Lasers that exhibit monochromaticity, directionality, coherence, and focusability have been used in health care and defense industries for over five decades. Recently, the application of lasers in medical and biomedical devices has increased significantly. Considering biomedical devices and materials are attached to the skin or implanted into the body, the immune response, inflammation control, cell adhesion, migration, and biocompatibility of the device must be investigated. Therefore, researchers are actively studying laser processing technology to control these problems. In this study, we present the different types of selective laser–material interaction techniques used in biomedical devices and materials and their characteristics. Additionally, we demonstrate how to determine the type and related processes associated with biomedical devices based on the desired treatment by depicting examples, principles, and process conditions applied to the device.

1.
D.
McCumber
, “
Einstein relations connecting broadband emission and absorption spectra
,”
Phys. Rev.
136
,
A954
(
1964
).
2.
R. A.
Hutchin
, “
A new physical model for the vacuum field based on Einstein's stimulated emission theory
,”
Opt. Photonics J.
5
,
109
(
2015
).
3.
F. O.
Olsen
,
K. S.
Hansen
, and
J. S.
Nielsen
, “
Multibeam fiber laser cutting
,”
J. Laser Appl.
21
,
133
138
(
2009
).
4.
T.-C.
Lin
 et al., “
Aluminum with dispersed nanoparticles by laser additive manufacturing
,”
Nat. Commun.
10
,
4124
(
2019
).
5.
A. V.
Gusarov
 et al., “
On productivity of laser additive manufacturing
,”
J. Mater. Process. Technol.
261
,
213
232
(
2018
).
6.
C. P.
Paul
,
P.
Bhargava
,
A.
Kumar
,
A. K.
Pathak
, and
L. M.
Kukreja
, in
Lasers in Manufacturing Laser Rapid Manufacturing: Technology, Applications, Modeling and Future Prospects
, edited by
J.
Paulo Davim
(
John Wiley and Sons
,
2013
), pp.
1
67
.
7.
M.
Malinauskas
 et al., “
Ultrafast laser processing of materials: From science to industry
,”
Light Sci. Appl.
5
,
e16133
(
2016
).
8.
A.
Bychkov
,
V.
Simonova
,
V.
Zarubin
,
E.
Cherepetskaya
, and
A.
Karabutov
, “
The progress in photoacoustic and laser ultrasonic tomographic imaging for biomedicine and industry: A review
,”
Appl. Sci.
8
,
1931
(
2018
).
9.
G.
Yuan
,
Z.
Chen
, and
D.
Luzzi
, “
Application of laser technology in fashion industry
,” in
Contemporary Case Studies on Fashion Production, Marketing and Operations
, edited by
C.-H.
Chiu
,
, P.-S.
Chow
,
A. C. Y.
Yip
, and
A. K. Y.
Tang
(
Springer
,
2018
), pp.
43
56
.
10.
E.
Khalkhal
 et al., “
Evaluation of laser effects on the human body after laser therapy
,”
J. Lasers Med. Sci.
11
,
91
(
2020
).
11.
I.
La Fé-Perdomo
,
J. A.
Ramos-Grez
,
G.
Beruvides
, and
R. A.
Mujica
, “
Selective laser melting: Lessons from medical devices industry and other applications
,”
Rapid Prototyping J.
27
,
1801
1830
(
2021
).
12.
I.
Hacısalihoğlu
,
F.
Yıldiz
, and
A.
Çelik
, “
The effects of build orientation and hatch spacing on mechanical properties of medical Ti–6Al–4V alloy manufactured by selective laser melting
,”
Mater. Sci. Eng. A
802
,
140649
(
2021
).
13.
S. A.
Ahmed
,
M.
Mohsin
, and
S. M. Z.
Ali
, “
Survey and technological analysis of laser and its defense applications
,”
Def. Technol.
17
,
583
592
(
2021
).
14.
D. H.
Titterton
, “
Laser devices for military applications
,” in
Military Laser Technology and Systems
(
Artech House
,
2015
), pp.
135
164
.
15.
A.
Sesana
, “
Black hole science with the laser interferometer space antenna
,”
Front. Astron. Space Sci.
8
,
601646
(
2021
).
16.
M. A.
Bandres
 et al., “
Topological insulator laser: Experiments
,”
Science
359
,
eaar4005
(
2018
).
17.
Y.
Chen
 et al., “
A bibliometric analysis for the research on laser processing based on web of Science
,”
J. Laser Appl.
32
,
022001
(
2020
).
18.
R.
Henderson
and
K.
Schulmeister
, in
Laser Safety
(
CRC Press
,
2003
), pp.
1
20
.
19.
A.
Ashkin
, “
The pressure of laser light
,”
Sci. Am.
226
,
62
71
(
1972
).
20.
S.
Nafisah
 et al., “
Laser technology applications in critical sectors: Military and medical
,”
J. Electron. Voltage Appl.
2
,
38
48
(
2021
).
21.
J.-J.
Greffet
 et al., “
Coherent emission of light by thermal sources
,”
Nature
416
,
61
64
(
2002
).
22.
Q.
Han
and
Y.
Jiao
, “
Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting
,”
Int. J. Adv. Manuf. Syst.
102
,
3315
3324
(
2019
).
23.
H.
Yu
,
F.
Li
,
Z.
Wang
, and
X.
Zeng
, “
Fatigue performances of selective laser melted Ti-6Al-4V alloy: Influence of surface finishing, hot isostatic pressing and heat treatments
,”
Int. J. Fatigue
120
,
175
183
(
2019
).
24.
A.
Foroozmehr
,
M.
Badrossamay
,
E.
Foroozmehr
, and
S.
Golabi
, “
Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed
,”
Mater. Des.
89
,
255
263
(
2016
).
25.
J.
Kim
,
S.
Ji
,
Y.-S.
Yun
, and
J.-S.
Yeo
, “
A review: Melt pool analysis for selective laser melting with continuous wave and pulse width modulated lasers
,”
Appl. Sci. Convergence Technol.
27
,
113
119
(
2018
).
26.
P.
Kumar
and
A. N.
Sinha
, “
Effect of pulse width in pulsed Nd:YAG dissimilar laser welding of austenitic stainless steel (304 L) and carbon steel (st37)
,”
Lasers Manuf. Mater. Process.
5
,
317
334
(
2018
).
27.
