Phase transitions are a common phenomenon in condensed matter and act as a critical degree of freedom that can be employed to tailor the mechanical or electronic properties of materials. Understanding the fundamental mechanisms of the thermodynamics and kinetics of phase transitions is, thus, at the core of modern materials design. Conventionally, studies of phase transitions have, to a large extent, focused on pristine bulk phases. However, realistic materials exist in a complex form; their microstructures consist of different point and extended defects. The presence of defects impacts the thermodynamics and kinetics of phase transitions, but has been commonly ignored or treated separately. In recent years, with the significant advances in theoretical and experimental techniques, there has been an increasing research interest in modeling and characterizing how defects impact or even dictate phase transitions. The present review systematically discusses the recent progress in understanding the kinetics of defect-characterized phase transitions, derives the key mechanisms underlying these phase transitions, and envisions the remaining challenges and fruitful research directions. We hope that these discussions and insights will help to inspire future research and development in the field.

1.
D. L.
Goodstein
,
States of Matter
(
Dover Publications
,
Mineola
,
2002
).
2.
D.
Lencer
,
M.
Salinga
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
, and
M.
Wuttig
, “
A map for phase-change materials
,”
Nat. Mater.
7
,
972
977
(
2008
).
3.
F.
Körmann
,
A.
Dick
,
B.
Grabowski
,
B.
Hallstedt
,
T.
Hickel
, and
J.
Neugebauer
, “
Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions
,”
Phys. Rev. B
78
,
033102
(
2008
).
4.
J. L. F.
Da Silva
,
A.
Walsh
,
S.-H.
Wei
, and
H.
Lee
, “
Atomistic origins of the phase transition mechanism in Ge2Sb2Te5
,”
J. Appl. Phys.
106
,
113509
(
2009
).
5.
L.-F.
Huang
and
J. M.
Rondinelli
, “
Electrochemical phase diagrams for Ti oxides from density functional calculations
,”
Phys. Rev. B
92
,
245126
(
2015
).
6.
M.
Lai
,
C.
Tasan
,
J.
Zhang
,
B.
Grabowski
,
L.
Huang
, and
D.
Raabe
, “
Origin of shear induced β to ω transition in Ti–Nb-based alloys
,”
Acta Mater.
92
,
55
63
(
2015
).
7.
L.-F.
Huang
,
B.
Grabowski
,
J.
Zhang
,
M.-J.
Lai
,
C. C.
Tasan
,
S.
Sandlöbes
,
D.
Raabe
, and
J.
Neugebauer
, “
From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium–transition metal alloys
,”
Acta Mater.
113
,
311
319
(
2016
).
8.
T.
Chakraborty
,
J.
Rogal
, and
R.
Drautz
, “
Unraveling the composition dependence of the martensitic transformation temperature: A first-principles study of Ti-Ta alloys
,”
Phys. Rev. B
94
,
224104
(
2016
).
9.
W.
Wang
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Phase transformations upon doping in WO3
,”
J. Chem. Phys.
146
,
214504
(
2017
).
10.
J.
Yang
,
P.
Zhang
, and
S.-H.
Wei
, “
Band structure engineering of Cs2AgBiBr6 perovskite through order–disordered transition: A first-principle study
,”
J. Phys. Chem. Lett.
9
,
31
35
(
2018
).
11.
M.
Lai
,
T.
Li
, and
D.
Raabe
, “
ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy
,”
Acta Mater.
151
,
67
77
(
2018
).
12.
A.
Ferrari
,
D. G.
Sangiovanni
,
J.
Rogal
, and
R.
Drautz
, “
First-principles characterization of reversible martensitic transformations
,”
Phys. Rev. B
99
,
094107
(
2019
).
13.
X.
Cai
,
H.-X.
Deng
, and
S.-H.
Wei
, “
Carrier-stabilized hexagonal Ge
,”
Phys. Rev. B
103
,
245202
(
2021
).
14.
Y.
Mishin
,
M. J.
Mehl
,
D. A.
Papaconstantopoulos
,
A. F.
Voter
, and
J. D.
Kress
, “
Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations
,”
Phys. Rev. B
63
,
224106
(
2001
).
15.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G.
Van de Walle
, “
First-principles calculations for point defects in solids
,”
Rev. Mod. Phys.
86
,
253
305
(
2014
).
16.
J.
Rogal
,
S. V.
Divinski
,
M. W.
Finnis
,
A.
Glensk
,
J.
Neugebauer
,
J. H.
Perepezko
,
S.
Schuwalow
,
M. H. F.
Sluiter
, and
B.
Sundman
, “
Perspectives on point defect thermodynamics: Point defect thermodynamics
,”
Phys. Status Solidi B
251
,
97
129
(
2014
).
17.
A.
Alkauskas
,
M. D.
McCluskey
, and
C. G.
Van de Walle
, “
Tutorial: Defects in semiconductors—Combining experiment and theory
,”
J. Appl. Phys.
119
,
181101
(
2016
).
18.
P.
Zhang
and
S.-H.
Wei
, “
Origin of charge compensation and its effect on the stability of oxide cathodes for Li-ion batteries: The case of orthosilicates
,”
Electrochim. Acta
270
,
409
416
(
2018
).
19.
M. E.
Turiansky
,
A.
Alkauskas
,
L. C.
Bassett
, and
C. G.
Van de Walle
, “
Dangling bonds in hexagonal boron nitride as single-photon emitters
,”
Phys. Rev. Lett.
123
,
127401
(
2019
).
20.
X.
Zhang
,
J.-X.
Shen
,
M. E.
Turiansky
, and
C. G.
Van de Walle
, “
Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites
,”
Nat. Mater.
20
,
971
976
(
2021
).
21.
J.
Kang
,
J.
Li
, and
S.-H.
Wei
, “
Atomic-scale understanding on the physics and control of intrinsic point defects in lead halide perovskites
,”
Appl. Phys. Rev.
8
,
031302
(
2021
).
22.
M. W.
Swift
and
J. L.
Lyons
, “
Deep levels in cesium lead bromide from native defects and hydrogen
,”
J. Mater. Chem. A
9
,
7491
7495
(
2021
).
23.
M.
Allain
, “
Possible defect-mediated phase transition in a lyotropic liquid crystal. Electron microscopy observations
,”
Europhys. Lett.
2
,
597
602
(
1986
).
24.
A.
Janotti
and
S.-H.
Wei
, “
Epitaxially stabilized AgGaSe2 for high-efficiency spin-polarized electron source
,”
J. Phys. Chem. Solids
64
,
1881
1885
(
2003
).
25.
J.
Dziarmaga
, “
Dynamics of a quantum phase transition in the random Ising model: Logarithmic dependence of the defect density on the transition rate
,”
Phys. Rev. B
74
,
064416
(
2006
).
26.
J.
Howe
,
R.
Pond
, and
J.
Hirth
, “
The role of disconnections in phase transformations
,”
Prog. Mater. Sci.
54
,
792
838
(
2009
).
27.
J.
Zhang
,
C.
Somsen
,
T.
Simon
,
X.
Ding
,
S.
Hou
,
S.
Ren
,
X.
Ren
,
G.
Eggeler
,
K.
Otsuka
, and
J.
Sun
, “
Leaf-like dislocation substructures and the decrease of martensitic start temperatures: A new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti–Ni shape memory alloys
,”
Acta Mater.
60
,
1999
2006
(
2012
).
28.
X.
Meng
,
Z.
Chen
,
Z.
Chen
,
F.
Wu
,
S.-S.
Li
,
J.
Li
,
J.
Wu
, and
S.-H.
Wei
, “
Enhancing structural transition by carrier and quantum confinement: Stabilization of cubic InN quantum dots by Mn incorporation
,”
Appl. Phys. Lett.
103
,
253102
(
2013
).
29.
T.
Frolov
,
S. V.
Divinski
,
M.
Asta
, and
Y.
Mishin
, “
Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries
,”
Phys. Rev. Lett.
110
,
255502
(
2013
).
30.
J.
Schmidt
,
V.
Popkov
, and
A.
Schadschneider
, “
Defect-induced phase transition in the asymmetric simple exclusion process
,”
Europhys. Lett.
110
,
20008
(
2015
).
31.
W.
Wang
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Role of oxygen vacancies in crystalline WO3
,”
J. Mater. Chem. C
4
,
6641
6648
(
2016
).
32.
X.
Ou
,
J.
Sietsma
, and
M. J.
Santofimia
, “
Molecular dynamics simulations of the mechanisms controlling the propagation of bcc/fcc semi-coherent interfaces in iron
,”
Modell. Simul. Mater. Sci. Eng.
24
,
055019
(
2016
).
33.
H.-S.
Kim
,
J. B.
Cook
,
H.
Lin
,
J. S.
Ko
,
S. H.
Tolbert
,
V.
Ozolins
, and
B.
Dunn
, “
Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x
,”
Nat. Mater.
16
,
454
460
(
2017
).
34.
A.
Dobrovolsky
,
A.
Merdasa
,
E. L.
Unger
,
A.
Yartsev
, and
I. G.
Scheblykin
, “
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites
,”
Nat Commun.
8
,
34
(
2017
).
35.
X.
Zhang
,
T.
Hickel
,
J.
Rogal
, and
J.
Neugebauer
, “
Origin of structural modulations in ultrathin Fe films on Cu(001)
,”
Phys. Rev. Lett.
118
,
236101
(
2017
).
36.
Q.
Liang
,
D.
Wang
,
J.
Zhang
,
Y.
Ji
,
X.
Ding
,
Y.
Wang
,
X.
Ren
, and
Y.
Wang
, “
Novel B19 strain glass with large recoverable strain
,”
Phys. Rev. Mater.
1
,
033608
(
2017
).
37.
W.
Guo
,
Y.
Meng
,
X.
Zhang
,
V.
Bedekar
,
H.
Bei
,
S.
Hyde
,
Q.
Guo
,
G. B.
Thompson
,
R.
Shivpuri
,
J-m
Zuo
, and
J. D.
Poplawsky
, “
Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization
,”
Acta Mater.
152
,
107
118
(
2018
).
38.
I.
Unzueta
,
D. A.
de R-Lorente
,
E.
Cesari
,
V.
Sánchez-Alarcos
,
V.
Recarte
,
J. I.
Pérez-Landazábal
,
J. A.
García
, and
F.
Plazaola
, “
Experimental Observation of vacancy-assisted martensitic transformation shift in Ni-Fe-Ga alloys
,”
Phys. Rev. Lett.
122
,
165701
(
2019
).
39.
J.-P.
Ma
,
J.
Yin
,
Y.-M.
Chen
,
Q.
Zhao
,
Y.
Zhou
,
H.
Li
,
Y.
Kuroiwa
,
C.
Moriyoshi
,
Z.-Y.
Li
,
O. M.
Bakr
,
O. F.
Mohammed
, and
H.-T.
