transition in an oxide interface
,”
Nat. Commun.
12
,
3311
(
2021
).
290.
P.
Keblinski
,
J. A.
Eastman
, and
D. G.
Cahill
, “
Nanofluids for thermal transport
,”
Mater. Today
8
,
36
44
(
2005
).
291.
P.
Keblinski
,
R.
Prasher
, and
J.
Eapen
, “
Thermal conductance of nanofluids: Is the controversy over?
,”
J. Nanopart. Res.
10
,
1089
1097
(
2008
).
292.
J. J.
Wang
,
R. T.
Zheng
,
J. W.
Gao
, and
G.
Chen
, “
Heat conduction mechanisms in nanofluids and suspensions
,”
Nano Today
7
,
124
136
(
2012
).
293.
R.
Zheng
 et al., “
Thermal percolation in stable graphite suspensions
,”
Nano Lett.
12
,
188
192
(
2012
).
294.
L.
Ma
 et al., “
Viscosity and thermal conductivity of stable graphite suspensions near percolation
,”
Nano Lett.
15
,
127
133
(
2015
).
295.
S.
Sudhindra
,
F.
Kargar
, and
A. A.
Balandin
, “
Noncured graphene thermal interface materials for high-power electronics: Minimizing the thermal contact resistance
,”
Nanomaterials
11
,
1699
(
2021
).
296.
S.
Sudhindra
 et al., “
Specifics of thermal transport in graphene composites: Effect of lateral dimensions of graphene fillers
,”
ACS Appl. Mater. Interfaces
13
,
53073
53082
(
2021
).
297.
J. S.
Lewis
 et al., “
Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers
,”
Mater. Res. Express
6
,
085325
(
2019
).
298.
X.
Zhang
 et al., “
Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites
,”
Compos. Sci. Technol.
175
,
135
142
(
2019
).
299.
Z.
Barani
 et al., “
Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles
,”
Adv. Funct. Mater.
30
,
1904008
(
2020
).
300.
J.
Ren
 et al., “
Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles
,”
Mater. Des.
191
,
108663
(
2020
).
301.
Z.
Xu
 et al., “
Enhanced thermal conductivity and electrically insulating of polymer composites
,”
J. Mater. Sci.
56
,
4225
4238
(
2021
).

Supplementary Material

You do not currently have access to this content.