F.
Fetzer
,
C.
Hagenlocher
, and
R.
Weber
, “
High power, high speed, high quality: Advantages of laser beam welding of aluminum sheets at 16 kW of laser power and feed rates up to 50 m/min
,”
Laser Tech. J.
15
,
28
31
(
2018
).
28.
F.
Yildiz
and
A. T.
Özdemir
, “
Prediction of laser-induced thermal damage with artificial neural networks
,”
Laser Phys.
29
,
075205
(
2019
).
29.
Z. M.
Beiranvand
 et al., “
The relation between magnesium evaporation and laser absorption and weld penetration in pulsed laser welding of aluminum alloys: Experimental and numerical investigations
,”
Opt. Laser Technol.
128
,
106170
(
2020
).
30.
C.
Cai
,
S.
He
,
H.
Chen
, and
W.
Zhang
, “
The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy
,”
Opt. Laser Technol.
113
,
37
45
(
2019
).
31.
J.
Zhang
,
B.
Song
,
Q.
Wei
,
D.
Bourell
, and
Y.
Shi
, “
A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends
,”
J. Mater. Sci. Technol.
35
,
270
284
(
2019
).
32.
Y.
Li
 et al., “
Microstructures and mechanical properties evolution of IN939 alloy during electron beam selective melting process
,”
J. Alloys Compd.
883
,
160934
(
2021
).
33.
T.
Gilboa
,
E.
Zvuloni
,
A.
Zrehen
,
A. H.
Squires
, and
A.
Meller
, “
Automated, ultra‐fast laser‐drilling of nanometer scale pores and nanopore arrays in aqueous solutions
,”
Adv. Funct. Mater.
30
,
1900642
(
2020
).
34.
Y.
Du
,
T.
Wu
,
H.
Xie
, and
J.
Qu
, “
One-step laser etching bionic hierarchical structure on silicone rubber surface with thermic and acid/alkali resistance and tunable wettability
,”
Soft Matter
18
,
3412
3421
(
2022
).
35.
K.
Munir
,
A.
Biesiekierski
,
C.
Wen
, and
Y.
Li
, “
Manufacturing selective laser melting in biomedical manufacturing
,” in
Metallic Biomaterials Processing and Medical Device
, edited by
C.
Wen
(
Elsevier
,
2020
), pp.
235
269
.
36.
S. H.
Riza
,
S. H.
Masood
,
R. A. R.
Rashid
, and
S.
Chandra
, “
Selective laser sintering in biomedical manufacturing
,” in
Metallic Biomaterials Processing and Medical Device Manufacturing
(
Elsevier
,
2020
), pp.
193
233
.
37.
I.
Shivakoti
,
G.
Kibria
,
R.
Cep
,
B. B.
Pradhan
, and
A.
Sharma
, “
Laser surface texturing for biomedical applications: A review
,”
Coatings
11
,
124
(
2021
).
38.
Y.
Hu
 et al., “
All‐glass 3D optofluidic microchip with built‐in tunable microlens fabricated by femtosecond laser‐assisted etching
,”
Adv. Opt. Mater.
6
,
1701299
(
2018
).
39.
M. W.
Xiao
 et al., “
Rapid quantification of aloin A and B in aloe plants and aloe‐containing beverages, and pharmaceutical preparations by microchip capillary electrophoresis with laser induced fluorescence detection
,”
J. Sep. Sci.
41
,
3772
3781
(
2018
).
40.
E. D.
Sitsanidis
 et al., “
Tuning protein adsorption on graphene surfaces via laser-induced oxidation
,”
Nanoscale Adv.
3
,
2065
2074
(
2021
).
41.
A.
Oyane
 et al., “
Laser-assisted wet coating of calcium phosphate for surface-functionalization of PEEK
,”
PLoS One
13
,
e0206524
(
2018
).
42.
A. J.
Nathanael
 et al., “
Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process
,”
Heliyon
4
,
e00734
(
2018
).
43.
A. J.
Nathanael
 et al., “
Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization
,”
Acta Biomater.
79
,
148
157
(
2018
).
44.
C.
Zwahr
 et al., “
Ultrashort pulsed laser surface patterning of titanium to improve osseointegration of dental implants
,”
Adv. Eng. Mater.
21
,
1900639
(
2019
).
45.
Y.
Wang
,
M.
Zhang
,
K.
Li
, and
J.
Hu
, “
Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy
,”
Opt. Laser Technol.
139
,
106987
(
2021
).
46.
S.
Pacharra
 et al., “
Surface patterning of a novel PEG‐functionalized poly‐l‐lactide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents
,”
J. Biomed. Mater. Res. Part B
107
,
624
634
(
2019
).
47.
O.
Kérourédan
 et al., “
In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration
,”
Biofabrication
11
,
045002
(
2019
).
48.
M.-L.
Schröder
,
N.
Angrisani
,
E.
Fadeeva
,
J.
Hegermann
, and
J.
Reifenrath
, “
Laser-structured spike surface shows great bone integrative properties despite infection in vivo
,”
Mater. Sci. Eng. C
109
,
110573
(
2020
).
49.
A.
Riveiro
,
A. L.
Maçon
,
J.
del Val
,
R.
Comesaña
, and
J.
Pou
, “
Laser surface texturing of polymers for biomedical applications
,”
Front. Phys.
6
,
16
(
2018
).
50.
S.
Cai
 et al., “
Recent advance in surface modification for regulating cell adhesion and behaviors
,”
Nanotechnol. Rev.
9
,
971
989
(
2020
).
51.
R.
Ortiz
 et al., “
Laser surface microstructuring of a bio-resorbable polymer to anchor stem cells, control adipocyte morphology, and promote osteogenesis
,”
Polymers
10
,
1337
(
2018
).
52.
L.
Pieuchot
 et al., “
Curvotaxis directs cell migration through cell-scale curvature landscapes
,”
Nat. Commun.
9
,
3995
(
2018
).
53.
D.
Cheng
 et al., “
Studies of 3D directed cell migration enabled by direct laser writing of curved wave topography
,”
Biofabrication
11
,
021001
(
2019
).
54.
A.
Klos
 et al., “
Ultrafast laser processing of nanostructured patterns for the control of cell adhesion and migration on titanium alloy
,”
Nanomaterials
10
,
864
(
2020
).
55.
M.