Sun
, “
Defect-triggered phase transition in cesium lead halide perovskite nanocrystals
,”
ACS Mater. Lett.
1
,
185
191
(
2019
).
40.
H.
Wang
,
Y.
Li
,
E.
Detemple
, and
G.
Eggeler
, “
Revealing the two-step nucleation and growth mechanism of vanadium carbonitrides in microalloyed steels
,”
Scr. Mater.
187
,
350
354
(
2020
).
41.
J.
Zhang
,
T.
Chen
,
W.
Li
,
J.
Bednarcik
, and
A.-C.
Dippel
, “
High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling
,”
Mater. Des.
193
,
108875
(
2020
).
42.
Y.
Yang
,
P.
Zhang
, and
S.-H.
Wei
, “
Chemical trends of cation-vacancy-induced d0 ferromagnetism in dilute zinc chalcogenides
,”
J. Phys. D: Appl. Phys.
54
,
375001
(
2021
).
43.
C.
Xiong
,
Y.
Li
,
J.
Zhang
,
Y.
Wang
,
W.
Qu
,
Y.
Ji
,
L.
Cui
, and
X.
Ren
, “
Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys
,”
J. Alloys Compd.
853
,
157090
(
2021
).
44.
Z.
Zhang
,
W.
Liu
,
B.
Zhang
,
B.
Sateesh
,
L.
Yuan
,
D.
Zhu
,
P.
Guan
,
S. J.
Pennycook
, and
J.
Guo
, “
Defect-nucleated phase transition in atomically-thin WS2
,”
2D Mater.
8
,
025017
(
2021
).
45.
P.
Li
,
R.
Jiang
,
L.
Zhao
,
H.
Peng
,
P.
Zhao
,
S.
Jia
,
H.
Zheng
, and
J.
Wang
, “
Cation defect mediated phase transition in potassium tungsten bronze
,”
Inorg. Chem.
60
,
18199
18204
(
2021
).
46.
Z.
Yin
,
J.
Leng
,
C.
Zhao
,
J.
Liu
,
B.
Wu
, and
S.
Jin
, “
Defect-Induced inhomogeneous phase transition in 2D perovskite single crystals at low temperatures
,”
ACS Omega
6
,
35427
35432
(
2021
).
47.
X.
Ou
,
J.
Sietsma
, and
M. J.
Santofimia
, “
Fundamental study of nonclassical nucleation mechanisms in iron
,”
Acta Mater.
226
,
117655
(
2022
).
48.
J.
Rogal
and
P. G.
Bolhuis
, “
Multiple state transition path sampling
,”
J. Chem. Phys.
129
,
224107
(
2008
).
49.
J. S.
Kim
,
T.
LaGrange
,
B. W.
Reed
,
M. L.
Taheri
,
M. R.
Armstrong
,
W. E.
King
,
N. D.
Browning
, and
G. H.
Campbell
, “
Imaging of transient structures using nanosecond in situ TEM
,”
Science
321
,
1472
1475
(
2008
).
50.
J.
Rogal
and
P. G.
Bolhuis
, “
On the efficiency of biased sampling of the multiple state path ensemble
,”
J. Chem. Phys.
133
,
034101
(
2010
).
51.
J.
Hu
,
Y.
Hong
,
C.
Muratore
,
M.
Su
, and
A. A.
Voevodin
, “
In situ transmission electron microscopy of solid–liquid phase transition of silica encapsulated bismuth nanoparticles
,”
Nanoscale
3
,
3700
(
2011
).
52.
C.-M.
Wang
,
X.
Li
,
Z.
Wang
,
W.
Xu
,
J.
Liu
,
F.
Gao
,
L.
Kovarik
,
J.-G.
Zhang
,
J.
Howe
,
D. J.
Burton
,
Z.
Liu
,
X.
Xiao
,
S.
Thevuthasan
, and
D. R.
Baer
, “
In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries
,”
Nano Lett.
12
,
1624
1632
(
2012
).
53.
D.
Sheppard
,
P.
Xiao
,
W.
Chemelewski
,
D. D.
Johnson
, and
G.
Henkelman
, “
A generalized solid-state nudged elastic band method
,”
J. Chem. Phys.
136
,
74103
(
2012
).
54.
P.
Xiao
,
D.
Sheppard
,
J.
Rogal
, and
G.
Henkelman
, “
Solid-state dimer method for calculating solid-solid phase transitions
,”
J. Chem. Phys.
140
,
174104
(
2014
).
55.
A.
Ahadi
and
Q.
Sun
, “
Stress-induced nanoscale phase transition in superelastic NiTi by in situ x-ray diffraction
,”
Acta Mater.
90
,
272
281
(
2015
).
56.
D.
Şopu
,
J.
Rogal
, and
R.
Drautz
, “
Thermodynamic and kinetic solid–liquid interface properties from transition path sampling
,”
J. Chem. Phys.
145
,
244703
(
2016
).
57.
Q.
Lu
and
B.
Yildiz
, “
Voltage-controlled topotactic phase transition in thin-film SrCoOx monitored by in situ x-ray diffraction
,”
Nano Lett.
16
,
1186
1193
(
2016
).
58.
P.
Kalita
,
P.
Specht
,
S.
Root
,
N.
Sinclair
,
A.
Schuman
,
M.
White
,
A. L.
Cornelius
,
J.
Smith
, and
S.
Sinogeikin
, “
Direct observations of a dynamically driven phase transition with in situ x-ray diffraction in a simple ionic crystal
,”
Phys. Rev. Lett.
119
,
255701
(
2017
).
59.
X.
Zhang
,
F.
Wang
,
B.-B.
Zhang
,
G.
Zha
, and
W.
Jie
, “
Ferroelastic domains in a CsPbBr3 single crystal and their phase transition characteristics: An in situ TEM study
,”
Cryst. Growth Des.
20
,
4585
4592
(
2020
).
60.
I.
Cora
,
Z.
Fogarassy
,
R.
Fornari
,
M.
Bosi
,
A.
Rečnik
, and
B.
Pécz
, “
In situ TEM study of Kβ and Kγ phase transformations in Ga2O3
,”
Acta Mater.
183
,
216
227
(
2020
).
61.
J.
Zhang
,
Y.
Li
, and
W.
Li
, “
Metastable phase diagram on heating in quenched Ti–Nb high-temperature shape memory alloys
,”
J. Mater. Sci.
56
,
11456
11468
(
2021
).
62.
J.
Rogal
, “
Reaction coordinates in complex systems-a perspective
,”
Eur. Phys. J. B
94
,
223
(
2021
).
63.
S.
Korte-Kerzel
,
T.
Hickel
,
L.
Huber
,
D.
Raabe
,
S.
Sandlöbes-Haut
,
M.
Todorova
, and
J.
Neugebauer
, “
Defect phases—thermodynamics and impact on material properties
,”
Int. Mater. Rev.
67
,
89
117
(
2022
).
64.
E. J.
Mittemeijer
,
Fundamentals of Materials Science: The Microstructure–Property Relationship Using Metals as Model Systems
(
Springer
,
Berlin, Heidelberg
,
2020
).
65.
S.
Puri
,
Kinetics of Phase Transitions
(
CRC Press
,
Boca Raton
,
2009
).
66.
C.
Rao
and
K.
Rao
,
Phase Transitions in Solids: An Approach to the Study of the Chemistry and Physics of Solids
(
McGraw Hill
,
Maidenhead
,
1978
).
67.
G.
Jaeger
, “
The Ehrenfest classification of phase transitions: Introduction and evolution
,”
Arch. Hist. Exact Sci.
53
,
51
81
(
1998
).
68.
M.
Kuzmina
,
M.
Herbig
,
D.
Ponge
,
S.
Sandlobes
, and
D.
Raabe
, “
Linear complexions: Confined chemical and structural states at dislocations
,”
Science
349
,
1080
1083
(
2015
).
69.
Y.
Yang
,
F.
Gao
,
S.
Gao
, and
S.-H.
Wei
, “
Origin of the stability of two-dimensional perovskites: A first-principles study
,”
J. Mater. Chem. A
6
,
14949
14955
(
2018
).
70.
C. J.
Humphreys
, “
Stem imaging of crystals and defects
,” in
Introduction to Analytical Electron Microscopy
, edited by
J. J.
Hren
,
J. I.
Goldstein
, and
D. C.
Joy
(
Springer
,
Boston
,
1979
), pp.
305
332
.
71.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
Cambridge, New York
,
2004
).
72.
L.
Woodcock
, “
Isothermal molecular dynamics calculations for liquid salts
,”
Chem. Phys. Lett.
10
,
257
261
(
1971
).
73.
H. C.
Andersen
, “
Molecular dynamics simulations at constant pressure and/or temperature
,”
J. Chem. Phys.
72
,
2384
2393
(
1980
).
74.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
75.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
76.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
77.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
78.
J. C.
Maxwell
, “
V. Illustrations of the dynamical theory of gases. I. On the motions and collisions of perfectly elastic spheres
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
19
,
19
32
(
1860
).
79.
L.
Boltzmann
, “
Weitere studien über das wärmegleichgewicht unter gasmolekülen
,” in
Kinetische Theorie II
(
Vieweg+Teubner Verlag
,
Wiesbaden
,
1970
), pp.
115
225
.
80.
J. E.
Jones
, “
On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature
,”
Proc. R. Soc. Lond. A
106
,
441
462
(
1924
).
81.
J. E.
Jones
, “
On the determination of molecular fields. II. From the equation of state of a gas
,”
Proc. R. Soc. London A
106
,
463
477
(
1924
).
82.
J. E.
Lennard-Jones
, “
Cohesion
,”
Proc. Phys. Soc.
43
,
461
482
(
1931
).
83.
F. H.
Stillinger
and
T. A.
Weber
, “
Computer simulation of local order in condensed phases of silicon
,”
Phys. Rev. B
31
,
5262
5271
(
1985
).
84.
M. S.
Daw
and
M. I.
Baskes
, “
Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals
,”
Phys. Rev. B
29
,
6443
6453
(
1984
).
85.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
86.
M. E.
Tuckerman
, “
Ab initio molecular dynamics: Basic concepts, current trends and novel applications
,”
J. Phys.: Condens. Matter
14
,
R1297
R1355
(
2002
).
87.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
2009
).
88.
J.
Behler
and
G.
Csányi
, “
Machine learning potentials for extended systems: A perspective
,”
Eur. Phys. J. B
94
,
142
(
2021
).
89.
T.
Wen
,
L.
Zhang
,
H.
Wang
,
W.
E
, and
D. J.
Srolovitz
, “
Deep potentials for materials science
,”
Mater. Futures
1
,
022601
(
2022
).
90.
B.
Grabowski
,
Y.
Ikeda
,
P.
Srinivasan
,
F.
Körmann
,
C.
