The topological phenomenon has been extensively studied in condensed matter physics and has attracted much attention in many different fields. Like electrons, phonons can also be studied using critical theorems and topology concepts, giving impetus to the birth of topological phonons. Among the topological phonons, the topological nodal line phonons in crystalline materials have emerged as a new area of rapid development in both experiment and theory. Researchers have been hunting for realistic materials with nodal line phonons for the last four years. To date, however, a timely review of recent advances in topological nodal line phonons, and especially their material realization, is still lacking. Considering the classification of the nodal line states, in this review, we will first review the identification of the materials hosting the nodal line phonons with different degeneracies, different types of dispersion, and different geometric shapes in theory. Moreover, we will review and discuss the reasons for the appearance of the nodal line phonons from the viewpoint of symmetry. Second, we will review the case where the nodal line appears in the projected surface phonon states instead of the bulk phonon states. Third, we will review the experimental material realization of nodal line phonons. Finally, we will present a summary, outlook, and additional notes. We believe that this review will contribute to a more advanced understanding of topological nodal line phonons in solid materials and will offer new perspectives on this rapidly expanding field.

1.
A. A.
Burkov
, “
Topological semimetals
,”
Nat. Mater.
15
,
1145
(
2016
).
2.
B. Q.
Lv
,
T.
Qian
, and
H.
Ding
, “
Experimental perspective on three-dimensional topological semimetals
,”
Rev. Mod. Phys.
93
,
025002
(
2021
).
3.
H.
Gao
,
J. W.
Venderbos
,
Y.
Kim
, and
A. M.
Rappe
, “
Topological semimetals from first principles
,”
Annu. Rev. Mater. Res.
49
,
153
(
2019
).
4.
A.
Bernevig
,
H.
Weng
,
Z.
Fang
, and
X.
Dai
, “
Recent progress in the study of topological semimetals
,”
J. Phys. Soc. Jpn.
87
,
041001
(
2018
).
5.
H.
Weng
,
X.
Dai
, and
Z.
Fang
, “
Topological semimetals predicted from first-principles calculations
,”
J. Phys.: Condens. Matter
28
,
303001
(
2016
).
6.
L. M.
Schoop
,
F.
Pielnhofer
, and
B. V.
Lotsch
, “
Chemical principles of topological semimetals
,”
Chem. Mater.
30
,
3155
(
2018
).
7.
S. A.
Parameswaran
,
T.
Grover
,
D. A.
Abanin
,
D. A.
Pesin
, and
A.
Vishwanath
, “
Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals
,”
Phys. Rev. X
4
,
031035
(
2014
).
8.
C.
Fang
,
M. J.
Gilbert
,
X.
Dai
, and
B. A.
Bernevig
, “
Multi-Weyl topological semimetals stabilized by point group symmetry
,”
Phys. Rev. Lett.
108
,
266802
(
2012
).
9.
W.
Chen
,
H.-Z.
Lu
, and
J.-M.
Hou
, “
Topological semimetals with a double-helix nodal link
,”
Phys. Rev. B
96
,
041102
(
2017
).
10.
A.-Q.
Wang
,
X.-G.
Ye
,
D.-P.
Yu
, and
Z.-M.
Liao
, “
Topological semimetal nanostructures: From properties to topotronics
,”
ACS Nano
14
,
3755
(
2020
).
11.
Y. X.
Zhao
and
A. P.
Schnyder
, “
Nonsymmorphic symmetry-required band crossings in topological semimetals
,”
Phys. Rev. B
94
,
195109
(
2016
).
12.
M.
Meinert
, “
Unconventional superconductivity in YPtBi and related topological semimetals
,”
Phys. Rev. Lett.
116
,
137001
(
2016
).
13.
B.-J.
Yang
,
T. A.
Bojesen
,
T.
Morimoto
, and
A.
Furusaki
, “
Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals
,”
Phys. Rev. B
95
,
075135
(
2017
).
14.
M.
Zeng
,
C.
Fang
,
G.
Chang
,
Y.-A.
Chen
,
T.
Hsieh
,
A.
Bansil
,
H.
Lin
, and
L.
Fu
, “
Topological semimetals and topological insulators in rare earth monopnictides
,” arXiv:1504.03492 (
2015
).
15.
H.
Weng
,
C.
Fang
,
Z.
Fang
, and
X.
Dai
, “
Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride
,”
Phys. Rev. B
93
,
241202
(
2016
).
16.
L.
Lu
,
Z.
Wang
,
D.
Ye
,
L.
Ran
,
L.
Fu
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Experimental observation of Weyl points
,”
Science
349
,
622
(
2015
).
17.
A. A.
Soluyanov
,
D.
Gresch
,
Z.
Wang
,
Q.
Wu
,
M.
Troyer
,
X.
Dai
, and
B. A.
Bernevig
, “
Type-II Weyl semimetals
,”
Nature
527
,
495
(
2015
).
18.
S. M.
Young
and
C. L.
Kane
, “
Dirac semimetals in two dimensions
,”
Phys. Rev. Lett.
115
,
126803
(
2015
).
19.
H.
Lv
,
Z.
Wang
,
Q.
Cheng
,
W.
Zhang
, and
R.
Yu
, “
Type-II Dirac point in RbAg5Se3
,”
Phys. Rev. B
103
,
L241115
(
2021
).
20.
N. P.
Armitage
,
E. J.
Mele
, and
A.
Vishwanath
, “
Weyl and Dirac semimetals in three-dimensional solids
,”
Rev. Mod. Phys.
90
,
015001
(
2018
).
21.
B. J.
Wieder
,
Y.
Kim
,
A. M.
Rappe
, and
C. L.
Kane
, “
Double Dirac semimetals in three dimensions
,”
Phys. Rev. Lett.
116
,
186402
(
2016
).
22.
H.-X.
Wang
,
Z.-K.
Lin
,
B.
Jiang
,
G.-Y.
Guo
, and
J.-H.
Jiang
, “
Higher-order Weyl semimetals
,”
Phys. Rev. Lett.
125
,
146401
(
2020
).
23.