Ghorbani
,
H.
Chen
,
L. G.
Villanueva
,
D.
Grishenkov
, and
A.
Koşar
, “
Intensifying cavitating flows in microfluidic devices with poly (vinyl alcohol) (PVA) microbubbles
,”
Phys. Fluids
30
,
102001
(
2018
).
56.
M.
Yang
,
Z.
Huang
,
J.
Chang
, and
H.
You
, “
A novel solution-auto-introduction electrophoresis microchip based on capillary force
,”
Anal. Sci.
34
,
1285
1290
(
2018
).
57.
J.
Sengupta
and
C. M.
Hussain
, “
Prospective pathways of green graphene-based lab-on-chip devices: The pursuit toward sustainability
,”
Microchim. Acta
189
,
177
(
2022
).
58.
E.
Ekrami
,
M.
Khodabandeh Shahraky
,
M.
Mahmoudifard
,
M. S.
Mirtaleb
, and
P.
Shariati
, “
Biomedical applications of electrospun nanofibers in industrial world: A review
,”
Int. J. Polym. Mater. Polym. Biomater.
(published online,
2022
).
59.
W.
Li
 et al., “
PLGA nanofiber/PDMS microporous composite membrane-sandwiched microchip for drug testing
,”
Micromachines
11
,
1054
(
2020
).
60.
O. A.
Sindeeva
 et al., “
Effect of a controlled release of epinephrine hydrochloride from PLGA microchamber array: In vivo studies
,”
ACS Appl. Mater. Interfaces
10
,
37855
37864
(
2018
).
61.
I.
Miranda
 et al., “
Properties and applications of PDMS for biomedical engineering: A review
,”
J. Funct. Biomater.
13
(
1
),
2
(
2021
).
62.
K.
Xu
 et al., “
Isolation of a low number of sperm cells from female DNA in a glass-PDMS-glass microchip via bead-assisted acoustic differential extraction
,”
Anal. Chem.
91
,
2186
2191
(
2019
).
63.
D.
Yu
,
H.
Wensheng
,
G.
Zhongning
,
H.
Zhigang
, and
C.
Ying
, “
Laser preparing tunable wrinkles on the surface of PDMS with assistance of pre-strain stress
,”
Proc. CIRP
68
,
168
171
(
2018
).
64.
A.
Muck
and
A.
Svatoš
, “
Chemical modification of polymeric microchip devices
,”
Talanta
74
,
333
341
(
2007
).
65.
A.
Gökaltun
,
Y. B. A.
Kang
,
M. L.
Yarmush
,
O. B.
Usta
, and
A.
Asatekin
, “
Simple surface modification of poly (dimethylsiloxane) via surface segregating smart polymers for biomicrofluidics
,”
Sci. Rep.
9
,
7377
(
2019
).
66.
H.
Cui
 et al., “
ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells
,”
Nanoscale
12
,
1455
1463
(
2020
).
67.
F.
Lu
 et al., “
Two-dimensional nanocellulose-enhanced high-strength, self-adhesive, and strain-sensitive poly (acrylic acid) hydrogels fabricated by a radical-induced strategy for a skin sensor
,”
ACS Sustainable Chem. Eng.
8
,
3427
3436
(
2020
).
68.
J. H.
Oh
 et al., “
Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive
,”
ACS Appl. Mater. Interfaces
10
,
7263
7270
(
2018
).
69.
P.
Zhu
 et al., “
Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E‐skin application
,”
Adv. Energy Mater.
10
,
2001945
(
2020
).
70.
J. C.
Souza
 et al., “
Nano-scale modification of titanium implant surfaces to enhance osseointegration
,”
Acta Biomater.
94
,
112
131
(
2019
).
71.
T.-K.
Ahn
 et al., “
Modification of titanium implant and titanium dioxide for bone tissue engineering
,” in
Novel Biomaterials for Regenerative Medicine
, edited by
K.
Park
,
H. J.
Chun
,
C.-H.
Kim
, and
G.
Khang
(
Springer
,
2018
) pp.
355
368
.
72.
W.
Nicholson
, “
J. Titanium alloys for dental implants: A review
,”
Prosthesis
2
,
100
116
(
2020
).
73.
W.
Liu
,
S.
Liu
, and
L.
Wang
, “
Surface modification of biomedical titanium alloy: Micromorphology, microstructure evolution and biomedical applications
,”
Coatings
9
,
249
(
2019
).
74.
G. M.
Simsek
 et al., “
PVA/gelatin-based hydrogel coating of nickel-titanium alloy for improved tissue-implant interface
,”
Appl. Phys. A
127
,
387
(
2021
).
75.
A.
Chmielewska
 et al., “
Chemical polishing of additively manufactured, porous, nickel–titanium skeletal fixation plates
,”
3D Print. Addit. Manuf.
9
,
269
277
(
2021
).
76.
N.
AlOtaibi
,
K.
Naudi
,
D.
Conway
, and
A.
Ayoub
, “
The current state of peek implant osseointergration and future perspectives: A systematic review
,”
Eur. Cells Mater.
40
,
1
20
(
2020
).
77.
R. S.
Brum
,
L. G.
Labes
,
C. Â. M.
Volpato
,
C. A. M.
Benfatti
, and
A. de Lima
Pimenta
, “
Strategies to reduce biofilm formation in PEEK materials applied to implant dentistry—A comprehensive review
,”
Antibiotics
9
,
609
(
2020
).
78.
X.
Chen
 et al., “
Effect of PEEK and PTFE coatings in fatigue performance of dental implant retaining screw joint: An in vitro study
,”
J. Mech. Behav. Biomed. Mater.
103
,
103530
(
2020
).
79.
I.
Talon
,
A.
Schneider
,
V.
Ball
, and
J.
Hemmerle
, “
Polydopamine functionalization: A smart and efficient way to improve host responses to e-PTFE implants
,”
Front. Chem.
7
,
482
(
2019
).
80.
S.
Ferraris
 et al., “
Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation
,”
Acta Biomater.
102
,
468
480
(
2020
).
81.
H.
Shi
 et al., “
Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction
,”
Crystals
11
,
149
(
2021
).
82.
M.
Bohner
,
B. L. G.
Santoni
, and
N.
Döbelin
, “
β-tricalcium phosphate for bone substitution: Synthesis and properties
,”
Acta Biomater.