Freysoldt
,
A. I.
Duff
,
A.
Shapeev
, and
J.
Neugebauer
, “
Ab initio vibrational free energies including anharmonicity for multicomponent alloys
,”
npj Comput. Mater.
5
,
80
(
2019
).
91.
T.
Kostiuchenko
,
F.
Körmann
,
J.
Neugebauer
, and
A.
Shapeev
, “
Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials
,”
npj Comput. Mater.
5
,
55
(
2019
).
92.
T.
Kostiuchenko
,
A. V.
Ruban
,
J.
Neugebauer
,
A.
Shapeev
, and
F.
Körmann
, “
Short-range order in face-centered cubic VCoNi alloys
,”
Phys. Rev. Mater.
4
,
113802
(
2020
).
93.
A. F.
Voter
, “
Hyperdynamics: Accelerated molecular dynamics of infrequent events
,”
Phys. Rev. Lett.
78
,
3908
3911
(
1997
).
94.
A. F.
Voter
, “
Parallel replica method for dynamics of infrequent events
,”
Phys. Rev. B
57
,
R13985
R13988
(
1998
).
95.
M. R.
So/rensen
and
A. F.
Voter
, “
Temperature-accelerated dynamics for simulation of infrequent events
,”
J. Chem. Phys.
112
,
9599
9606
(
2000
).
96.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
97.
A.
Laio
and
F. L.
Gervasio
, “
Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science
,”
Rep. Prog. Phys.
71
,
126601
(
2008
).
98.
A.
Barducci
,
M.
Bonomi
, and
M.
Parrinello
, “
Metadynamics
,”
WIREs Comput. Mol. Sci.
1
,
826
843
(
2011
).
99.
L.
Rosso
and
M. E.
Tuckerman
, “
An adiabatic molecular dynamics method for the calculation of free energy profiles
,”
Mol. Simul.
28
,
91
112
(
2002
).
100.
L.
Rosso
,
P.
Mináry
,
Z.
Zhu
, and
M. E.
Tuckerman
, “
On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles
,”
J. Chem. Phys.
116
,
4389
4402
(
2002
).
101.
J. B.
Abrams
and
M. E.
Tuckerman
, “
Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations
,”
J. Phys. Chem. B
112
,
15742
15757
(
2008
).
102.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
, “
Efficient transition path sampling: Application to Lennard–Jones cluster rearrangements
,”
J. Chem. Phys.
108
,
9236
9245
(
1998
).
103.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
, “
Transition path sampling and the calculation of rate constants
,”
J. Chem. Phys.
108
,
1964
1977
(
1998
).
104.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Simulating rare events in equilibrium or nonequilibrium stochastic systems
,”
J. Chem. Phys.
124
,
024102
(
2006
).
105.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Forward flux sampling-type schemes for simulating rare events: Efficiency analysis
,”
J. Chem. Phys.
124
,
194111
(
2006
).
106.
P. G.
Bolhuis
and
C.
Dellago
, “
Trajectory-Based rare event simulations
,” in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
(
John Wiley & Sons, Inc
.,
Hoboken
,
2010
), pp.
111
210
.
107.
B.
Peters
, “
Recent advances in transition path sampling: Accurate reaction coordinates, likelihood maximisation and diffusive barrier-crossing dynamics
,”
Mol. Simul.
36
,
1265
1281
(
2010
).
108.
P. G.
Bolhuis
and
D. W. H.
Swenson
, “
Transition path sampling as Markov chain Monte Carlo of trajectories: Recent algorithms, software, applications, and future outlook
,”
Adv. Theory Simul.
4
,
2000237
(
2021
).
109.
G.
Henkelman
,
G.
Jóhannesson
, and
H.
Jónsson
, “
Methods for finding saddle points and minimum energy paths
,” in
Theoretical Methods in Condensed Phase Chemistry
, edited by
S. D.
Schwartz
(
Kluwer Academic Publishers
,
Dordrecht
,
2002
), Vol.
5
, pp.
269
302
.
110.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
, “
Optimization methods for finding minimum energy paths
,”
J. Chem. Phys.
128
,
134106
(
2008
).
111.
G.
Henkelman
,
B. P.
Uberuaga
,
H.
Jónsson
, and
H.
Jónsson
, “
Climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
112.
T.
Hickel
,
B.
Grabowski
,
F.
Körmann
, and
J.
Neugebauer
, “
Advancing density functional theory to finite temperatures: Methods and applications in steel design
,”
J. Phys. Condens. Matter
24
,
053202
(
2012
).
113.
L.
Sandoval
,
H.
M Urbassek
, and
P.
Entel
, “
The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe
,”
New J. Phys.
11
,
103027
(
2009
).
114.
K.
Wang
,
S.-L.
Shang
,
Y.
Wang
,
Z.-K.
Liu
, and
F.
Liu
, “
Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study
,”
Acta Mater.
147
,
261
276
(
2018
).
115.
H.
Hu
,
Z.
Lu
, and
W.
Yang
, “
QM/MM minimum free-energy path: Methodology and application to triosephosphate isomerase
,”
J. Chem. Theory Comput.
3
,
390
406
(
2007
).
116.
A.
Bortz
,
M.
Kalos
, and
J.
Lebowitz
, “
A new algorithm for Monte Carlo simulation of Ising spin systems
,”
J. Comput. Phys.
17
,
10
18
(
1975
).
117.
D. T.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
,
403
434
(
1976
).
118.
K. A.
Fichthorn
and
W. H.
Weinberg
, “
Theoretical foundations of dynamical Monte Carlo simulations
,”
J. Chem. Phys.
95
,
1090
1096
(
1991
).
119.
A. F.
Voter
, “
Introduction to the kinetic Monte Carlo method
,” in
Radiation Effects in Solids
, edited by
K. E.
Sickafus
,
E. A.
Kotomin
, and
B. P.
Uberuaga
(
Springer
,
Netherlands, Dordrecht
,
2007
), Vol.
235
, pp.
1
23
.
120.
G. H.
Vineyard
, “
Frequency factors and isotope effects in solid state rate processes
,”
J. Phys. Chem. Solids
3
,
121
127
(
1957
).
121.
G.
Henkelman
and
H.
Jónsson
, “
Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table
,”
J. Chem. Phys.
115
,
9657
9666
(
2001
).
122.
L.
Xu
and
G.
Henkelman
, “
Adaptive kinetic Monte Carlo for first-principles accelerated dynamics
,”
J. Chem. Phys.
129
,
114104
(
2008
).
123.
F.
El-Mellouhi
,
N.
Mousseau
, and
L. J.
Lewis
, “
Kinetic activation-relaxation technique: An off-lattice self-learning kinetic Monte Carlo algorithm
,”
Phys. Rev. B
78
,
153202
(
2008
).
124.
L. K.
Béland
,
P.
Brommer
,
F.
El-Mellouhi
,
J.-F.
Joly
, and
N.
Mousseau
, “
Kinetic activation-relaxation technique
,”
Phys. Rev. E
84
,
046704
(
2011
).
125.
G.
Henkelman
and
H.
Jónsson
, “
A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives
,”
J. Chem. Phys.
111
,
7010
7022
(
1999
).
126.
S. T.
Chill
and
G.
Henkelman
, “
Molecular dynamics saddle search adaptive kinetic Monte Carlo
,”
J. Chem. Phys.
140
,
214110
(
2014
).
127.
N.
Moelans
,
B.
Blanpain
, and
P.
Wollants
, “
An introduction to phase-field modeling of microstructure evolution
,”
Calphad
32
,
268
294
(
2008
).
128.
A. G.
Khachaturyan
,
Theory of Structural Transformations in Solids
(
Wiley
,
New York
,
1983
).
129.
L.-Q.
Chen
, “
Phase-field models for microstructure evolution
,”
Annu. Rev. Mater. Res.
32
,
113
140
(
2002
).
130.
Y.
Wang
,
L.-Q.
Chen
, and
A.
Khachaturyan
, “
Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap
,”
Acta Metall. Mater.
41
,
279
296
(
1993
).
131.
Y.
Wang
and
A.
Khachaturyan
, “
Three-dimensional field model and computer modeling of martensitic transformations
,”
Acta Mater.
45
,
759
773
(
1997
).
132.
A.
Artemev
,
Y.
Jin
, and
A.
Khachaturyan
, “
Three-dimensional phase field model of proper martensitic transformation
,”
Acta Mater.
49
,
1165
1177
(
2001
).
133.
Y.
Wang
,
D.
Banerjee
,
C.
Su
, and
A.
Khachaturyan
, “
Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from f.c.c. solid solution
,”
Acta Mater.
46
,
2983
3001
(
1998
).
134.
D.
Li
and
L.
Chen
, “
Shape evolution and splitting of coherent particles under applied stresses
,”
Acta Mater.
47
,
247
257
(
1998
).
135.
Y. L.
Li
,
S. Y.
Hu
,
Z. K.
Liu
, and
L. Q.
Chen
, “
Phase-field model of domain structures in ferroelectric thin films
,”
Appl. Phys. Lett.
78
,
3878
3880
(
2001
).
136.
S.
Choudhury
,
Y.
Li
,
C.
Krilliii
, and
L.
Chen
, “
Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals
,”
Acta Mater.
53
,
5313
5321
(
2005
).
137.
J.
Zhang
and
L.
Chen
, “
Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials
,”
Acta Mater.
53
,
2845
2855
(
2005
).
138.
M.
Ode
,
S. G.
Kim
, and
T.
Suzuki
, “
Recent advances in the phase-field model for solidification
,”
ISIJ Int.
41
,
1076
1082
(
2001
).
139.
W. J.
Boettinger
,
J. A.
Warren
,
C.
Beckermann
, and
A.
Karma
, “
Phase-field simulation of solidification
,”
Annu. Rev. Mater. Res.
32
,
163
194
(
2002
).
140.
A. A.
Wheeler
,
W. J.
Boettinger
, and
G. B.
McFadden
, “
Phase-field model for isothermal phase transitions in binary alloys
,”
Phys. Rev. A
45
,
7424
7439
(
1992
).
141.
S. G.
Kim
,
W. T.
Kim
, and
T.
Suzuki
, “
Phase-field model for binary alloys
,”
Phys. Rev. E
60
,
7186
7197
(
1999
).
142.
I.
Steinbach
,
F.
Pezzolla
,
B.
Nestler
,
M.
Seeßelberg
,
R.
Prieler
,
G.
Schmitz
, and
J.
Rezende
, “
A phase field concept for multiphase systems
,”
Phys. Nonlinear Phenom.
94
,
135
147
(
1996
).
143.
I.
Steinbach
,
L.
Zhang
, and
M.
Plapp
, “
Phase-field model with finite interface dissipation
,”
Acta Mater.
60
,
2689
2701
(
2012
).
144.
L.
Zhang
and
I.