G. B.
Halász
and
L.
Balents
, “
Time-reversal invariant realization of the Weyl semimetal phase
,”
Phys. Rev. B
85
,
035103
(
2012
).
24.
N.
Morali
,
R.
Batabyal
,
P. K.
Nag
,
E.
Liu
,
Q.
Xu
,
Y.
Sun
,
B.
Yan
,
C.
Felser
,
N.
Avraham
, and
H.
Beidenkopf
, “
Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2
,”
Science
365
,
1286
(
2019
).
25.
Y.
Sun
,
S.-C.
Wu
,
M. N.
Ali
,
C.
Felser
, and
B.
Yan
, “
Prediction of Weyl semimetal in orthorhombic MoTe2
,”
Phys. Rev. B
92
,
161107
(
2015
).
26.
Z.-M.
Yu
,
Z.
Zhang
,
G.-B.
Liu
,
W.
Wu
,
X.-P.
Li
,
R.-W.
Zhang
,
S. A.
Yang
, and
Y.
Yao
, “
Encyclopedia of emergent particles in three-dimensional crystals
,”
Sci. Bull.
67
,
375
(
2022
).
27.
X.
Zhang
,
Z.-M.
Yu
,
X.-L.
Sheng
,
H. Y.
Yang
, and
S. A.
Yang
, “
Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides
,”
Phys. Rev. B
95
,
235116
(
2017
).
28.
S. A.
Yang
, “
Dirac and Weyl materials: Fundamental aspects and some spintronics applications
,”
SPIN
06
,
1640003
(
2016
).
29.
Z.
Zhu
,
Y.
Liu
,
Z.-M.
Yu
,
S.-S.
Wang
,
Y. X.
Zhao
,
Y.
Feng
,
X.-L.
Sheng
, and
S. A.
Yang
, “
Quadratic contact point semimetal: Theory and material realization
,”
Phys. Rev. B
98
,
125104
(
2018
).
30.
S.
Li
,
Y.
Liu
,
S.-S.
Wang
,
Z.-M.
Yu
,
S.
Guan
,
X.-L.
Sheng
,
Y. G.
Yao
, and
S. A.
Yang
, “
Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X3SiTe6 (X = Ta, Nb)
,”
Phys. Rev. B
97
,
045131
(
2018
).
31.
W. C.
Yu
,
X.
Zhou
,
F.-C.
Chuang
,
S. A.
Yang
,
H.
Lin
, and
A.
Bansil
, “
Nonsymmorphic cubic Dirac point and crossed nodal rings across the ferroelectric phase transition in LiOsO3
,”
Phys. Rev. Mater.
2
,
051201
(
2018
).
32.
Z.
Zhu
,
Z.-M.
Yu
,
W.
Wu
,
L.
Zhang
,
W.
Zhang
,
F.
Zhang
, and
S. A.
Yang
, “
Composite Dirac semimetals
,”
Phys. Rev. B
100
,
161401(R)
(
2019
).
33.
R.
Chapai
,
Y. T.
Jia
,
W. A.
Shelton
,
R.
Nepal
,
M.
Saghayezhian
,
J. F.
DiTusa
,
E. W.
Plummer
,
C.
Jin
, and
R.
Jin
, “
Fermions and bosons in nonsymmorphic PdSb2 with sixfold degeneracy
,”
Phys. Rev. B
99
,
161110(R)
(
2019
).
34.
S.
Nie
,
B. A.
Bernevig
, and
Z.
Wang
, “
Six fold excitations in electrides
,”
Phys. Rev. Res.
3
,
L012028
(
2021
).
35.
H.
Weng
,
C.
Fang
,
Z.
Fang
, and
X.
Dai
, “
Coexistence of Weyl fermion and massless triply degenerate nodal points
,”
Phys. Rev. B
94
,
165201
(
2016
).
36.
D.-S.
Ma
,
J.
Zhou
,
B.
Fu
,
Z.-M.
Yu
,
C.-C.
Liu
, and
Y.
Yao
, “
Mirror protected multiple nodal line semimetals and material realization
,”
Phys. Rev. B
98
,
201104(R)
(
2018
).
37.
Z.
Zhang
,
Z. M.
Yu
, and
S. A.
Yang
, “
Magnetic higher-order nodal lines
,”
Phys. Rev. B
103
,
115112
(
2021
).
38.
X.
Sheng
,
Z.
Yu
,
R.
Yu
,
H.
Weng
, and
A. S.
Yang
, “
d orbital topological insulator and semimetal in the antifluorite Cu2S family: Contrasting spin Helicities, nodal box, and hybrid surface states
,”
J. Phys. Chem. Lett.
8
,
3506
(
2017
).
39.
Z.-M.
Yu
,
W. K.
Wu
,
X.-L.
Sheng
,
Y. X.
Zhao
, and
S. Y. A.
Yang
, “
Quadratic and cubic nodal lines stabilized by crystalline symmetry
,”
Phys. Rev. B
99
,
121106(R)
(
2019
).
40.
S.-S.
Wang
,
Y.
Liu
,
Z.-M.
Yu
,
X.-L.
Sheng
, and
S. A.
Yang
, “
Hourglass Dirac chain metal in rhenium dioxide
,”
Nat. Commun.
8
,
1844
(
2017
).
41.
C.
Chen
,
Z.-M.
Yu
,
S.
Li
,
Z.
Chen
,
X.-L.
Sheng
, and
S. A.
Yang
, “
Weyl-loop half-metal in Li3(FeO3)2
,”
Phys. Rev. B
99
,
075131
(
2019
).
42.
F.
Zhou
,
C.
Cui
,
J.
Wang
,
M.
Kuang
,
T.
Yang
,
Z.-M.
Yu
,
X.
Wang
,
G.
Zhang
, and
Z.
Cheng
, “
Perovskite-type YRh3B with multiple types of nodal point and nodal line states
,”
Phys. Rev. B
103
,
245126
(
2021
).
43.
S.
Li
,
Z.-M.
Yu
,
Y.
Yao
, and
S. A.
Yang
, “
Type-II topological metals
,”
Front. Phys.