113
,
23
41
(
2020
).
83.
T.
Safronova
 et al., “
Biocompatibility of biphasic α, β-tricalcium phosphate ceramics in vitro
,”
Bioact. Mater.
5
,
423
427
(
2020
).
84.
A. J.
Ruys
, “
Introduction to alumina ceramics
,” in
Alumina Ceramics: Biomedical and Clinical Applications
(
Woodhead Publishing
,
2018
), pp.
1
38
.
85.
M.
Rahmati
and
M.
Mozafari
, “
Biocompatibility of alumina‐based biomaterials—A review
,”
J. Cell. Physiol.
234
,
3321
3335
(
2019
).
86.
Z.
Tabia
,
M.
Bricha
,
K.
El Mabrouk
, and
S.
Vaudreuil
, “
Manufacturing of a metallic 3D framework coated with a bioglass matrix for implant applications
,”
J. Mater. Sci.
56
,
1658
1672
(
2021
).
87.
P.
Zhang
 et al., “
Customized borosilicate bioglass scaffolds with excellent biodegradation and osteogenesis for mandible reconstruction
,”
Front. Bioeng. Biotechnol.
8
,
1367
(
2020
).
88.
M. H.
Adánez
,
H.
Nishihara
, and
W.
Att
, “
A systematic review and meta-analysis on the clinical outcome of zirconia implant–restoration complex
,”
J. Prosthodont. Res.
62
,
397
406
(
2018
).
89.
N.
Rohr
 et al., “
Influence of zirconia implant surface topography on first bone implant contact within a prospective cohort study
,”
Clin. Oral Implants Res.
23
,
593
599
(
2021
).
90.
A. K.
Gaharwar
,
I.
Singh
, and
A.
Khademhosseini
, “
Engineered biomaterials for in situ tissue regeneration
,”
Nat. Rev. Mater.
5
,
686
705
(
2020
).
91.
N.
Eliaz
, “
Corrosion of metallic biomaterials: A review
,”
Materials
12
,
407
(
2019
).
92.
A. M.
Brokesh
and
A. K.
Gaharwar
, “
Inorganic biomaterials for regenerative medicine
,”
ACS Appl. Mater. Interfaces
12
,
5319
5344
(
2020
).
93.
D.
Lee
and
J.
Mazumder
, “
Effects of laser beam spatial distribution on laser-material interaction
,”
J. Laser Appl.
28
,
032003
(
2016
).
94.
M.
Oane
,
M. A.
Mahmood
, and
A. C.
Popescu
, “
A state-of-the-art review on integral transform technique in laser–material interaction: Fourier and non-Fourier heat equations
,”
Materials
14
,
4733
(
2021
).
95.
D. J.
Joe
 et al., “
Laser–material interactions for flexible applications
,”
Adv. Mater.
29
,
1606586
(
2017
).
96.
H.
Shin
and
D.
Kim
, “
Cutting thin glass by femtosecond laser ablation
,”
Opt. Laser Technol.
102
,
1
11
(
2018
).
97.
S.-F.
Tseng
,
C.-H.
Liao
,
W.-T.
Hsiao
, and
T.-L.
Chang
, “
Ultrafast laser direct writing of screen-printed graphene-based strain electrodes for sensing glass deformation
,”
Ceram. Int.
47
,
29099
29108
(
2021
).
98.
K.
Lee
 et al., “
A high-performance PDMS-based triboelectric nanogenerator fabricated using surface-modified carbon nanotubes via pulsed laser ablation
,”
J. Mater. Chem. C
10
,
1299
1308
(
2022
).
99.
Y.
Ou
 et al., “
Fabrication of large-area microwells on polydimethylsiloxane films by femtosecond laser ablation
,”
Opt. Laser Technol.
130
,
106330
(
2020
).
100.
H.
Noh
,
Y.-S.
Yoo
,
K. Y.
Shin
,
D. H.
Lim
, and
T.-Y.
Chung
, “
Comparison of penetrating femtosecond laser-assisted astigmatic keratotomy and toric intraocular lens implantation for correction of astigmatism in cataract surgery
,”
Sci. Rep.
11
,
7340
(
2021
).
101.
D.
Sola
,
C.
Lavieja
,
A.
Orera
, and
M. J.
Clemente
, “
Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers
,”
Opt. Lasers Eng.
106
,
139
146
(
2018
).
102.
J.
Han
 et al., “
Laser surface texturing of zirconia-based ceramics for dental applications: A review
,”
Mater. Sci. Eng. C
123
,
112034
(
2021
).
103.
S.
Pattanayak
and
S. K.
Sahoo
, “
Micro engraving on 316L stainless steel orthopedic implant using fiber laser
,”
Opt. Fiber Technol.
63
,
102479
(
2021
).
104.
M. Z.
Ibrahim
 et al., “
In-vitro viability of laser cladded Fe-based metallic glass as a promising bioactive material for improved osseointegration of orthopedic implants
,”
Med. Eng. Phys.
102
,
103782
(
2022
).
105.
J.
Liu
 et al., “
Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, in vitro and in vivo investigation
,”
Bioact. Mater.
16
,
301
319
(
2022
).
106.
N.
Kamboj
,
J.
Kazantseva
,
R.
Rahmani
,
M. A.
Rodríguez
, and
I.
Hussainova
, “
Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering
,”
Mater. Sci. Eng. C
116
,
111223
(
2020
).
107.
Y. Q.
Wu
 et al., “
Macrophage responses to selective laser‐melted Ti‐6Al‐4V scaffolds of different pore geometries and the corresponding osteoimmunomodulatory effects toward osteogenesis
,”
J. Biomed. Mater. Res. A
110
,
873
883
(
2022
).
108.
A.-M.
Stanciuc
 et al., “
Femtosecond laser multi-patterning of zirconia for screening of cell-surface interactions
,”
J. Eur. Ceram. Soc.
38
,
939
948
(
2018
).
109.
P.
Bugga
and
M.
Mrksich
, “
Sequential photoactivation of self-assembled monolayers to direct cell adhesion and migration
,”
Langmuir
35
,
5937
5943
(
2019
).
110.
A.
Prasad
and
E.
Alizadeh
, “
Cell form and function: Interpreting and controlling the shape of adherent cells
,”
Trends Biotechnol.
37
,
347
357
(
2019
).
111.
J.