Steinbach
, “
Phase-field model with finite interface dissipation: Extension to multi-component multi-phase alloys
,”
Acta Mater.
60
,
2702
2710
(
2012
).
145.
K. R.
Elder
,
M.
Katakowski
,
M.
Haataja
, and
M.
Grant
, “
Modeling elasticity in crystal growth
,”
Phys. Rev. Lett.
88
,
245701
(
2002
).
146.
K. R.
Elder
and
M.
Grant
, “
Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals
,”
Phys. Rev. E
70
,
051605
(
2004
).
147.
A.
Adland
,
A.
Karma
,
R.
Spatschek
,
D.
Buta
, and
M.
Asta
, “
Phase-field-crystal study of grain boundary premelting and shearing in bcc iron
,”
Phys. Rev. B
87
,
024110
(
2013
).
148.
C.
Hüter
,
J.
Neugebauer
,
G.
Boussinot
,
B.
Svendsen
,
U.
Prahl
, and
R.
Spatschek
, “
Modelling of grain boundary dynamics using amplitude equations
,”
Continuum Mech. Thermodyn.
29
,
895
911
(
2017
).
149.
R.
Spatschek
and
A.
Karma
, “
Amplitude equations for polycrystalline materials with interaction between composition and stress
,”
Phys. Rev. B
81
,
214201
(
2010
).
150.
M.
Torabi Rad
,
G.
Boussinot
, and
M.
Apel
, “
Dynamics of grain boundary premelting
,”
Sci. Rep.
10
,
21074
(
2020
).
151.
C.
Guo
,
J.
Wang
,
J.
Li
,
Z.
Wang
,
Y.
Huang
,
J.
Gu
, and
X.
Lin
, “
Coupling eutectic nucleation mechanism investigated by phase field crystal model
,”
Acta Mater.
145
,
175
185
(
2018
).
152.
Z.-F.
Huang
and
K. R.
Elder
, “
Mesoscopic and microscopic modeling of island formation in strained film epitaxy
,”
Phys. Rev. Lett.
101
,
158701
(
2008
).
153.
K.-A.
Wu
and
P. W.
Voorhees
, “
Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach
,”
Phys. Rev. B
80
,
125408
(
2009
).
154.
Y.
Tao
,
C.
Zheng
,
Z.
Jing
,
D.
Weiping
, and
W.
Lin
, “
Phase field crystal study on the temporal evolution and coarsening mechanism of precipitates during spinodal decomposition
,”
Rare Met. Mater. Eng.
42
,
1773
1778
(
2013
).
155.
K. A.
Moats
,
E.
Asadi
, and
M.
Laradji
, “
Phase field crystal simulations of the kinetics of Ostwald ripening in two dimensions
,”
Phys. Rev. E
99
,
012803
(
2019
).
156.
W. H.
Bragg
, “
The nature of γ and x-rays
,”
Nature
77
,
270
271
(
1908
).
157.
W. H.
Bragg
and
W. L.
Bragg
, “
The reflection of x-rays by crystals
,”
Proc. R. Soc. London A
88
,
428
438
(
1913
).
158.
W.
Friedrich
,
P.
Knipping
, and
M.
Laue
, “
Interferenzerscheinungen bei Röntgenstrahlen
,”
Ann. Phys.
346
,
971
988
(
1913
).
159.
H. M.
Rietveld
, “
A profile refinement method for nuclear and magnetic structures
,”
J. Appl. Crystallogr.
2
,
65
71
(
1969
).
160.
J.
Li
and
J.
Gong
, “
Operando characterization techniques for electrocatalysis
,”
Energy Environ. Sci.
13
,
3748
3779
(
2020
).
161.
M.
Hayat
,
Basic Techniques for Transmission Electron Microscopy
(
Elsevier Science
,
Saint Louis
,
2014
).
162.
J. C.
Crocker
and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
163.
P.
Habdas
and
E. R.
Weeks
, “
Video microscopy of colloidal suspensions and colloidal crystals
,”
Curr. Opin. Colloid Interface Sci.
7
,
196
203
(
2002
).
164.
K.
Zahn
,
R.
Lenke
, and
G.
Maret
, “
Two-stage melting of paramagnetic colloidal crystals in two dimensions
,”
Phys. Rev. Lett.
82
,
2721
2724
(
1999
).
165.
A.
van Blaaderen
,
R.
Ruel
, and
P.
Wiltzius
, “
Template-directed colloidal crystallization
,”
Nature
385
,
321
324
(
1997
).
166.
H. M.
Lindsay
and
P. M.
Chaikin
, “
Elastic properties of colloidal crystals and glasses
,”
J. Chem. Phys.
76
,
3774
3781
(
1982
).
167.
V. J.
Anderson
and
H. N. W.
Lekkerkerker
, “
Insights into phase transition kinetics from colloid science
,”
Nature
416
,
811
815
(
2002
).
168.
B.
Li
,
D.
Zhou
, and
Y.
Han
, “
Assembly and phase transitions of colloidal crystals
,”
Nat. Rev. Mater.
1
,
15011
(
2016
).
169.
L.
Li
,
C.
Goodrich
,
H.
Yang
,
K. R.
Phillips
,
Z.
Jia
,
H.
Chen
,
L.
Wang
,
J.
Zhong
,
A.
Liu
,
J.
Lu
,
J.
Shuai
,
M. P.
Brenner
,
F.
Spaepen
, and
J.
Aizenberg
, “
Microscopic origins of the crystallographically preferred growth in evaporation-induced colloidal crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2107588118
(
2021
).
170.
Y.
Peng
,
F.
Wang
,
Z.
Wang
,
A. M.
Alsayed
,
Z.
Zhang
,
A. G.
Yodh
, and
Y.
Han
, “
Two-step nucleation mechanism in solid–solid phase transitions
,”
Nat. Mater.
14
,
101
108
(
2015
).
171.
Y.
Peng
,
W.
Li
,
F.
Wang
,
T.
Still
,
A. G.
Yodh
, and
Y.
Han
, “
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
,”
Nat. Commun.
8
,
14978
(
2017
).
172.
M.
Schmidt
and
H.
Löwen
, “
Freezing between two and three dimensions
,”
Phys. Rev. Lett.
76
,
4552
4555
(
1996
).
173.
A.
Fortini
and
M.
Dijkstra
, “
Phase behaviour of hard spheres confined between parallel hard plates: Manipulation of colloidal crystal structures by confinement
,”
J. Phys.: Condens. Matter
18
,
L371
L378
(
2006
).
174.
J. N.
Shapiro
, “
Lindemann law and lattice dynamics
,”
Phys. Rev. B
1
,
3982
3989
(
1970
).
175.
M.
Avrami
, “
Kinetics of phase change. I General theory
,”
J. Chem. Phys.
7
,
1103
1112
(
1939
).
176.
M.
Avrami
, “
Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei
,”
J. Chem. Phys.
8
,
212
224
(
1940
).
177.
M.
Avrami
, “
Granulation, phase change, and microstructure kinetics of phase change. III
,”
J. Chem. Phys.
9
,
177
184
(
1941
).
178.
X.
Zhang
,
T.
Hickel
,
J.
Rogal
, and
J.
Neugebauer
, “
Interplay between interstitial displacement and displacive lattice transformations
,”
Phys. Rev. B
94
,
104109
(
2016
).
179.
E. C.
Bain
and
N. Y.
Dunkirk
, “
The nature of martensite
,”
Trans. AIME
79
,
25
46
(
1924
).
180.
G.
Kurdjumow
and
G.
Sachs
, “
Ueber den Mechanismus der Stahlhaertung
,”
Z. Phys.
64
,
325
343
(
1930
).
181.
O. D.
Sherby
,
J.
Wadsworth
,
D. R.
Lesuer
, and
C. K.
Syn
, “
Revisiting the structure of martensite in iron-carbon steels
,”
Mater. Trans.
49
,
2016
2027
(
2008
).
182.
G.
Kurdjumov
and
A.
Khachaturyan
, “
Nature of axial ratio anomalies of the martensite lattice and mechanism of diffusionless γ → α transformation
,”
Acta Metall.
23
,
1077
1088
(
1975
).
183.
L.
Bourgeois
,
Y.
Zhang
,
Z.
Zhang
,
Y.
Chen
, and
N. V.
Medhekar
, “
Transforming solid-state precipitates via excess vacancies
,”
Nat. Commun.
11
,
1248
(
2020
).
184.
K. C.
Russell
, “
The role of excess vacancies in precipitation
,”
Scr. Metall.
3
,
313
316
(
1969
).
185.
P. E.
Marth
,
H. I.
Aaronson
,
G. W.
Lorimer
,
T. L.
Bartel
, and
K. C.
Russell
, “
Application of heterogeneous nucleation theory to precipitate nucleation at GP zones
,”
Metall. Trans. A
7
,
1519
1528
(
1976
).
186.
K.
Shimokawa
,
T.
Atsumi
,
N. L.
Okamoto
,
T.
Kawaguchi
,
S.
Imashuku
,
K.
Wagatsuma
,
M.
Nakayama
,
K.
Kanamura
, and
T.
Ichitsubo
, “
Structure design of long-life spinel-oxide cathode materials for magnesium rechargeable batteries
,”
Adv. Mater.
33
,
2007539
(
2021
).
187.
J.
Zhang
,
Y.
Wang
,
X.
Ding
,
Z.
Zhang
,
Y.
Zhou
,
X.
Ren
,
D.
Wang
,
Y.
Ji
,
M.
Song
,
K.
Otsuka
, and
J.
Sun
, “
Spontaneous strain glass to martensite transition in a Ti50Ni44.5Fe5.5 strain glass
,”
Phys. Rev. B
84
,
214201
(
2011
).
188.
D.
Wang
,
Y.
Wang
,
Z.
Zhang
, and
X.
Ren
, “
Modeling Abnormal strain states in ferroelastic systems: The role of point defects
,”
Phys. Rev. Lett.
105
,
205702
(
2010
).
189.
P.
Lloveras
,
T.
Castán
,
M.
Porta
,
A.
Planes
, and
A.
Saxena
, “
Influence of elastic anisotropy on structural nanoscale textures
,”
Phys. Rev. Lett.
100
,
165707
(
2008
).
190.
P.
Lloveras
,
T.
Castán
,
M.
Porta
,
A.
Planes
, and
A.
Saxena
, “
Glassy behavior in martensites: Interplay between elastic anisotropy and disorder in zero-field-cooling/field-cooling simulation experiments
,”
Phys. Rev. B
80
,
054107
(
2009
).
191.
A.
Jayaraman
,
W.
Klement
, and
G. C.
Kennedy
, “
Solid-solid transitions in titanium and zirconium at high pressures
,”
Phys. Rev.
131
,
644
649
(
1963
).
192.
Y.
Vohra
,
S.
Sikka
,
S.
Vaidya
, and
R.