15
,
43201
(
2020
).
44.
R. W.
Zhang
,
X. D.
Zhou
,
Z. Y.
Zhang
,
D. S.
Ma
,
Z. M.
Yu
,
W. X.
Feng
, and
Y. G.
Yao
, “
Weyl monoloop semi-half-metal and tunable anomalous hall effect
,”
Nano Lett.
21
,
8749
(
2021
).
45.
T.
He
,
X.
Zhang
,
Y.
Liu
,
X.
Dai
,
G.
Liu
,
Z.-M.
Yu
, and
Y.
Yao
, “
Ferromagnetic hybrid nodal loop and switchable type-I and type-II Weyl fermions in two dimensions
,”
Phys. Rev. B
102
,
075133
(
2020
).
46.
S.
Li
,
Z.-M.
Yu
,
Y.
Liu
,
S.
Guan
,
S.-S.
Wang
,
X.
Zhang
,
Y.
Yao
, and
S. A.
Yang
, “
Type-II nodal loops: Theory and material realization
,”
Phys. Rev. B
96
,
081106
(
2017
).
47.
Z.
Zhang
,
Z.-M.
Yu
,
B.
Fu
, and
Y.
Yao
, “
Research progress on topological nodal line semimetals
,”
Sci. Sinica Phys., Mech. Astron.
50
,
090002
(
2020
).
48.
C.
Fang
,
H.
Weng
,
X.
Dai
, and
Z.
Fang
, “
Topological nodal line semimetals
,”
Chin. Phys. B
25
,
117106
(
2016
).
49.
C.
Fang
,
Y.
Chen
,
H.-Y.
Kee
, and
L.
Fu
, “
Topological nodal line semimetals with and without spin-orbital coupling
,”
Phys. Rev. B
92
,
081201
(
2015
).
50.
R.
Yu
,
Z.
Fang
,
X.
Dai
, and
H.
Weng
, “
Topological nodal line semimetals predicted from first-principles calculations
,”
Front. Phys.
12
,
127202
(
2017
).
51.
W.
Wu
,
Y.
Liu
,
S.
Li
,
C.
Zhong
,
Z.-M.
Yu
,
X.-L.
Sheng
,
Y. X.
Zhao
, and
S. A.
Yang
, “
Nodal surface semimetals: Theory and material realization
,”
Phys. Rev. B
97
,
115125
(
2018
).
52.
S. Z.
Chen
,
S.
Li
,
Y.
Chen
, and
W.
Duan
, “
Nodal flexible-surface semimetals: Case of carbon nanotube networks
,”
Nano Lett.
20
,
5400
(
2020
).
53.
B.-B.
Fu
,
C.-J.
Yi
,
T.-T.
Zhang
,
M.
Caputo
,
J.-Z.
Ma
,
X.
Gao
,
B.
Lv
,
L.-Y.
Kong
,
Y.-B.
Huang
,
P.
Richard
 et al, “
Dirac nodal surfaces and nodal lines in ZrSiS
,”
Sci. Adv.
5
,
eaau6459
(
2019
).
54.
X. M.
Zhang
,
Z.-M.
Yu
,
Z. M.
Zhu
,
W. K.
Wu
,
S.-S.
Wang
,
X.-L.
Sheng
, and
S. A.
Yang
, “
Nodal loop and nodal surface states in the Ti3Al family of materials
,”
Phys. Rev. B
97
,
235150
(
2018
).
55.
Y.
Qie
,
J.
Liu
,
S.
Wang
,
Q.
Sun
, and
P.
Jena
, “
Tetragonal C24: A topological nodal-surface semimetal with potential as an anode material for sodium ion batteries
,”
J. Mater. Chem. A
7
,
5733
(
2019
).
56.
W.
Meng
,
Y.
Liu
,
X.
Zhang
,
X.
Dai
, and
G.
Liu
, “
A nonsymmorphic-symmetry-protected hourglass Weyl node, hybrid Weyl node, nodal surface, and Dirac nodal line in Pd4X (X = S, Se) compounds
,”
Phys. Chem. Chem. Phys.
22
,
22399
(
2020
).
57.
T.
Yang
,
L.
Jin
,
Y.
Liu
,
X.
Zhang
, and
X.
Wang
, “
Spin-polarized type-II nodal loop and nodal surface states in hexagonal compounds XTiO2 (X = Li, Na, K, Rb)
,”
Phys. Rev. B
103
,
235140
(
2021
).
58.
C.
Zhong
,
Y.
Chen
,
Y.
Xie
,
S. A.
Yang
,
M. L.
Cohen
, and
S.
Zhang
, “
Towards three-dimensional Weyl-surface semimetals in graphene networks
,”
Nanoscale
8
,
7232
(
2016
).
59.
Q.-F.
Liang
,
J.
Zhou
,
R.
Yu
,
Z.
Wang
, and
H.
Weng
, “
Node-surface and node-line fermions from nonsymmorphic lattice symmetries
,”
Phys. Rev. B
93
,
085427
(
2016
).
60.
T.
Bzdušek
and
M.
Sigrist
, “
Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems
,”
Phys. Rev. B
96
,
155105
(
2017
).
61.
O.
Türker
and
S.
Moroz
, “
Weyl nodal surfaces
,”
Phys. Rev. B
97
,
075120
(
2018
).
62.
T.
Zhang
,
Y.
Jiang
,
Z.
Song
,
H.
Huang
,
Y.
He
,
Z.
Fang
,
H.
Weng
, and
C.
Fang
, “
Catalogue of topological electronic materials
,”
Nature
566
,
475
(
2019
).
63.
M. G.
Vergniory
,
L.
Elcoro
,
C.
Felser
,
B. A.
Bernevig
, and
Z.
Wang
, “
A complete catalogue of high-quality topological materials
,”
Nature
566
,
480
(
2019
).
64.
F.
Tang
,
H. C.
Po
,
A.
Vishwanath
, and
X.
Wan
, “
Comprehensive search for topological materials using symmetry indicators
,”
Nature
566
,
486
(
2019
).
65.
H. C.
Po
,
A.