Zhu
 et al., “
Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene
,”
ACS Appl. Mater. Interfaces
11
,
24386
24394
(
2019
).
112.
J.
Park
 et al., “
Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation
,”
Acta Biomater.
97
,
141
153
(
2019
).
113.
A. A.
Lahcen
 et al., “
Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review
,”
Biosens. Bioelectron.
168
,
112565
(
2020
).
114.
W.
Wu
 et al., “
Preparation of superhydrophobic laser-induced graphene using taro leaf structure as templates
,”
Surf. Coat. Technol.
393
,
125744
(
2020
).
115.
H. S.
Wang
 et al., “
Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics
,”
Sci. Adv.
7
,
eabe5683
(
2021
).
116.
H.
Yoon
 et al., “
A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection
,”
Sens. Actuators, B
311
,
127866
(
2020
).
117.
Z.
Wan
 et al., “
Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection
,”
Carbon
163
,
385
394
(
2020
).
118.
J.
Zhao
 et al., “
Co3O4 nanoparticles embedded in laser-induced graphene for a flexible and highly sensitive enzyme-free glucose biosensor
,”
Sens. Actuators, B
347
,
130653
(
2021
).
119.
M.
Tanito
, “
Reported evidence of vitamin E protection against cataract and glaucoma
,”
Free Radicals Biol. Med.
177
,
100
119
(
2021
).
120.
S.
Zhang
 et al., “
The role of primary intraocular lens implantation in the risk of secondary glaucoma following congenital cataract surgery: A systematic review and meta-analysis
,”
PLoS One
14
,
e0214684
(
2019
).
121.
S.
Yu
 et al., “
Application of spectral domain optical coherence tomography to objectively evaluate posterior capsular opacity in vivo
,”
J. Ophthalmol.
2018
,
5461784
.
122.
D.
Palanker
, “
Femtosecond lasers for ophthalmic surgery enabled by chirped-pulse amplification
,”
N. Engl. J. Med.
379
,
2267
2269
(
2018
).
123.
Y.
Seo
 et al., “
Femtosecond laser induced nano-textured micropatterning to regulate cell functions on implanted biomaterials
,”
Acta Biomater.
116
,
138
148
(
2020
).
124.
G.
Marenzi
 et al., “
Effect of different surface treatments on titanium dental implant micro-morphology
,”
Materials
12
,
733
(
2019
).
125.
G.
Singh
, “
Surface treatment of dental implants: A review
,”
J. Dent. Med. Sci.
17
,
49
53
(
2018
).
126.
M.
Koopaie
,
A.
Bordbar-Khiabani
,
S.
Kolahdooz
,
A. K.
Darbandsari
, and
M.
Mozafari
, “
Advanced surface treatment techniques counteract biofilm-associated infections on dental implants
,”
Mater. Res. Express
7
,
015417
(
2020
).
127.
N.
Yahyazadehfar
 et al., “
Effect of different surface treatments on surface roughness, phase transformation, and biaxial flexural strength of dental zirconia
,”
J. Dent. Res. Dent. Clin. Dent. Prospects
15
,
210
(
2021
).
128.
I. G.
Simões
,
A. C.
Dos Reis
, and
M. L.
da Costa Valente
, “
Analysis of the influence of surface treatment by high-power laser irradiation on the surface properties of titanium dental implants: A systematic review
,”
Eur. J. Prosthodont.
S0022-3913
,
00421-2
(
2021
).
129.
A.
Peter
 et al., “
Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces
,”
Opt. Laser Technol.
123
,
105954
(
2020
).
130.
D.
Fabris
,
A. F.
Lasagni
,
M. C.
Fredel
, and
B.
Henriques
, “
Direct laser interference patterning of bioceramics: A short review
,”
Ceramics
2
,
578
586
(
2019
).
131.
E.
Uhlmann
,
L.
Schweitzer
,
H.
Kieburg
,
A.
Spielvogel
, and
K.
Huth-Herms
, “
The effects of laser microtexturing of biomedical grade 5 Ti-6Al-4V dental implants (abutment) on biofilm formation
,”
Proc. CIRP
68
,
184
189
(
2018
).
132.
E. F.
Morgan
and
L. C.
Gerstenfeld
, “
The bone organ system: Form and function
,” in
Marcus and Feldman's Osteoporosis
(
Elsevier
,
2021
), pp.
15
35
.
133.
A.
Kashirina
,
Y.
Yao
,
Y.
Liu
, and
J.
Leng
, “
Biopolymers as bone substitutes: A review
,”
Biomater. Sci.
7
,
3961
3983
(
2019
).
134.
J.
Liao
,
R.
Han
,
Y.
Wu
, and
Z.
Qian
, “
Review of a new bone tumor therapy strategy based on bifunctional biomaterials
,”
Bone Res.
9
,
18
(
2021
).
135.
J. W.
Park
 et al., “
Bone tumor resection guide using three‐dimensional printing for limb salvage surgery
,”
J. Surg. Oncol.
118
,
898
905
(
2018
).
136.
O.
Buezo
 et al., “
Patellar fractures: An innovative surgical technique with transosseous suture to avoid implant removal
,”
Surg. Innov.
22
,
474
478
(
2015
).
137.
J.
Gupta
 et al., “
Surgical factors associated with symptomatic implant removal after patella fracture
,”
Injury
53
,
P2241
P2246
(
2022
).
138.
J.
Tricard
,
A.
Chermat
,
S.
El Balkhi
,
E.
Denes
, and
F.
Bertin
, “
An antibiotic loaded ceramic sternum to treat destroyed infected sternum: 4 cases
,”
J. Thorac. Dis.
12
,
209
(
2020
).
139.
I.
Goldsmith
,
P. L.
Evans
,
H.
Goodrum
,
J.
Warbrick-Smith
, and
T.
Bragg
, “
Chest wall reconstruction with an anatomically designed 3-D printed titanium ribs and hemi-sternum implant
,”
3D Print. Med.
6
,
26
(
2020
).
140.
A. A.
Raheem
 et al., “
A review on development of bio-inspired implants using 3D printing
,”
Biomimetics
6
,
65
(
2021
).
141.
R.
Burchard
 et al., “
Efficiency of platelet-rich plasma therapy in knee osteoarthritis does not depend on level of cartilage damage
,”
J. Orthop. Surg. Res.
14
,
153
(
2019
).