Chidambaram
, “
Impurity effects and reaction kinetics of the pressure-induced α ω transformation in Ti
,”
J. Phys. Chem. Solids
38
,
1293
1296
(
1977
).
193.
C. W.
Greeff
,
D. R.
Trinkle
, and
R. C.
Albers
, “
Shock-induced α–ω transition in titanium
,”
J. Appl. Phys.
90
,
2221
2226
(
2001
).
194.
R. G.
Hennig
,
D. R.
Trinkle
,
J.
Bouchet
,
S. G.
Srinivasan
,
R. C.
Albers
, and
J. W.
Wilkins
, “
Impurities block the alpha to omega martensitic transformation in titanium
,”
Nat. Mater.
4
,
129
133
(
2005
).
195.
X.
Zhang
,
H.
Wang
,
T.
Hickel
,
J.
Rogal
,
Y.
Li
, and
J.
Neugebauer
, “
Mechanism of collective interstitial ordering in Fe–C alloys
,”
Nat. Mater.
19
,
849
854
(
2020
).
196.
Y.
Vohra
, “
Electronic basis for omega phase stability in group IV transition metals and alloys
,”
Acta Metall.
27
,
1671
1675
(
1979
).
197.
J.
Zhang
,
D.
Xue
,
X.
Cai
,
X.
Ding
,
X.
Ren
, and
J.
Sun
, “
Dislocation induced strain glass in Ti50Ni45Fe5 alloy
,”
Acta Mater.
120
,
130
137
(
2016
).
198.
C.
Zener
, “
Theory of strain interaction of solute atoms
,”
Phys. Rev.
74
,
639
647
(
1948
).
199.
A.
Udyansky
,
J.
von Pezold
,
A.
Dick
, and
J.
Neugebauer
, “
Orientational ordering of interstitial atoms and martensite formation in dilute Fe-based solid solutions
,”
Phys. Rev. B
83
,
184112
(
2011
).
200.
R.
Naraghi
,
M.
Selleby
, and
J.
Ågren
, “
Thermodynamics of stable and metastable structures in Fe–C system
,”
Calphad
46
,
148
158
(
2014
).
201.
A. V.
Ruban
, “
Self-trapping of carbon atoms in α-Fe during the martensitic transformation: A qualitative picture from ab initio calculations
,”
Phys. Rev. B
90
,
144106
(
2014
).
202.
Y.
Ji
,
X.
Ding
,
T.
Lookman
,
K.
Otsuka
, and
X.
Ren
, “
Heterogeneities and strain glass behavior: Role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys
,”
Phys. Rev. B
87
,
104110
(
2013
).
203.
Z.
Zhou
,
J.
Cui
, and
X.
Ren
, “
Strain glass state as the boundary of two phase transitions
,”
Sci. Rep.
5
,
13377
(
2015
).
204.
P. R.
Cantwell
,
M.
Tang
,
S. J.
Dillon
,
J.
Luo
,
G. S.
Rohrer
, and
M. P.
Harmer
, “
Grain boundary complexions
,”
Acta Mater.
62
,
1
48
(
2014
).
205.
P. R.
Cantwell
,
T.
Frolov
,
T. J.
Rupert
,
A. R.
Krause
,
C. J.
Marvel
,
G. S.
Rohrer
,
J. M.
Rickman
, and
M. P.
Harmer
, “
Grain boundary complexion transitions
,”
Annu. Rev. Mater. Res.
50
,
465
492
(
2020
).
206.
T.
Frolov
,
D. L.
Olmsted
,
M.
Asta
, and
Y.
Mishin
, “
Structural phase transformations in metallic grain boundaries
,”
Nat. Commun.
4
,
1899
(
2013
).
207.
S. J.
Fensin
,
D.
Olmsted
,
D.
Buta
,
M.
Asta
,
A.
Karma
, and
J. J.
Hoyt
, “
Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations
,”
Phys. Rev. E
81
,
031601
(
2010
).
208.
J.
Berry
,
K. R.
Elder
, and
M.
Grant
, “
Melting at dislocations and grain boundaries: A phase field crystal study
,”
Phys. Rev. B
77
,
224114
(
2008
).
209.
T.
Meiners
,
T.
Frolov
,
R. E.
Rudd
,
G.
Dehm
, and
C. H.
Liebscher
, “
Observations of grain-boundary phase transformations in an elemental metal
,”
Nature
579
,
375
378
(
2020
).
210.
C. W.
Glass
,
A. R.
Oganov
, and
N.
Hansen
, “
USPEX—Evolutionary crystal structure prediction
,”
Comput. Phys. Commun.
175
,
713
720
(
2006
).
211.
M. P.
Harmer
, “
The phase behavior of interfaces
,”
Science
332
,
182
183
(
2011
).
212.
M.
Tang
,
W. C.
Carter
, and
R. M.
Cannon
, “
Grain boundary transitions in binary alloys
,”
Phys. Rev. Lett.
97
,
075502
(
2006
).
213.
J.
Luo
,
H.
Cheng
,
K. M.
Asl
,
C. J.
Kiely
, and
M. P.
Harmer
, “
The role of a bilayer interfacial phase on liquid metal embrittlement
,”
Science
333
,
1730
1733
(
2011
).
214.
J. Q.
Broughton
and
G. H.
Gilmer
, “
Thermodynamic criteria for grain-boundary melting: A molecular-dynamics study
,”
Phys. Rev. Lett.
56
,
2692
2695
(
1986
).
215.
S. R.
Phillpot
,
J. F.
Lutsko
,
D.
Wolf
, and
S.
Yip
, “
Molecular-dynamics study of lattice-defect-nucleated melting in silicon
,”
Phys. Rev. B
40
,
2831
2840
(
1989
).
216.
S.
Divinski
,
M.
Lohmann
,
C.
Herzig
,
B.
Straumal
,
B.
Baretzky
, and
W.
Gust
, “
Grain-boundary melting phase transition in the Cu–Bi system
,”
Phys. Rev. B
71
,
104104
(
2005
).
217.
A. M.
Alsayed
,
M. F.
Islam
,
J.
Zhang
,
P. J.
Collings
, and
A. G.
Yodh
, “
Premelting at defects within bulk colloidal crystals
,”
Science
309
,
1207
1210
(
2005
).
218.
M. A.
Gibson
and
C. A.
Schuh
, “
A survey of ab-initio calculations shows that segregation-induced grain boundary embrittlement is predicted by bond-breaking arguments
,”
Scr. Mater.
113
,
55
58
(
2016
).
219.
P.
Lejček
,
M.
Šob
, and
V.
Paidar
, “
Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results
,”
Prog. Mater. Sci.
87
,
83
139
(
2017
).
220.
Y.
Mishin
,
M.
Asta
, and
J.
Li
, “
Atomistic modeling of interfaces and their impact on microstructure and properties
,”
Acta Mater.
58
,
1117
1151
(
2010
).
221.
J. W.
Somerville
,
A.
Sobkowiak
,
N.
Tapia-Ruiz
,
J.
Billaud
,
J. G.
Lozano
,
R. A.
House
,
L. C.
Gallington
,
T.
Ericsson
,
L.
Häggström
,
M. R.
Roberts
,
U.
Maitra
, and
P. G.
Bruce
, “
Nature of the ‘Z’-phase in layered Na-ion battery cathodes
,”
Energy Environ. Sci.
12
,
2223
2232
(
2019
).
222.
G.
Frommeyer
,
U.
Brüx
, and
P.
Neumann
, “
Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes
,”
ISIJ Int.
43
,
438
446
(
2003
).
223.
T.
Hickel
,
S.
Sandlöbes
,
R.
Marceau
,
A.
Dick
,
I.
Bleskov
,
J.
Neugebauer
, and
D.
Raabe
, “
Impact of nanodiffusion on the stacking fault energy in high-strength steels
,”
Acta Mater.
75
,
147
155
(
2014
).
224.
H.
He
,
M.
Naeem
,
F.
Zhang
,
Y.
Zhao
,
S.
Harjo
,
T.
Kawasaki
,
B.
Wang
,
X.
Wu
,
S.
Lan
,
Z.
Wu
,
W.
Yin
,
Y.
Wu
,
Z.
Lu
,
J.-J.
Kai
,
C.-T.
Liu
, and
X.-L.
Wang
, “
Stacking fault driven phase transformation in CrCoNi medium entropy alloy
,”
Nano Lett.
21
,
1419
1426
(
2021
).
225.
S. M.
Sharma
,
S. J.
Turneaure
,
J. M.
Winey
, and
Y. M.
Gupta
, “
What determines the fcc-bcc structural transformation in shock compressed noble metals?
,”
Phys. Rev. Lett.
124
,
235701
(
2020
).
226.
P. J. H.
Denteneer
and
W.
van Haeringen
, “
Stacking-fault energies in semiconductors from first-principles calculations
,”
J. Phys. C: Solid State Phys.
20
,
L883
L887
(
1987
).
227.
P.
Denteneer
and
J.
Soler
, “
Energetics of point and planar defects in aluminium from first-principles calculations
,”
Solid State Commun.
78
,
857
861
(
1991
).
228.
F.
Chu
,
A. H.
Ormeci
,
T. E.
Mitchell
,
J. M.
Wills
,
D. J.
Thoma
,
R. C.
Albers
, and
S. P.
Chen
, “
Stacking fault energy of the NbCr2 laves phase
,”
Philos. Mag. Lett.
72
,
147
153
(
1995
).
229.
M.
Šlapáková
,
A.
Zendegani
,
C.
Liebscher
,
T.
Hickel
,
J.
Neugebauer
,
T.
Hammerschmidt
,
A.
Ormeci
,
J.
Grin
,
G.
Dehm
,
K.
Kumar
, and
F.
Stein
, “
Atomic scale configuration of planar defects in the Nb-rich C14 Laves phase NbFe2
,”
Acta Mater.
183
,
362
376
(
2020
).
230.
C.
Delmas
,
C.
Fouassier
, and
P.
Hagenmuller
, “
Structural classification and properties of the layered oxides
,”
Phys. B+C
99
,
81
85
(
1980
).
231.
K.
Kubota
,
N.
Yabuuchi
,
H.
Yoshida
,
M.
Dahbi
, and
S.
Komaba
, “
Layered oxides as positive electrode materials for Na-ion batteries
,”
MRS Bull.
39
,
416
422
(
2014
).
232.
D.
Kundu
,
E.
Talaie
,
V.
Duffort
, and
L. F.
Nazar
, “
The emerging chemistry of sodium ion batteries for electrochemical energy storage
,”
Angew. Chem. Int. Ed.
54
,
3431
3448
(
2015
).
233.
Y.
Yoda
,
K.
Kubota
,
H.
Isozumi
,
T.
Horiba
, and
S.