Vishwanath
, and
H.
Watanabe
, “
Symmetry-based indicators of band 343 topology in the 230 space groups
,”
Nat. Commun.
8
,
50
(
2017
).
66.
J.
Li
,
L.
Wang
,
J.
Liu
,
R.
Li
,
Z.
Zhang
, and
X.-Q.
Chen
, “
Topological phonons in graphene
,”
Phys. Rev. B
101
,
081403
(
2020
).
67.
O.
Stenull
,
C. L.
Kane
, and
T. C.
Lubensky
, “
Topological phonons and Weyl lines in three dimensions
,”
Phys. Rev. Lett.
117
,
068001
(
2016
).
68.
R.
Susstrunk
and
S. D.
Huber
, “
Classification of topological phonons in linear mechanical metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E4767
(
2016
).
69.
S.
Singh
,
Q. S.
Wu
,
C.
Yue
,
A. H.
Romero
, and
A. A.
Soluyanov
, “
Topological phonons and thermoelectricity in triple-point metals
,”
Phys. Rev. Mater.
2
,
114204
(
2018
).
70.
Y.
Liu
,
X.
Chen
, and
Y.
Xu
, “
Topological phononics: From fundamental models to real materials
,”
Adv. Funct. Mater.
30
,
1904784
(
2020
).
71.
B.
Peng
,
Y.
Hu
,
S.
Murakami
,
T.
Zhang
, and
B.
Monserrat
, “
Topological phonons in oxide perovskites controlled by light
,”
Sci. Adv.
6
,
eabd1618
(
2020
).
72.
J.-Y.
You
,
X.-L.
Sheng
, and
G.
Su
, “
Topological gimbal phonons in T-carbon
,”
Phys. Rev. B
103
,
165143
(
2021
).
73.
T.
Zhang
,
Z.
Song
,
A.
Alexandradinata
,
H.
Weng
,
C.
Fang
,
L.
Lu
, and
Z.
Fang
, “
Double-Weyl phonons in transition-metal monosilicides
,”
Phys. Rev. Lett.
120
,
016401
(
2018
).
74.
Q.-B.
Liu
,
Z.-Q.
Wang
, and
H.-H.
Fu
, “
Ideal topological nodal-surface phonons in RbTeAu-family materials
,”
Phys. Rev. B
104
,
L041405
(
2021
).
75.
X.
Chen
,
J.
Liu
, and
J.
Li
, “
Topological phononic materials: Computation and data
,”
Innovation
2
,
100134
(
2021
).
76.
Y. J.
Jin
,
Z. J.
Chen
,
B. W.
Xia
,
Y. J.
Zhao
,
R.
Wang
, and
H.
Xu
, “
Ideal intersecting nodal-ring phonons in bcc C8
,”
Phys. Rev. B
98
,
220103(R)
(
2018
).
77.
H.
Miao
,
T. T.
Zhang
,
L.
Wang
,
D.
Meyers
,
A. H.
Said
,
Y. L.
Wang
,
Y. G.
Shi
,
H. M.
Weng
,
Z.
Fang
, and
M.
Dean
, “
Observation of double Weyl phonons in parity-breaking FeSi
,”
Phys. Rev. Lett.
121
,
035302
(
2018
).
78.
Z.
Wang
,
W.
Zhou
,
A. N.
Rudenko
, and
S.
Yuan
, “
Lattice dynamics and topological surface phonon states in cuprous oxide Cu2O
,”
Phys. Rev. B
103
,
195137
(
2021
).
79.
Y.
Liu
,
N.
Zou
,
L.
Zhao
,
X.
Chen
,
Y.
Xu
, and
W.
Duan
, “
Ubiquitous topological states of phonons in solids: Silicon as a model material
,”
Nano Lett.
22
,
2120
(
2022
).
80.
Q. B.
Liu
,
Z.
Wang
, and
H. H.
Fu
, “
Charge-four Weyl phonons
,”
Phys. Rev. B
103
,
L161303
(
2021
).
81.
X.
Wang
,
F.
Zhou
,
T.
Yang
,
M.
Kuang
,
Z. M.
Yu
, and
G.
Zhang
, “
Symmetry-enforced ideal lanternlike phonons in the ternary nitride Li6WN4
,”
Phys. Rev. B
104
,
L041104
(
2021
).
82.
B. W.
Xia
,
R.
Wang
,
Z. J.
Chen
,
Y. J.
Zhao
, and
H.
Xu
, “
Symmetry-protected ideal type-II Weyl phonons in CdTe
,”
Phys. Rev. Lett.
123
,
065501
(
2019
).
83.
R.
Wang
,
B. W.
Xia
,
Z. J.
Chen
,
B. B.
Zheng
,
Y. J.
Zhao
, and
H.
Xu
, “
Symmetry-protected topological triangular Weyl complex
,”
Phys. Rev. Lett.
124
,
105303
(
2020
).
84.
B.
Peng
,
S.
Murakami
,
B.
Monserrat
, and
T.
Zhang
, “
Degenerate topological line surface phonons in quasi-1D double helix crystal SnIP
,”
npj Comput. Mater.
7
,
195
(
2021
).
85.
P. F.
Liu
,
J.
Li
,
X. H.
Tu
,
H.
Li
,
J.
Zhang
,
P.
Zhang
,
Q.
Gao
, and
B. T.
Wang
, “
First-principles prediction of ideal type-II Weyl phonons in wurtzite ZnSe
,”
Phys. Rev. B
103
,
094306
(
2021
).
86.
C.
Xie
,
Y.
Liu
,
Z.
Zhang
,
F.
Zhou
,
T.
Yang
,
M.
Kuang
,
X.
Wang
, and
G.
Zhang
, “
Sixfold degenerate nodal-point phonons: Symmetry analysis and materials realization
,”
Phys. Rev. B
104
,
045148
(
2021
).
87.
F.
Zhou
,
Z.
Zhang
,
H.
Chen
,
M.
Kuang
,
T.
Yang
, and
X.
Wang
, “
Hybrid-type nodal ring phonons and coexistence of higher-order quadratic nodal line phonons in an AgZr alloy
,”
Phys. Rev. B
104
,
174108
(
2021
).