142.
Y.
Meng
,
J.
Cao
,
Y.
Chen
,
Y.
Yu
, and
L.
Ye
, “
3D printing of a poly (vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy
,”
J. Mater. Chem. B
8
,
677
690
(
2020
).
143.
H.
Zhou
,
D.
Xiong
,
W.
Tong
,
Z.
Shi
, and
X.
Xiong
, “
Lubrication behaviors of PVA‐casted LSPEEK hydrogels in artificial cartilage repair
,”
J. Appl. Polym. Sci.
136
,
47944
(
2019
).
144.
M. S.
Shajib
,
K.
Futrega
,
T.
Jacob Klein
,
R. W.
Crawford
, and
M. R.
Doran
, “
Collagenase treatment appears to improve cartilage tissue integration but damage to collagen networks is likely permanent
,”
J. Tissue Eng.
13
,
1
19
(
2022
).
145.
M.
Ostrowska
,
W.
Maśliński
,
M.
Prochorec-Sobieszek
,
M.
Nieciecki
, and
I.
Sudoł-Szopińska
, “
Cartilage and bone damage in rheumatoid arthritis
,”
Reumatologia
56
,
111
(
2018
).
146.
A.
Rahmani Del Bakhshayesh
 et al., “
An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage
,”
Artif. Cells Nanomed. Biotechnol.
48
,
1089
1104
(
2020
).
147.
J.
Liao
 et al., “
Auricle shaping using 3D printing and autologous diced cartilage
,”
Laryngoscope
129
,
2467
2474
(
2019
).
148.
S.
Saumya
,
A.
Anbuselvan
,
S.
Poorva
, and
G.
Priya
, “
A review on 3D printing techniques and scaffolds for auricular cartilage reconstruction,” Res
.
J. Pharm. Technol.
11
,
4179
4186
(
2018
).
149.
O.
Tao
 et al., “
The applications of 3D printing for craniofacial tissue engineering
,”
Micromachines
10
,
480
(
2019
).
150.
Z.
Chen
and
J.-B.
Lee
, “
Biocompatibility of SU-8 and its
biomedical device applications,” Micromachines
12
,
794
(
2021
).
151.
R.
Konwarh
, “
Can the venerated silk be the next-generation nanobiomaterial for biomedical-device designing, regenerative medicine and drug delivery? Prospects and hitches
,”
Bio-Des. Manuf.
2
,
278
286
(
2019
).
152.
M.
Zare
 et al., “
pHEMA: An overview for biomedical applications
,”
Int. J. Mol. Sci.
22
,
6376
(
2021
).
153.
S.
Bose
,
S. F.
Robertson
, and
A.
Bandyopadhyay
, “
Surface modification of biomaterials and biomedical devices using additive manufacturing
,”
Acta Biomater.
66
,
6
22
(
2018
).
154.
F.
Robotti
 et al., “
A micron-scale surface topography design reducing cell adhesion to implanted materials
,”
Sci. Rep.
8
,
10887
(
2018
).
155.
S. Y.
Lee
,
Y.
Lee
,
P.
Le Thi
,
D. H.
Oh
, and
K. D.
Park
, “
Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices
,”
Biomater. Res.
22
,
3
(
2018
).
156.
V.
Dumas
 et al., “
Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment
,”
Biomed. Mater.
10
,
055002
(
2015
).
157.
P.
Chen
 et al., “
Adhesion and differentiation behaviors of mesenchymal stem cells on titanium with micrometer and nanometer‐scale grid patterns produced by femtosecond laser irradiation
,”
J. Biomed. Mater. Res. A
106
,
2735
2743
(
2018
).
158.
H.
Jeon
 et al., “
Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces
,”
Nat. Mater.
14
,
918
923
(
2015
).
159.
W. A. D. M.
Jayathilaka
 et al., “
Significance of nanomaterials in wearables: A review on wearable actuators and sensors
,”
Adv. Mater.
31
,
1805921
(
2019
).
160.
E.
Leroy
,
R.
Hinchet
, and
H.
Shea
, “
Multimode hydraulically amplified electrostatic actuators for wearable haptics
,”
Adv. Mater.
32
,
2002564
(
2020
).
161.
E.
Sachyani Keneth
,
A.
Kamyshny
,
M.
Totaro
,
L.
Beccai
, and
S.
Magdassi
, “
3D printing materials for soft robotics
,”
Adv. Mater.
33
,
2003387
(
2021
).
162.
A. A.
Paknahad
and
M.
Tahmasebipour
, “
An electromagnetic micro-actuator with PDMS-Fe3O4 nanocomposite magnetic membrane
,”
Microelectron. Eng.
216
,
111031
(
2019
).
163.
T.
Rehman
,
M.
Nafea
,
A. A.
Faudzi
,
T.
Saleh
, and
M. S. M.
Ali
, “
PDMS-based dual-channel pneumatic micro-actuator
,”
Smart Mater. Struct.
28
,
115044
(
2019
).
164.
M.
Saadat
,
M.
Taylor
,
A.
Hughes
, and
A. M.
Hajiyavand
, “
Rapid prototyping method for 3D PDMS microfluidic devices using a red femtosecond laser
,”
Adv. Mech. Eng.
12
,
1
12
(
2020
).
165.
P. R.
Konari
,
Y.-D.
Clayton
,
M. B.
Vaughan
,
M.
Khandaker
, and
M. R.
Hossan
, “
Experimental analysis of laser micromachining of microchannels in common microfluidic substrates
,”
Micromachines
12
,
138
(
2021
).
166.
K.
Min
 et al., “
Fabrication of perforated PDMS microchannel by successive laser pyrolysis
,”
Materials
14
,
7275
(
2021
).
167.
J.
Yong
,
Z.
Zhan
,
S. C.
Singh
,
F.
Chen
, and
C.
Guo
, “
Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing
,”
ACS Appl. Polym. Mater.
1
,
2819
2825
(
2019
).
168.
M.
Riahi
,
F.
Karimi
, and
A.
Ghaffari
, “
Fabrication of 3D microfluidic structure with direct selective laser baking of PDMS
,”
Rapid Prototyping J.
25
,
775
780
(
2019
).
169.
S.
Zhang
,
S.
Li
,
Z.
Xia
, and
K.