Komaba
, “
Poly-γ-glutamate binder to enhance electrode performances of P2-Na2∕3Ni1∕3Mn2∕3O2 for Na-ion batteries
,”
ACS Appl. Mater. Interfaces
10
,
10986
10997
(
2018
).
234.
Z.
Lu
and
J. R.
Dahn
, “
In situ x-ray diffraction study of P2-Na2∕3[Ni1∕3Mn2∕3]O2
,”
J. Electrochem. Soc.
148
,
A1225
(
2001
).
235.
D. H.
Lee
,
J.
Xu
, and
Y. S.
Meng
, “
An advanced cathode for Na-ion batteries with high rate and excellent structural stability
,”
Phys. Chem. Chem. Phys.
15
,
3304
(
2013
).
236.
N.
Yabuuchi
,
M.
Kajiyama
,
J.
Iwatate
,
H.
Nishikawa
,
S.
Hitomi
,
R.
Okuyama
,
R.
Usui
,
Y.
Yamada
, and
S.
Komaba
, “
P2-type Nax[Fe1∕2Mn1∕2]O2 made from earth-abundant elements for rechargeable Na batteries
,”
Nat. Mater.
11
,
512
517
(
2012
).
237.
E.
Talaie
,
V.
Duffort
,
H. L.
Smith
,
B.
Fultz
, and
L. F.
Nazar
, “
Structure of the high voltage phase of layered P2-Na2∕3-z[Mn1∕2Fe1∕2]O2 and the positive effect of Ni substitution on its stability
,”
Energy Environ. Sci.
8
,
2512
2523
(
2015
).
238.
B.
Mortemard de Boisse
,
D.
Carlier
,
M.
Guignard
,
L.
Bourgeois
, and
C.
Delmas
, “
P2-NaxMn1∕2Fe1∕2O2 Phase used as positive electrode in na batteries: structural changes induced by the electrochemical (De)intercalation process
,”
Inorg. Chem.
53
,
11197
11205
(
2014
).
239.
J. W.
Somerville
,
R. A.
House
,
N.
Tapia-Ruiz
,
A.
Sobkowiak
,
S.
Ramos
,
A. V.
Chadwick
,
M. R.
Roberts
,
U.
Maitra
, and
P. G.
Bruce
, “
Identification and characterisation of high energy density P2-type Na2∕3[Ni1∕3-y∕2Mn2∕3-y∕2Fey] O2 compounds for Na-ion batteries
,”
J. Mater. Chem. A
6
,
5271
5275
(
2018
).
240.
G.
Wilde
, “
Structural phase transformations in nanoscale systems
,”
Adv. Eng. Mater.
23
,
2001387
(
2021
).
241.
L.
Roelofs
, “
Phase transitions and kinetics of ordering
,” in
Handbook of Surface Science
(
Elsevier
,
1996
), Vol.
1
, pp.
713
807
.
242.
Spontaneous Ordering in Semiconductor Alloys
, edited by
A.
Mascarenhas
(
Springer
,
Boston
,
2002
).
243.
J.
Perepezko
and
G.
Wilde
, “
Melt undercooling and nucleation kinetics
,”
Curr. Opin. Solid State Mater. Sci.
20
,
3
12
(
2016
).
244.
J.
Perepezko
,
J.
Sebright
,
P.
Höckel
, and
G.
Wilde
, “
Undercooling and solidification of atomized liquid droplets
,”
Mater. Sci. Eng. A
326
,
144
153
(
2002
).
245.
J. H.
Perepezko
, “
Nucleation in undercooled liquids
,”
Mater. Sci. Eng.
65
,
125
135
(
1984
).
246.
D.
Turnbull
and
R. E.
Cech
, “
Microscopic observation of the solidification of small metal droplets
,”
J. Appl. Phys.
21
,
804
810
(
1950
).
247.
F. J.
Bradshaw
,
M. E.
Gasper
, and
S.
Pearson
, “
The supercooling of gold as affected by some catalysts
,”
J. Inst. Met.
87
,
15
18
(
1958
).
248.
G.
Wilde
,
J.
Sebright
, and
J.
Perepezko
, “
Bulk liquid undercooling and nucleation in gold
,”
Acta Mater.
54
,
4759
4769
(
2006
).
249.
J.
Fehling
and
E.
Scheil
, “
Untersuchung der Unterkühlbarkeit von Metallschmelzen
,”
Int. J. Mater. Res.
53
,
593
600
(
1962
).
250.
M.
Mayo
,
A.
Suresh
, and
W.
Porter
, “
Thermodynamics for nanosystems: Grain and particle-size dependent phase diagrams
,”
Rev. Adv. Mater. Sci.
5
,
100
109
(
2003
).
251.
B. D.
Begg
,
E. R.
Vance
, and
J.
Nowotny
, “
Effect of particle size on the room-temperature crystal structure of barium titanate
,”
J. Am. Ceram. Soc.
77
,
3186
3192
(
1994
).
252.
S.
Schlag
,
H.-F.
Eicke
, and
W. B.
Stern
, “
Size driven phase transition and thermodynamic properties of nanocrystalline BaTiO3
,”
Ferroelectrics
173
,
351
369
(
1995
).
253.
M. H.
Frey
and
D. A.
Payne
, “
Grain-size effect on structure and phase transformations for barium titanate
,”
Phys. Rev. B
54
,
3158
3168
(
1996
).
254.
G. A.
Rossetti
,
J. P.
Cline
, and
A.
Navrotsky
, “
Phase transition energetics and thermodynamic properties of ferroelectric PbTiO3
,”
J. Mater. Res.
13
,
3197
3206
(
1998
).
255.
E. K.
Akdogan
,
W.
Mayo
,
A.
Safari
,
C. J.
Rawn
, and
E. A.
Payzant
, “
Structure-property relations in mesoscopic BaTiO3 and PbTiO3
,”
Ferroelectrics
223
,
11
18
(
1999
).
256.
H.
Sato
,
O.
Kitakami
,
T.
Sakurai
,
Y.
Shimada
,
Y.
Otani
, and
K.
Fukamichi
, “
Structure and magnetism of hcp-Co fine particles
,”
J. Appl. Phys.
81
,
1858
1862
(
1997
).
257.
W.
Shi
,
J.
Kong
,
H.
Shen
,
G.
Du
,
W.
Yao
, and
Z.
Qi
, “
An investigation of anomalous structure of nanocrystal Ti and Zr films
,”
Vacuum
42
,
1070
1071
(
1991
).
258.
H.
Zhang
and
J. F.
Banfield
, “
Thermodynamic analysis of phase stability of nanocrystalline titania
,”
J. Mater. Chem.
8
,
2073
2076
(
1998
).
259.
C.-C.
Chen
,
A. B.
Herhold
,
C. S.
Johnson
, and
A. P.
Alivisatos
, “
Size dependence of structural metastability in semiconductor nanocrystals
,”
Science
276
,
398
401
(
1997
).
260.
S. H.
Tolbert
and
A. P.
Alivisatos
, “
Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals
,”
Science
265
,
373
376
(
1994
).
261.
A.
Suresh
,
M. J.
Mayo
,
W. D.
Porter
, and
C. J.
Rawn
, “
Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia
,”
J. Am. Ceram. Soc.
86
,
360
362
(
2003
).
262.
A.
Suresh
,
M. J.
Mayo
, and
W. D.
Porter
, “
Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders
,”
J. Mater. Res.
18
,
2912
2921
(
2003
).
263.
G.
Skandan
,
C.
Foster
,
H.
Frase
,
M.
Ali
,
J.
Parker
, and
H.
Hahn
, “
Phase characterization and stabilization due to grain size effects of nanostructured Y2O3
,”
Nanostruct. Mater.
1
,
313
322
(
1992
).
264.
H. G.
Scott
, “
Phase relationships in the zirconia-yttria system
,”
J. Mater. Sci.
10
,
1527
1535
(
1975
).
265.
M.
Grünwald
,
E.
Rabani
, and
C.
Dellago
, “
Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals
,”
Phys. Rev. Lett.
96
,
255701
(
2006
).
266.
M.
Grünwald
,
C.
Dellago
, and
P. L.
Geissler
, “
An efficient transition path sampling algorithm for nanoparticles under pressure
,”
J. Chem. Phys.
127
,
154718
(
2007
).
267.
M.
Grünwald
and
C.
Dellago
, “
Transition state analysis of solid-solid transformations in nanocrystals
,”
J. Chem. Phys.
131
,
164116
(
2009
).
268.
M.
Grünwald
and
C.
Dellago
, “
Nucleation and growth in structural transformations of nanocrystals
,”
Nano Lett.
9
,
2099
2102
(
2009
).
269.
M.
Park
and
C. A.
Schuh
, “
Accelerated sintering in phase-separating nanostructured alloys
,”
Nat. Commun.
6
,
6858
(
2015
).
270.
A. V.
Shishulin
and
V. B.
Fedoseev
, “
Size effect in the phase separation of Cr–W solid solutions
,”
Inorg. Mater.
54
,
546
549
(
2018
).
271.
A. S.
Shirinyan
, “
Two-phase equilibrium states in individual Cu–Ni nanoparticles: Size, depletion and hysteresis effects
,”
Beilstein J. Nanotechnol.
6
,
1811
1820
(
2015
).
272.
Y.
Iguchi
,
G. L.
Katona
,
C.
Cserháti
,
G. A.
Langer
, and
Z.
Erdélyi
, “
On the miscibility gap of Cu-Ni system
,”
Acta Mater.
148
,
49
54
(
2018
).
273.
R.
Duran
,
P.
Stender
,
S. M.
Eich
, and
G.
Schmitz
, “
Atom probe study of the miscibility gap in CuNi thin films and microstructure development
,”
Microsc. Microanal.
28
,
1359
1369
(
2022
).
274.
J. B.
Hannon
,
H.
Hibino
,
N. C.
Bartelt
,
B. S.
Swartzentruber
,
T.
Ogino
, and
G. L.
Kellogg
, “
Dynamics of the silicon (111) surface phase transition
,”
Nature
405
,
552
554
(
2000
).
275.
D.
Segev
and
C. G.
Van de Walle
, “
Surface reconstructions on InN and GaN polar and nonpolar surfaces
,”
Surf. Sci.
601
,
L15
L18
(
2007
).
276.
M. S.
Miao
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Reconstructions and origin of surface states on AlN polar and nonpolar surfaces
,”
Phys. Rev. B
80
,
155319
(
2009
).
277.
J.
Neugebauer
,
T.
Zywietz
,
M.
Scheffler
,
J. E.
Northrup
, and
C. G.
Van de Walle
, “
Clean and As-covered zinc-blende GaN (001) Surfaces: Novel surface structures and surfactant behavior
,”
Phys. Rev. Lett.
80
,
3097
3100
(
1998
).
278.
C. G.
Van de Walle
and
J.