88.
Z. J.
Chen
,
R.
Wang
,
B. W.
Xia
,
B. B.
Zheng
,
Y. J.
Jin
,
Y. J.
Zhao
, and
H.
Xu
, “
Three-dimensional Dirac phonons with inversion symmetry
,”
Phys. Rev. Lett.
126
,
185301
(
2021
).
89.
B.
Zheng
,
F.
Zhan
,
X.
Wu
,
R.
Wang
, and
J.
Fan
, “
Hourglass phonons jointly protected by symmorphic and nonsymmorphic symmetries
,”
Phys. Rev. B
104
,
L060301
(
2021
).
90.
G.
Liu
,
Y.
Jin
,
Z.
Chen
, and
H.
Xu
, “
Symmetry-enforced straight nodal-line phonons
,”
Phys. Rev. B
104
,
024304
(
2021
).
91.
F.
Zhou
,
H.
Chen
,
Z.-M.
Yu
,
Z.
Zhang
, and
X.
Wang
, “
Realistic cesium fluogermanate: An ideal platform to realize the topologically nodal-box and nodal-chain phonons
,”
Phys. Rev. B
104
,
214310
(
2021
).
92.
R.
Wang
,
Z.
Chen
,
Z.
Huang
,
B.
Xia
, and
H.
Xu
, “
Classification and materials realization of topologically robust nodal ring phonons
,”
Phys. Rev. Mater.
5
,
084202
(
2021
).
93.
Q.-B.
Liu
,
H.-H.
Fu
, and
R.
Wu
, “
Topological phononic nodal hexahedron net and nodal links in the high-pressure phase of the semiconductor CuCl
,”
Phys. Rev. B
104
,
045409
(
2021
).
94.
Q.-B.
Liu
,
Y.
Qian
,
H.-H.
Fu
, and
Z.
Wang
, “
Symmetry-enforced Weyl phonons
,”
npj Comput. Mater.
6
,
95
(
2020
).
95.
J.
Li
,
J.
Liu
,
S. A.
Baronett
,
M.
Liu
,
L.
Wang
,
R.
Li
,
Y.
Chen
,
D.
Li
,
Q.
Zhu
, and
X.-Q.
Chen
, “
Computation and data driven discovery of topological phononic materials
,”
Nat. Commun.
12
,
1204
(
2021
).
96.
Z. J.
Chen
,
Z. J.
Xie
,
Y. J.
Jin
,
G.
Liu
, and
H.
Xu
, “
Hybrid nodal-ring phonons with hourglass dispersion in AgAlO2
,”
Phys. Rev. Mater.
6
,
034202
(
2022
).
97.
B.
Zheng
,
B.
Xia
,
R.
Wang
,
Z.
Chen
,
J.
Zhao
,
Y.
Zhao
, and
H.
Xu
, “
Ideal type-III nodal-ring phonons
,”
Phys. Rev. B
101
,
100303
(
2020
).
98.
Q. B.
Liu
,
H. H.
Fu
,
G.
Xu
,
R.
Yu
, and
R.
Wu
, “
Categories of phononic topological Weyl open nodal lines and a potential material candidate: Rb2Sn2O3
,”
J. Phys. Chem. Lett.
10
,
4045
(
2019
).
99.
J.
Wang
,
H.
Yuan
,
M.
Kuang
,
T.
Yang
,
Z.-M.
Yu
,
Z.
Zhang
, and
X.
Wang
, “
Coexistence of zero-, one- and two-dimensional degeneracy in tetragonal SnO2 phonons
,”
Phys. Rev. B
104
,
L041107
(
2021
).
100.
H.
Zhu
,
J.
Yi
,
M.-Y.
Li
,
J.
Xiao
,
L.
Zhang
,
C.-W.
Yang
,
R. A.
Kaindl
,
L.-J.
Li
,
Y.
Wang
, and
X.
Zhang
, “
Observation of chiral phonons
,”
Sci.
359
,
579
(
2018
).
101.
A.
Ptok
,
A.
Kobiałka
,
M.
Sternik
,
J.
Łażewski
,
P. T.
Jochym
,
A. M.
Oleś
,
S.
Stankov
, and
P.
Piekarz
, “
Chiral phonons in the honeycomb sublattice of layered CoSn-like compounds
,”
Phys. Rev. B
104
,
054305
(
2021
).
102.
C. W.
Xie
,
H. K.
Yuan
,
Y.
Liu
,
X. T.
Wang
, and
G.
Zhang
, “
Three-nodal surface phonons in solid-state materials: Theory and material realization
,”
Phys. Rev. B
104
,
134303
(
2021
).
103.
J.
Liu
,
W.
Hou
,
E.
Wang
,
S.
Zhang
,
J.-T.
Sun
, and
S.
Meng
, “
Ideal type-II Weyl phonons in wurtzite CuI
,”
Phys. Rev. B
100
,
081204(R)
(
2019
).
104.
Q.
Xie
,
J. X.
Li
,
S.
Ullah
,
R. H.
Li
,
L.
Wang
,
D. Z.
Li
,
Y. Y.
Li
,
S.
Yunoki
, and
X.-Q.
Chen
, “
Phononic Weyl points and one-way topologically protected nontrivial phononic surface arc states in noncentrosymmetric WC-type materials
,”
Phys. Rev. B
99
,
174306
(
2019
).
105.
J.
Zhu
,
W.
Wu
,
J.
Zhao
,
H.
Chen
,
L.
Zhang
, and
S. A.
Yang
, “
Symmetry-enforced nodal chain phonons
,”
npj Quantum Mater.
7
,
52
(
2022
).
106.
J.
Wang
,
H.
Yuan
,
Y.
Liu
,
F.
Zhou
,
X.
Wang
, and
G.
Zhang
, “
Hourglass Weyl and Dirac nodal line phonons, and drumhead-like and torus phonon surface states in orthorhombic-type KCuS
,”
Phys. Chem. Chem. Phys.
24
,
2752
(
2022
).
107.