Cai
, “
A review of electronic skin: Soft electronics and sensors for human health
,”
J. Mater. Chem. B
8
,
852
862
(
2020
).
170.
C.
Xu
,
Y.
Yang
, and
W.
Gao
, “
Skin-interfaced sensors in digital medicine: From materials to applications
,”
Matter
2
,
1414
1445
(
2020
).
171.
M.
Aman
 et al., “
Bionic hand as artificial organ: Current status and future perspectives
,”
Artif. Organs
43
,
109
118
(
2019
).
172.
D.
Shah
 et al., “
Shape changing robots: Bioinspiration, simulation, and physical realization
,”
Adv. Mater.
33
,
2002882
(
2021
).
173.
C.
Mu
 et al., “
Flexible normal‐tangential force sensor with opposite resistance responding for highly sensitive artificial skin
,”
Adv. Funct. Mater.
28
,
1707503
(
2018
).
174.
L.
Hou
 et al., “
Bioinspired superwettability electrospun micro/nanofibers and their applications
,”
Adv. Funct. Mater.
28
,
1801114
(
2018
).
175.
J.
Shin
 et al., “
Sensitive wearable temperature sensor with seamless monolithic integration
,”
Adv. Mater.
32
,
1905527
(
2020
).
176.
X.
Ye
 et al., “
Pattern directive sensing selectivity of graphene for wearable multifunctional sensors via femtosecond laser fabrication
,”
Adv. Mater. Technol.
5
,
2000446
(
2020
).
177.
T.
Liu
 et al., “
The role of interleukin‐6 in monitoring severe case of coronavirus disease 2019
,”
EMBO Mol. Med.
12
,
e12421
(
2020
).
178.
N.
Jommanee
,
C.
Chanthad
, and
K.
Manokruang
, “
Preparation of injectable hydrogels from temperature and pH responsive grafted chitosan with tuned gelation temperature suitable for tumor acidic environment
,”
Carbohydr. Polym.
198
,
486
494
(
2018
).
179.
H.
Liu
,
T. N. T.
Dao
,
B.
Koo
,
Y. O.
Jang
, and
Y.
Shin
, “
Trends and challenges of nanotechnology in self-test at home
,”
TrAC-Trends Anal. Chem.
144
,
116438
(
2021
).
180.
Á.
Sierra‐Sánchez
 et al., “
Hyaluronic acid biomaterial for human tissue‐engineered skin substitutes: Preclinical comparative in vivo study of wound healing
,”
J. Eur. Acad. Dermatol. Venereol.
34
,
2414
2427
(
2020
).
181.
S.
Tasoglu
, “
Toilet-based continuous health monitoring using urine
,”
Nat. Rev. Urol.
19
,
219
230
(
2022
).
182.
E. J.
Moonen
 et al., “
Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring
,”
View
1
,
20200077
(
2020
).
183.
R.
Herbert
,
H. R.
Lim
,
S.
Park
,
J. H.
Kim
, and
W. H.
Yeo
, “
Recent advances in printing technologies of nanomaterials for implantable wireless systems in health monitoring and diagnosis
,”
Adv. Healthcare Mater.
10
,
2100158
(
2021
).
184.
S.-H.
Byun
 et al., “
Mechanically transformative electronics, sensors, and implantable devices
,”
Sci. Adv.
5
,
eaay0418
(
2019
).
185.
A. A.
Mathew
,
A.
Chandrasekhar
, and
S.
Vivekanandan
, “
A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach
,”
Nano Energy
80
,
105566
(
2021
).
186.
P.
Zhou
,
C.
Liao
,
Z.
Li
,
S.
Liu
, and
Y.
Wang
, “
In-fiber cascaded FPI fabricated by chemical-assisted femtosecond laser micromachining for micro-fluidic sensing applications
,”
J. Light. Technol.
37
,
3214
3221
(
2019
).
187.
R.
Bai
,
Y.
Gao
,
C.
Lu
,
J.
Tan
, and
F.
Xuan
, “
Femtosecond laser micro-fabricated flexible sensor arrays for simultaneous mechanical and thermal stimuli detection
,”
Measurement
169
,
108348
(
2021
).
188.
L.
Wang
 et al., “
Femtosecond laser micromachining in combination with ICP etching for 4H–SiC pressure sensor membranes
,”
Ceram. Int.
47
,
6397
6408
(
2021
).
189.
N.
Singh
 et al., “
Selective laser manufacturing of Ti-based alloys and composites: Impact of process parameters, application trends, and future prospects
,”
Mater. Today Adv.
8
,
100097
(
2020
).
190.
U.
Masud
,
T.
Saeed
,
F.
Akram
,
H.
Malaikah
, and
A.
Akbar
, “
Unmanned aerial vehicle for laser based biomedical sensor development and examination of device trajectory
,”
Sensors
22
,
3413
(
2022
).
191.
V. M.
Vaz
and
L.
Kumar
, “
3D printing as a promising tool in personalized medicine
,”
AAPS PharmSciTech
22
,
49
(
2021
).
192.
Y. A.
Gueche
,
N. M.
Sanchez-Ballester
,
S.
Cailleaux
,
B.
Bataille
, and
I.
Soulairol
, “
Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing
,”
Pharmaceutics
13
,
1212
(
2021
).
193.
A.
Buzykin
 et al., “
Laser surface processing of titanium alloy for antibacterial medical applications
,” in
Laser-Based Micro- and Nanoprocessing XVI
, edited by
A.
Watanabe
and
R.
Kling
(
SPIE
,
2022
), pp.
1
6
.
194.
M.
Tulej
 et al., “
Current progress in femtosecond laser ablation/ionisation time-of-flight mass spectrometry
,”
Appl. Sci.
11
,
2562
(
2021
).
195.
S. H.
Jeong
,
R.
Greif
, and
R. E.
Russo
, “
Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples
,”
J. Phys. D: Appl. Phys.
32
,
2578
2585
(
1999
).
196.
J. J.
Chang
and
B. E.
Warner
, “
Laser‐plasma interaction during visible‐laser ablation of methods
,”
Appl. Phys. Lett.
69
,
473
475
(
1996
).
197.
M. S.
Brown
and
C. B.
Arnold
, “
Fundamentals of laser-material interaction and application to multiscale surface modification
,” in
Laser Precision Microfabrication
(
Springer
,
2010
), pp.
91
120
.
198.