Neugebauer
, “
Role of hydrogen in surface reconstructions and growth of GaN
,”
J. Vac. Sci. Technol., B
20
,
1640
(
2002
).
279.
W.
Pitsch
, “
The martensite transformation in thin foils of iron-nitrogen alloys
,”
Philos. Mag.
4
,
577
584
(
1959
).
280.
W. A. A.
Macedo
and
W.
Keune
, “
Magnetism of epitaxial fcc-Fe(100) films on Cu(100) investigated in situ by conversion-electron Mössbauer spectroscopy in ultrahigh vacuum
,”
Phys. Rev. Lett.
61
,
475
478
(
1988
).
281.
J.
Thomassen
,
F.
May
,
B.
Feldmann
,
M.
Wuttig
, and
H.
Ibach
, “
Magnetic live surface layers in Fe/Cu(100)
,”
Phys. Rev. Lett.
69
,
3831
3834
(
1992
).
282.
S.
Müller
,
P.
Bayer
,
C.
Reischl
,
K.
Heinz
,
B.
Feldmann
,
H.
Zillgen
, and
M.
Wuttig
, “
Structural instability of ferromagnetic fcc Fe Films on Cu(100)
,”
Phys. Rev. Lett.
74
,
765
768
(
1995
).
283.
R. E.
Schlier
and
H. E.
Farnsworth
, “
Structure and adsorption characteristics of clean surfaces of germanium and silicon
,”
J. Chem. Phys.
30
,
917
926
(
1959
).
284.
K.
Takayanagi
,
Y.
Tanishiro
,
M.
Takahashi
, and
S.
Takahashi
, “
Structural analysis of Si(111)–7× 7 by UHV-transmission electron diffraction and microscopy
,”
J. Vac. Sci. Technol., A
3
,
1502
1506
(
1985
).
285.
L.
Hu
,
B.
Huang
, and
F.
Liu
, “
Atomistic mechanism underlying the Si(111)–(7× 7) surface reconstruction revealed by artificial neural-network potential
,”
Phys. Rev. Lett.
126
,
176101
(
2021
).
286.
S.
Froyen
and
A.
Zunger
, “
Surface-induced ordering in GaInP
,”
Phys. Rev. Lett.
66
,
2132
2135
(
1991
).
287.
J.
Wang
,
A. J.
Davenport
,
H. S.
Isaacs
, and
B. M.
Ocko
, “
Surface charge—Induced ordering of the Au(111) surface
,”
Science
255
,
1416
1418
(
1992
).
288.
J. E.
Northrup
,
L. T.
Romano
, and
J.
Neugebauer
, “
Surface energetics, pit formation, and chemical ordering in InGaN alloys
,”
Appl. Phys. Lett.
74
,
2319
2321
(
1999
).
289.
S.
M ller
, “
Bulk and surface ordering phenomena in binary metal alloys
,”
J. Phys.: Condens. Matter
15
,
R1429
R1500
(
2003
).
290.
B. C.
Han
,
A.
Van der Ven
,
G.
Ceder
, and
B.-J.
Hwang
, “
Surface segregation and ordering of alloy surfaces in the presence of adsorbates
,”
Phys. Rev. B
72
,
205409
(
2005
).
291.
M.
Albrecht
,
L.
Lymperakis
,
J.
Neugebauer
,
J. E.
Northrup
,
L.
Kirste
,
M.
Leroux
,
I.
Grzegory
,
S.
Porowski
, and
H. P.
Strunk
, “
Chemically ordered AlxGa1-xN alloys: Spontaneous formation of natural quantum wells
,”
Phys. Rev. B
71
,
035314
(
2005
).
292.
L.
Lymperakis
,
T.
Schulz
,
C.
Freysoldt
,
M.
Anikeeva
,
Z.
Chen
,
X.
Zheng
,
B.
Shen
,
C.
Chèze
,
M.
Siekacz
,
X. Q.
Wang
,
M.
Albrecht
, and
J.
Neugebauer
, “
Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells
,”
Phys. Rev. Mater.
2
,
011601
(
2018
).
293.
R.
Witte
,
T.
Feng
,
J. X.
Fang
,
A.
Fischer
,
M.
Ghafari
,
R.
Kruk
,
R. A.
Brand
,
D.
Wang
,
H.
Hahn
, and
H.
Gleiter
, “
Evidence for enhanced ferromagnetism in an iron-based nanoglass
,”
Appl. Phys. Lett.
103
,
073106
(
2013
).
294.
D.
Şopu
,
K.
Albe
,
Y.
Ritter
, and
H.
Gleiter
, “
From nanoglasses to bulk massive glasses
,”
Appl. Phys. Lett.
94
,
191911
(
2009
).
295.
M.
Ghafari
,
S.
Kohara
,
H.
Hahn
,
H.
Gleiter
,
T.
Feng
,
R.
Witte
, and
S.
Kamali
, “
Structural investigations of interfaces in Fe90Sc10 nanoglasses using high-energy x-ray diffraction
,”
Appl. Phys. Lett.
100
,
133111
(
2012
).
296.
H.
Gleiter
,
T.
Schimmel
, and
H.
Hahn
, “
Nanostructured solids—From nano-glasses to quantum transistors
,”
Nano Today
9
,
17
68
(
2014
).
297.
H.
Gleiter
, “
Nanoglasses: A new kind of noncrystalline material and the way to an age of new technologies?
,”
Small
12
,
2225
2233
(
2016
).
298.
S.
Kauffmann-Weiss
,
M. E.
Gruner
,
A.
Backen
,
L.
Schultz
,
P.
Entel
, and
S.
Fähler
, “
Magnetic nanostructures by adaptive twinning in strained epitaxial films
,”
Phys. Rev. Lett.
107
,
206105
(
2011
).
299.
M. A.
Uijttewaal
,
T.
Hickel
,
J.
Neugebauer
,
M. E.
Gruner
, and
P.
Entel
, “
Understanding the phase transitions of the NiMnGa magnetic shape memory system from first principles
,”
Phys. Rev. Lett.
102
,
035702
(
2009
).
300.
B.
Dutta
,
A.
Çak ir
,
C.
Giacobbe
,
A.
Al-Zubi
,
T.
Hickel
,
M.
Acet
, and
J.
Neugebauer
, “
Ab initio prediction of martensitic and intermartensitic phase boundaries in Ni–Mn–Ga
,”
Phys. Rev. Lett.
116
,
025503
(
2016
).
301.
K.
Ullakko
,
J. K.
Huang
,
C.
Kantner
,
R. C.
O'Handley
, and
V. V.
Kokorin
, “
Large magnetic-field-induced strains in Ni2MnGa single crystals
,”
Appl. Phys. Lett.
69
,
1966
1968
(
1996
).
302.
A.
Sozinov
,
A. A.
Likhachev
,
N.
Lanska
, and
K.
Ullakko
, “
Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase
,”
Appl. Phys. Lett.
80
,
1746
1748
(
2002
).
303.
T.
Krenke
,
E.
Duman
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
,
A.
Planes
,
E.
Suard
, and
B.
Ouladdiaf
, “
Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In
,”
Phys. Rev. B
75
,
104414
(
2007
).
304.
R.
Niemann
,
U. K.
Rößler
,
M. E.
Gruner
,
O.
Heczko
,
L.
Schultz
, and
S.
Fähler
, “
The role of adaptive martensite in magnetic shape memory alloys
,”
Adv. Eng. Mater.
14
,
562
581
(
2012
).
305.
J.
Duncan
,
A.
Harjunmaa
,
R.
Terrell
,
R.
Drautz
,
G.
Henkelman
, and
J.
Rogal
, “
Collective atomic displacements during complex phase boundary migration in solid-solid phase transformations
,”
Phys. Rev. Lett.
116
,
035701
(
2016
).
306.
J.
Rogal
,
E.
Schneider
, and
M. E.
Tuckerman
, “
Neural-network-based path collective variables for enhanced sampling of phase transformations
,”
Phys. Rev. Lett.
123
,
245701
(
2019
).
307.
J.
Rogal
and
M. E.
Tuckerman
, “
Pathways in classification space: Machine learning as a route to predicting kinetics of structural transitions in atomic crystals
,” in
Multiscale Dynamics Simulations: Nano and Nano-bio Systems in Complex Environments
, Theoretical and Computational Chemistry Series, edited by
D. R.
Salahub
and
D.
Wei
(
Royal Society of Chemistry
,
Cambridge
,
2021
), Chap. 11, pp.
312
348
.
308.
A. G.
Khachaturyan
,
S. M.
Shapiro
, and
S.
Semenovskaya
, “
Adaptive phase formation in martensitic transformation
,”
Phys. Rev. B
43
,
10832
10843
(
1991
).
309.
A. G.
Khachaturyan
,
S. M.
Shapiro
, and
S.
Semenovskaya
, “
Adaptive phase in martensitic transformation
,”
Mater. Trans. JIM
33
,
278
281
(
1992
).
310.
S.
Kaufmann
,
U. K.
Rößler
,
O.
Heczko
,
M.
Wuttig
,
J.
Buschbeck
,
L.
Schultz
, and
S.
Fähler
, “
Adaptive modulations of martensites
,”
Phys. Rev. Lett.
104
,
145702
(
2010
).
311.
A. K.
Sinha
, “
Topologically close-packed structures of transition metal alloys
,”
Prog. Mater. Sci.
15
,
81
185
(
1972
).
312.
C.
Rae
and
R.
Reed
, “
The precipitation of topologically close-packed phases in rhenium-containing superalloys
,”
Acta Mater.
49
,
4113
4125
(
2001
).
313.
A.
Ladines
,
T.
Hammerschmidt
, and
R.
Drautz
, “
Structural stability of Fe-based topologically close-packed phases
,”
Intermetallics
59
,
59
67
(
2015
).
314.
D.
Choi
,
B.
Wang
,
S.
Chung
,
X.
Liu
,
A.
Darbal
,
A.
Wise
,
N. T.
Nuhfer
,
K.
Barmak
,
A. P.
Warren
,
K. R.
Coffey
, and
M. F.
Toney
, “
Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films
,”
J. Vac. Sci. Technol., A
29
,
051512
(
2011
).
315.
D.
Choi
,
C. S.
Kim
,
D.
Naveh
,
S.
Chung
,
A. P.
Warren
,
N. T.
Nuhfer
,
M. F.
Toney
,
K. R.
Coffey
, and
K.
Barmak
, “
Electron mean free path of tungsten and the electrical resistivity of epitaxial (110) tungsten films
,”
Phys. Rev. B
86
,
045432
(
2012
).
316.
A. J.
Knowles
,
D.
Dye
,
R. J.
Dodds
,
A.
Watson
,
C. D.
Hardie
, and
S. A.
Humphry-Baker
, “
Tungsten-based bcc-superalloys
,”
Appl. Mater. Today
23
,
101014
(
2021
).
317.
C.-F.