J. X.
Li
,
Q.
Xie
,
J. X.
Liu
,
R. H.
Li
,
M.
Liu
,
L.
Wang
,
D. Z.
Li
,
Y. Y.
Li
, and
X.-Q.
Chen
, “
Phononic Weyl nodal straight lines in MgB2
,”
Phys. Rev. B
101
,
024301
(
2020
).
108.
T. T.
Zhang
,
H.
Miao
,
Q.
Wang
,
J. Q.
Lin
,
Y.
Cao
,
G.
Fabbris
,
A. H.
Said
,
X.
Liu
,
H. C.
Lei
,
Z.
Fang
,
H. M.
Weng
, and
M. P. M.
Dean
, “
Phononic helical nodal lines with PT protection in MoB2
,”
Phys. Rev. Lett.
123
,
245302
(
2019
).
109.
J.
Wang
,
H.
Yuan
,
Z.-M.
Yu
,
Z.
Zhang
, and
X.
Wang
, “
Coexistence of symmetry-enforced phononic Dirac nodal-line net and three-nodal surfaces phonons in solid-state materials: Theory and materials realization
,”
Phys. Rev. Mater.
5
,
124203
(
2021
).
110.
S.
Park
,
Y.
Hwang
,
H. C.
Choi
, and
B. J.
Yang
, “
Topological acoustic triple point
,”
Nat. Commun.
12
,
6781
(
2021
).
111.
N.
Li
,
J.
Ren
,
L.
Wang
,
G.
Zhang
,
P.
Hänggi
, and
B.
Li
, “
Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond
,”
Rev. Mod. Phys.
84
,
1045
(
2012
).
112.
X.
Wan
,
A. M.
Turner
,
A.
Vishwanath
, and
S. Y.
Savrasov
, “
Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates
,”
Phys. Rev. B
83
,
205101
(
2011
).
113.
T.
Bzdušek
,
Q. S.
Wu
,
A.
Rüegg
,
M.
Sigrist
, and
A. A.
Soluyanov
, “
Nodal-chain metals
,”
Nature
538
,
75
(
2016
).
114.
C.
Bradley
and
A.
Cracknell
,
The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups
(
Oxford University Press
,
2010
).
115.
G.-B.
Liu
,
Z.
Zhang
,
Z.-M.
Yu
,
S. A.
Yang
, and
Y.
Yao
, “
Systematic investigation of emergent particles in type-III magnetic space groups
,”
Phys. Rev. B
105
,
085117
(
2022
).
116.
Z.
Zhang
,
G.-B.
Liu
,
Z.-M.
Yu
,
S. A.
Yang
, and
Y.
Yao
, “
Encyclopedia of emergent particles in type-IV magnetic space groups
,”
Phys. Rev. B
105
,
104426
(
2022
).
117.
F.
Tang
and
X.
Wan
, “
Complete classification of band nodal structures and massless excitations
,”
Phys. Rev. B
105
,
155156
(
2022
).
118.
S. A.
Yang
,
H.
Pan
, and
F.
Zhang
, “
Dirac and Weyl superconductors in three dimensions
,”
Phys. Rev. Lett.
113
,
046401
(
2014
).
119.
H.
Weng
,
Y.
Liang
,
Q.
Xu
,
R.
Yu
,
Z.
Fang
,
X.
Dai
, and
Y.
Kawazoe
, “
Topological node-line semimetal in three-dimensional graphene networks
,”
Phys. Rev. B
92
,
045108
(
2015
).
120.
R.
Li
,
H.
Ma
,
X.
Cheng
,
S.
Wang
,
D.
Li
,
Z.
Zhang
,
Y.
Li
, and
X.-Q.
Chen
, “
Dirac node lines in pure alkali earth metals
,”
Phys. Rev. Lett.
117
,
096401
(
2016
).
121.
F.
Zhou
,
Y.
Liu
,
M.
Kuang
,
P.
Wang
,
J.
Wang
,
T.
Yang
,
X.
Wang
,
Z.
Cheng
, and
G.
Zhang
, “
Time-reversal-breaking Weyl nodal lines in two-dimensional A3C2 (A = Ti, Zr, and Hf) intrinsically ferromagnetic materials with high Curie temperature
,”
Nanoscale
13
,
8235
(
2021
).
122.
X.-P.
Li
,
B.
Fu
,
D.-S.
Ma
,
C.
Cui
,
Z.-M.
Yu
, and
Y.
Yao
, “
Double Dirac nodal line semimetal with a torus surface state
,”
Phys. Rev. B
103
,
L161109
(
2021
).
123.
K.-H.
Jin
,
H.
Huang
,
J.-W.
Mei
,
Z.
Liu
,
L.-K.
Lim
, and
F.
Liu
, “
Topological superconducting phase in high-Tc superconductor MgB2 with Dirac-nodal-line fermions
,”
npj Comput. Mater.
5
,
57
(
2019
).
124.
Z.-M.
Yu
,
W.
Wu
,
Y. X.
Zhao
, and
S. A.
Yang
, “
Circumventing the no-go theorem: A single Weyl point without surface Fermi arcs
,”
Phys. Rev. B
100
,
041118(R)
(
2019
).
125.
J. R.
Munkres
,
Topology
(
Pearson Education, Inc.
(Original edition), PHI Learning Private Limited (Indian edition),
2000
).
126.
Q.-B.
Liu
,
Z.-Q.
Wang
, and
H.-H.
Fu
, “
Topological phonons in allotropes of carbon
,”
Mater. Today Phys.
24
,
100694
(
2022
).
127.
J. Y.
Jo
and
B. G.
Kim
, “
Carbon allotropes with triple bond predicted by first-principle calculation: Triple bond modified diamond and T-carbon
,”
Phys. Rev. B
86
,
075151
(
2012
).
128.
M. J.
Deka
and
D.
Chowdhury
, “
Chiral carbon dots and their effect on the optical properties of photosensitizers
,”
RSC Adv.
7
,
53057
(
2017
).
129.
G. D.
Liu
,
L.
Jin
,
X. F.
Dai
,
G. F.
Chen
, and
X. M.
Zhang
, “
Topological phase with a critical-type nodal line state in intermetallic CaPd
,”
Phys. Rev. B
98
,
075157
(
2018
).
130.
L.
Jin
,
X.
Zhang
,
X.
Dai
,
H.
Liu
,
G.
Chen
, and
G.
Liu
, “
Centrosymmetric Li2NaN: A superior topological electronic material with critical-type triply degenerate nodal points
,”
J. Mater. Chem. C
7
,
1316
(
2019
).
131.
L.
Jin
,
X. M.
Zhang
,
X. F.
Dai
,
L. Y.
Wang
,
H. Y.
Liu
, and
G. D.
Liu
, “
Screening topological materials with a CsCl-type structure in crystallographic databases
,”
IUCrJ
6
,
2052
(
2019
).
132.
G. E.
Volovik
, “
Exotic Lifshitz transitions in topological materials
,”
Phys. Usp.
61
,
89
(
2018
).
133.
G. E.
Volovik
and
K.
Zhang
, “
Lifshitz transitions, type-II Dirac and Weyl fermions, event horizon and all that
,”
J. Low Temp. Phys.
189
,
276
(
2017
).
134.
H.
Huang
,
K.-H.
Jin
, and
F.
Liu
, “
Black-hole horizon in the Dirac semimetal Zn2In2S5
,”
Phys. Rev. B
98
,
121110(R)
(
2018
).
135.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
(
2015
).
136.
X.-P.
Li
,
K.
Deng
,
B.
Fu
,
Y.
Li
,
D.
Ma
,
J.
Han
,
J.
Zhou
,
S.
Zhou
, and
Y.
Yao
, “
Type-III Weyl semimetals: (TaSe4)2I
,”
Phys. Rev. B
103
,
L081402
(
2021
).
137.
B. B.
Zheng
,
B. W.
Xia
,
R.
Wang
,
J. Z.
Zhao
,
Z. X.
Chen
,
Y. J.
Zhao
, and
H.
Xu
, “
Tunable ferromagnetic Weyl fermions from a hybrid nodal ring
,”
npj Comput. Mater.
5
,
74
(
2019
).
138.
X.
Wang
,
Z. X.
Cheng
,
G.
Zhang
,
M.
Kuang
,
X.-L.
Wang
, and
H.
Chen
, “
Strain tuning of closed topological nodal lines and opposite pockets in quasi-two-dimensional α-phase FeSi2
,”
Phys. Chem. Chem. Phys.
22
,
13650
(
2020
).
139.
K.
Yvon
,
A.
Bezinge
,
P.
Tissot
, and
P.
Fisher
, “
Structure and magnetic properties of tetragonal silver(I,III) oxide, AgO
,”
J. Solid State Chem.
65
,
225
(
1986
).
140.
K.
Xu
,
H.
Liu
,
Y.-C.
Shi
,
J.-Y.
You
,
X.-Y.
Ma
,
H.-J.
Cui
,
Q.-B.
Yan
,
G.-C.
Chen
, and
G.
Su
, “
Preparation of T-carbon by plasma enhanced chemical vapor deposition
,”
Carbon
157
,
270
(
2020
).
141.
J.
Zhang
,
R.
Wang
,
X.
Zhu
,
A.
Pan
,
C.
Han
,
X.
Li
,
D.
Zhao
,
C.
Ma
,
W.
Wang
,
H.
Su
 et al, “
Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol
,”
Nat. Commun.
8
,
683
(
2017
).
142.
R.
Yu
,
Q.
Wu
,
Z.
Fang
, and
H.
Weng
, “
From nodal chain semimetal to Weyl semimetal in HfC
,”
Phys. Rev. Lett.
119
,
036401
(
2017
).
143.
G.
Chang
,
S.-Y.
Xu
,
X.
Zhou
,
S.-M.
Huang
,
B.
Singh
,
B.
Wang
,
I.
Belopolski
,
J.
Yin
,
S.
Zhang
,
A.
Bansil
 et al, “
Topological Hopf and chain link semimetal states and their application to Co2MnGa
,”
Phys. Rev. Lett.
119
,
156401
(
2017
).
144.
Q.
Yan
,
R.
Liu
,
Z.
Yan
,
B.
Liu
,
H.
Chen
,
Z.
Wang
, and
L.
Lu
, “
Experimental discovery of nodal chains
,”
Nat. Phys.
14
,
461
(
2018
).
145.
Y. S.
Chen
,
F. F.
Huang
,
P.
Zhou
,
Z. S.
Ma
, and
L. Z.
Sun
, “
Ideal topological phononic nodal chain in K2O materials class
,”
New J. Phys.
23
,
103043
(
2021
).
146.
J.-T.
Wang
,
S. M.
Nie
,
H. M.
Weng
,
Y.
Kawazoe
, and
C. F.
Chen
, “
Topological nodal-net semimetal in a graphene network structure
,”
Phys. Rev. Lett.
120
,
026402
(
2018
).
147.
X.
Feng
,
C.
Yue
,
Z.
Song
,
Q.
Wu
, and
B.
Wen
, “
Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2
,”
Phys. Rev. Mater.
2
,
014202
(
2018
).
148.
Z.
Yan
,
R.
Bi
,
H.
Shen
,
L.
Lu
,
S.-C.
Zhang
, and
Z.
Wang
, “
Nodal-link semimetals
,”
Phys. Rev. B
96
,
041103(R)
(
2017
).
149.
D.
Li
,
F.
Tian
,
D.
Duan
,
Z.
Zhao
,
Y.
Liu
,
B.
Chu
,
X.
Sha
,
L.
Wang
,
B.
Liu
, and
T.
Cui
, “
Modulated T carbon-like carbon allotropes: An ab initio study
,”
RSC Adv.
4
,
17364
(
2014
).
150.
J. T.
Wang
,
C. F.
Chen
,
H.
Mizuseki
, and
Y.
Kawazoe
, “
New carbon allotropes in sp + sp3 bonding networks consisting of C8 cubes
,”
Phys. Chem. Chem. Phys.
20
,
7962
(
2018
).