Pai
,
L.
Liu
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
,”
Appl. Phys. Lett.
101
,
122404
(
2012
).
318.
Q.
Hao
,
W.
Chen
, and
G.
Xiao
, “
Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect
,”
Appl. Phys. Lett.
106
,
182403
(
2015
).
319.
M.
Costa
,
A. T.
Costa
,
J.
Hu
,
R. Q.
Wu
, and
R. B.
Muniz
, “
β-tungsten: A promising metal for spintronics
,”
J. Phys.: Condens. Matter
30
,
305802
(
2018
).
320.
K.
Barmak
,
J.
Liu
,
L.
Harlan
,
P.
Xiao
,
J.
Duncan
, and
G.
Henkelman
, “
Transformation of topologically close-packed β-W to body-centered cubic α-W: Comparison of experiments and computations
,”
J. Chem. Phys.
147
,
152709
(
2017
).
321.
K.
Nakajima
,
M.
Apel
, and
I.
Steinbach
, “
The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study
,”
Acta Mater.
54
,
3665
3672
(
2006
).
322.
A.
Chattaraj
,
M.
Balal
,
A. K.
Yadav
,
S. R.
Barman
,
A. K.
Sinha
,
S. N.
Jha
,
S.
Joulie
,
V.
Serin
,
A.
Claverie
,
V.
Kumar
, and
A.
Kanjilal
, “
Unravelling oxygen driven α to β phase transformation in tungsten
,”
Sci. Rep.
10
,
14718
(
2020
).
323.
X.
Sun
,
D.
Wu
,
L.
Zou
,
S. D.
House
,
X.
Chen
,
M.
Li
,
D. N.
Zakharov
,
J. C.
Yang
, and
G.
Zhou
, “
Dislocation-induced stop-and-go kinetics of interfacial transformations
,”
Nature
607
,
708
713
(
2022
).
324.
S. J.
Dillon
,
M.
Tang
,
W. C.
Carter
, and
M. P.
Harmer
, “
Complexion: A new concept for kinetic engineering in materials science
,”
Acta Mater.
55
,
6208
6218
(
2007
).
325.
X.
Zhang
,
T.
Hickel
,
J.
Rogal
,
S.
Fähler
,
R.
Drautz
, and
J.
Neugebauer
, “
Structural transformations among austenite, ferrite and cementite in Fe–C alloys: A unified theory based on ab initio simulations
,”
Acta Mater.
99
,
281
289
(
2015
).
326.
M.
Durand-Charre
, “
The microstructure of steels and cast irons
,” in
Engineering Materials and Processes
(
Springer
,
Berlin, New York
,
2004
).
327.
J.
Zhang
,
C. C.
Tasan
,
M. J.
Lai
,
A. C.
Dippel
, and
D.
Raabe
, “
Complexion-mediated martensitic phase transformation in titanium
,”
Nat. Commun.
8
,
14210
(
2017
).
328.
H.
Wang
,
X.
Zhang
,
D.
Yan
,
C.
Somsen
, and
G.
Eggeler
, “
Interface dominated cooperative nanoprecipitation in interstitial alloys
,”
Nat. Commun.
9
,
4017
(
2018
).
329.
G.
Bussi
and
A.
Laio
, “
Using metadynamics to explore complex free-energy landscapes
,”
Nat. Rev. Phys.
2
,
200
212
(
2020
).
330.
F.
Pietrucci
, “
Novel enhanced sampling strategies for transitions between ordered and disordered structures
,” in
Handbook of Materials Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
Cham
,
2020
), pp.
597
619
.
331.
H.
Sidky
,
W.
Chen
, and
A. L.
Ferguson
, “
Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation
,”
Mol. Phys.
118
,
e1737742
(
2020
).
332.
J.
Wang
,
P. R.
Arantes
,
A.
Bhattarai
,
R. V.
Hsu
,
S.
Pawnikar
,
Y-m. M.
Huang
,
G.
Palermo
, and
Y.
Miao
, “
Gaussian accelerated molecular dynamics: Principles and applications
,”
WIREs Comput. Mol. Sci.
11
,
e1521
(
2021
).
333.
N.
Kondratyuk
,
V.
Nikolskiy
,
D.
Pavlov
, and
V.
Stegailov
, “
GPU-accelerated molecular dynamics: State-of-art software performance and porting from Nvidia CUDA to AMD HIP
,”
Int. J. High Perform. Comput. Appl.
35
,
312
324
(
2021
).
334.
J.
Xu
,
X.-M.
Cao
, and
P.
Hu
, “
Accelerating metadynamics-based free-energy calculations with adaptive machine learning potentials
,”
J. Chem. Theory Comput.
17
,
4465
4476
(
2021
).
335.
Q.
Tong
,
X.
Luo
,
A. A.
Adeleke
,
P.
Gao
,
Y.
Xie
,
H.
Liu
,
Q.
Li
,
Y.
Wang
,
J.
Lv
,
Y.
Yao
, and
Y.
Ma
, “
Machine learning metadynamics simulation of reconstructive phase transition
,”
Phys. Rev. B
103
,
054107
(
2021
).
336.
S.
Biswas
and
B. M.
Wong
, “
Ab initio metadynamics calculations reveal complex interfacial effects in acetic acid deprotonation dynamics
,”
J. Mol. Liq.
330
,
115624
(
2021
).
337.
J.
Yin
,
Z.
Pei
, and
M. C.
Gao
, “
Neural network-based order parameter for phase transitions and its applications in high-entropy alloys
,”
Nat. Comput. Sci.
1
,
686
693
(
2021
).
338.
Z.
Li
,
K.
Meidani
,
P.
Yadav
, and
A.
Barati Farimani
, “
Graph neural networks accelerated molecular dynamics
,”
J. Chem. Phys.
156
,
144103
(
2022
).
339.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
, “
Finding density functionals with machine learning
,”
Phys. Rev. Lett.
108
,
253002
(
2012
).
340.
A.
Ryabov
,
I.
Akhatov
, and
P.
Zhilyaev
, “
Neural network interpolation of exchange-correlation functional
,”
Sci. Rep.
10
,
8000
(
2020
).
341.
M. F.
Kasim
and
S. M.
Vinko
, “
Learning the exchange-correlation functional from nature with fully differentiable density functional theory
,”
Phys. Rev. Lett.
127
,
126403
(
2021
).
342.
R.
Nagai
,
R.
Akashi
, and
O.
Sugino
, “
Machine-learning-based exchange correlation functional with physical asymptotic constraints
,”
Phys. Rev. Res.
4
,
013106
(
2022
).
343.
X.
Zhang
,
B.
Grabowski
,
F.
Körmann
,
A. V.
Ruban
,
Y.
Gong
,
R. C.
Reed
,
T.
Hickel
, and
J.
Neugebauer
, “
Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni
,”
Phys. Rev. B
98
,
224106
(
2018
).
344.
L.
Monacelli
and
F.
Mauri
, “
Time-dependent self-consistent harmonic approximation: Anharmonic nuclear quantum dynamics and time correlation functions
,”
Phys. Rev. B
103
,
104305
(
2021
).
345.
L.
Monacelli
,
R.
Bianco
,
M.
Cherubini
,
M.
Calandra
,
I.
Errea
, and
F.
Mauri
, “
The stochastic self-consistent harmonic approximation: Calculating vibrational properties of materials with full quantum and anharmonic effects
,”
J. Phys.: Condens. Matter
33
,
363001
(
2021
).
346.
R.
Masuki
,
T.
Nomoto
,
R.
Arita
, and
T.
Tadano
, “
Ab-initio structural optimization at finite temperatures based on anharmonic phonon theory: Application to the structural phase transitions of BaTiO3
,” arXiv:2205.08789 (
2022
).
347.
I.
Novikov
,
B.
Grabowski
,
F.
Körmann
, and
A.
Shapeev
, “
Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe
,”
npj Comput. Mater.
8
,
13
(
2022
).
348.
J. F.
Nie
,
Y. M.
Zhu
,
J. Z.
Liu
, and
X. Y.
Fang
, “
Periodic segregation of solute atoms in fully coherent twin boundaries
,”
Sci.
340
,
957
960
(
2013
).
349.
M. L.
Bowers
,
C.
Ophus
,
A.
Gautam
,
F.
Lançon
, and
U.
Dahmen
, “
Step coalescence by collective motion at an incommensurate grain boundary
,”
Phys. Rev. Lett.
116
,
106102
(
2016
).
350.
J.
Heo
,
D.
Dumett Torres
,
P.
Banerjee
, and
P. K.
Jain
, “
In situ electron microscopy mapping of an order-disorder transition in a superionic conductor
,”
Nat. Commun.
10
,
1505
(
2019
).
351.
A. J.
Shahani
,
X.
Xiao
,
E. M.
Lauridsen
, and
P. W.
Voorhees
, “
Characterization of metals in four dimensions
,”
Mater. Res. Lett.
8
,
462
476
(
2020
).
352.
C.
He
,
Z.
Li
,
H.
Chen
,
N.
Wilson
, and
J.-F.
Nie
, “
Unusual solute segregation phenomenon in coherent twin boundaries
,”
Nat. Commun.
12
,
722
(
2021
).
353.
J.
Nie
,
C.
Hu
,
Q.
Yan
, and
J.
Luo
, “
Discovery of electrochemically induced grain boundary transitions
,”
Nat. Commun.
12
,
2374
(
2021
).
354.
X.
Chen
,
Q.
Wang
,
Z.
Cheng
,
M.
Zhu
,
H.
Zhou
,
P.
Jiang
,
L.
Zhou
,
Q.
Xue
,
F.
Yuan
,
J.
Zhu
,
X.
Wu
, and
E.
Ma
, “
Direct observation of chemical short-range order in a medium-entropy alloy
,”
Nature
592
,
712
716
(
2021
).
355.
M.
Liu
and
J.
Weissmüller
, “
Imaging the deformation-induced accumulation of defects in nanoporous gold
,”
Mater. Res. Lett.
9
,
359
365
(
2021
).
356.
H.
Sheng
,
L.
Zhang
,
H.
Zhang
,
J.
Wang
,
J.
Eckert
, and
C.
Gammer
, “
In situ TEM observation of phase transformation in bulk metallic glass composites
,”
Mater. Res. Lett.
9
,
189
194
(
2021
).
357.
X.
Peng
,
F.-C.
Zhu
,
Y.-H.
Jiang
,
J.-J.
Sun
,
L.-P.
Xiao
,
S.
Zhou
,
K. C.
Bustillo
,
L.-H.
Lin
,
J.
Cheng
,
J.-F.
Li
,
H.-G.
Liao
,
S.-G.
Sun
, and
H.
Zheng
, “
Identification of a quasi-liquid phase at solid–liquid interface
,”
Nat. Commun.
13
,
3601
(
2022
).
You do not currently have access to this content.