151.
L.
Yang
,
H. Y.
He
, and
B. C.
Pan
, “
Theoretical prediction of new carbon allotropes
,”
J. Chem. Phys.
138
,
024502
(
2013
).
152.
Z.-Z.
Li
,
J.-T.
Wang
,
H.
Mizuseki
, and
C.
Chen
, “
Computational discovery of a new rhombohedral diamond phase
,”
Phys. Rev. B
98
,
094107
(
2018
).
153.
H.
Li
,
C.
Fang
, and
K.
Sun
, “
Diagnosis of topological nodal lines with nontrivial monopole charge in the presence of rotation symmetries
,”
Phys. Rev. B
100
,
195308
(
2019
).
154.
H.
Onken
,
K.
Vierheilig
, and
H.
Hahn
, “
Über silicid-und germanidchalkogenide des zirkons und hafniums
,”
Z. Anorg. Allg. Chem.
333
,
267
(
1964
).
155.
T.
Zhang
,
L.
Lu
,
S.
Murakami
,
Z.
Fang
,
H.
Weng
, and
C.
Fang
, “
Diagnosis scheme for topological degeneracies crossing high-symmetry lines
,”
Phys. Rev. Res.
2
,
022066
(
2020
).
156.
M.
Wang
,
Y.
Wang
,
Z.
Yang
,
J.
Fan
,
B.
Zheng
,
R.
Wang
, and
X.
Wu
, “
Symmetry-enforced nodal cage phonons in Th2BC2
,”
Phys. Rev. B
105
,
174309
(
2022
).
157.
L. E.
Toth
,
F.
Benesovsky
,
H.
Nowotny
, and
E.
Rudy
, “
Der Dreistoff: Thorium-Bor-Kohlenstoff
,”
Monatsh. Chem.
92
,
956
(
1961
).
158.
G.
Ding
,
T.
Sun
, and
X.
Wang
, “
Ideal nodal-net, nodal-chain, and nodal-cage phonons in some realistic materials
,”
Phys. Chem. Chem. Phys.
24
,
11175
(
2022
).
159.
E. M. W.
Janssen
and
G. A.
Wiegers
,
J. Less-Common Met.
57
,
P47
(
1978
).
160.
J. R.
Dahn
,
B. M.
Way
,
E.
Fuller
, and
J. S.
Tse
, “
Structure of siloxene and layered polysilane (Si6H6)
,”
Phys. Rev. B
48
,
17872
(
1993
).
161.
C.
Razzetti
,
P.
Lottici
, and
G.
Antonioli
, “
Structure and lattice dynamics of nonmagnetic defective AIIBIII2XIV4 compounds and alloys
,”
Prog. Cryst. Growth. Charact.
15
,
43
(
1987
).
162.
X. L.
Sheng
,
Q. B.
Yan
,
F.
Ye
,
Q. R.
Zheng
, and
G.
Su
, “
T-carbon: A novel carbon allotrope
,”
Phys. Rev. Lett.
106
,
155703
(
2011
).
163.
L.
Itzhaki
,
E.
Altus
,
H.
Basch
, and
S.
Hoz
, “
Harder than diamond: Determining the cross-sectional area and young's modulus of molecular rods
,”
Angew. Chem. Int. Ed.
44
,
7432
(
2005
).
164.
D.
Pfister
,
K.
Schäfer
,
C.
Ott
,
B.
Gerke
,
R.
Pöttgen
,
O.
Janka
,
M.
Baumgartner
,
A.
Efimova
,
A.
Hohmann
,
P.
Schmidt
 et al, “
Inorganic double helices in semiconducting SnIP
,”
Adv. Mater.
28
,
9783
(
2016
).
165.
C.
Fang
,
L.
Lu
,
J.
Liu
, and
L.
Fu
, “
Topological semimetals with helicoid surface states
,”
Nat. Phys.
12
,
936
(
2016
).
166.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
, “
Topological insulators in three dimensions
,”
Phys. Rev. Lett.
98
,
106803
(
2007
).
167.
Z.
Wang
,
A.
Alexandradinata
,
R. J.
Cava
, and
B. A.
Bernevig
, “
Hourglass fermions
,”
Nature
532
,
189
(
2016
).
168.
A.
Alexandradinata
,
Z.
Wang
, and
B. A.
Bernevig
, “
Topological insulators from group cohomology
,”
Phys. Rev. X
6
,
021008
(
2016
).
169.
X.
Gonze
and
C.
Lee
, “
Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory
,”
Phys. Rev. B
55
,
10355
(
1997
).
170.
S.
Baroni
,
P.
Giannozzi
, and
A.
Testa
, “
Green's-function approach to linear response in solids
,”
Phys. Rev. Lett.
58
,
1861
(
1987
).
171.
J.
Zhu
,
W.
Wu
,
J.
Zhao
,
C.
Chen
,
Q.
Wang
,
X.-L.
Sheng
,
L.
Zhang
,
Y. X.
Zhao
, and
S. A.
Yang
, “
Phononic real Chern insulator with protected corner modes in graphynes
,”
Phys. Rev. B
105
,
085123
(
2022
).
172.
G.
Palumbo
, “
Non-Abelian tensor Berry connections in multiband topological systems
,”
Phys. Rev. Lett.
126
,
246801
(
2021
).
173.
K.
Wang
,
J.-X.
Dai
,
L. B.
Shao
,
S. A.
Yang
, and
Y. X.
Zhao
, “
Boundary criticality of PT-invariant topology and second-order nodal-line semimetals
,”
Phys. Rev. Lett.
125
,
126403
(
2020
).
174.
S.
Chen
,
A.
Bouhon
,
R.-J.
Slager
, and
B.
Monserrat
, “
Non-Abelian braiding of Weyl nodes via symmetry-constrained phase transitions
,”
Phys. Rev. B
105
,
L081117
(
2022
).
175.
B.
Peng
,
A.
Bouhon
,
B.
Monserrat
, and
R.-J.
Slager
, “
Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates
,”
Nat. Commun.
13
,
423
(
2022
).
You do not currently have access to this content.