M. V.
Shugaev
 et al., “
Fundamentals of ultrafast laser–material interaction
,”
MRS Bull.
41
,
960
968
(
2016
).
199.
Z.
Xu
 et al., “
Laser rock drilling by a super-pulsed CO2 laser beam
,”
J. Laser Appl.
2002
,
160291
(
2002
).
200.
N.
Maharjan
,
W.
Zhou
,
Y.
Zhou
,
Y.
Guan
, and
N.
Wu
, “
Comparative study of laser surface hardening of 50CrMo4 steel using continuous-wave laser and pulsed lasers with ms, ns, ps and fs pulse duration
,”
Surf. Coat. Technol.
366
,
311
320
(
2019
).
201.
C. B.
Hitz
,
J. J.
Ewing
, and
J.
Hecht
, in
Introduction to Laser Technology
, Tunable and Ultrafast Lasers (
John Wiley and Sons
,
2012
), pp.
263
281
.
202.
J. L.
Braun
and
P. E.
Hopkins
, “
Upper limit to the thermal penetration depth during modulated heating of multilayer thin films with pulsed and continuous wave lasers: A numerical study
,”
Int. J. Appl. Phys.
121
,
175107
(
2017
).
203.
S.
Lei
 et al., “
Ultrafast laser applications in manufacturing processes: A state-of-the-art review
,”
J. Manuf. Sci. Eng.
142
,
031005
(
2020
).
204.
D.
Grossin
 et al., “
A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering/melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites
,”
Open Ceram.
5
,
100073
(
2021
).
205.
R. E.
Russo
, “
Laser ablation
,”
Appl. Spectrosc.
49
,
14A
28A
(
1995
).
206.
E.
Carpene
,
D.
Höche
, and
P.
Schaaf
, “
Fundamentals of laser-material interactions
,” in
Laser Processing of Materials
, edited by
K.
Sugioka
,
M.
Meunier
, and
A.
Piqué
(
Springer
,
2010
), pp.
21
47
.
207.
H.
Ki
, “
On vaporization in laser material interaction
,”
J. Appl. Phys.
107
,
104908
(
2010
).
208.
Y.
Zheng
 et al., “
Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble
,”
Lab Chip
11
,
3816
3820
(
2011
).
209.
J. S.
Ten
,
M.
Sparkes
, and
W.
O'Neill
, “
Femtosecond laser-induced chemical vapor deposition of tungsten quasi-periodic structures on silicon substrates
,”
J. Laser Appl.
30
,
032606
(
2018
).
210.
E.
Teirlinck
 et al., “
Laser-induced vapor nanobubbles improve diffusion in biofilms of antimicrobial agents for wound care
,”
Biofilm
1
,
100004
(
2019
).
211.
E.
Teirlinck
 et al., “
Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms
,”
Nat. Commun.
9
,
4518
(
2018
).
212.
X.
Zeng
 et al., “
Laser-induced shockwave propagation from ablation in a cavity
,”
Appl. Phys. Lett.
88
,
061502
(
2006
).
213.
M.
Meyers
, in
Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications
, Effects of Laser Induced Shock Waves (
Springer Science and Business Media
,
2012
), pp.
675
702
.
214.
J. J.
Rassweiler
 et al., “
Shock wave technology and application: An update
,”
Eur. Urol.
59
,
784
796
(
2011
).
215.
C. S.
Montross
,
T.
Wei
,
L.
Ye
,
G.
Clark
, and
Y.-W.
Mai
, “
Laser shock processing and its effects on microstructure and properties of metal alloys: A review
,”
Int. J. Fatigue
24
,
1021
1036
(
2002
).
216.
G.
Lu
,
U.
Trdan
,
Y.
Zhang
, and
J. L.
Dulaney
, “
The distribution regularity of residual stress on a metal surface after laser shock marking
,”
Mech. Mater.
143
,
103310
(
2020
).
217.
S.
Jin
 et al., “
Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators
,”
Adv. Mater.
30
,
1705840
(
2018
).
218.
H.
Yu
,
X.
Wu
,
H.
Li
,
Y.
Yuan
, and
J.
Yang
, “
Particle removal is explored by the motion of individual particles based on laser-induced plasma shock wave
,”
Opt. Commun.
460
,
125205
(
2020
).
219.
T.
Czotscher
, “
Material characterisation with new indentation technique based on laser-induced shockwaves
,”
Lasers Manuf. Mater. Process.
5
,
439
457
(
2018
).
220.
T. L.
Bergman
,
A. S.
Lavine
,
F. P.
Incropera
, and
D. P.
DeWitt
,
Introduction to Heat Transfer
(
John Wiley and Sons
,
2011
).
221.
A.
Bejan
and
A. D.
Kraus
, “
Thermophysical properties of fluids and materials
,” in
Heat Transfer Handbook
(
John Wiley and Sons
,
2003
), pp.
1
43
.
222.
M. M.
Peiravi
and
J.
Alinejad
, “
Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder
,”
J. Therm. Anal. Calorim.
140
,
2733
2747
(
2020
).
223.
M. G.
Stanford
,
K.
Yang
,
Y.
Chyan
,
C.
Kittrell
, and
J. M.
Tour
, “
Laser-induced graphene for flexible and embeddable gas sensors
,”
ACS Nano
13
,
3474
3482
(
2019
).
224.
X.-L.
Trinh
,
N.-H.
Tran
,
H.
Seo
, and
H.-C.
Kim
, “
Enhanced performance of perovskite solar cells via laser-induced heat treatment on perovskite film
,”
Sol. Energy
206
,
301
307
(
2020
).
225.
E. H.
Penilla
 et al., “
Ultrafast laser welding of ceramics
,”
Science
365
,
803
808
(
2019
).
226.
S. K.
Jha
 et al., “
The effects of external fields in ceramic sintering
,”
J. Am. Ceram. Soc.
102
,
5
31
(
2019
).
227.
G.
Fridman
 et al., “
Applied plasma medicine
,”
Plasma Process. Polym.
5
,
503
533
(
2008
).
228.
R.
d'Agostino
 et al., in
Advanced Plasma Technology
, Basic Approaches to Plasma Production and Control (
John Wiley and Sons
,
2008
), pp.
2
15
.
229.
P.
Mulser
,
R.
Sigel
, and
S.
Witkowski
, “
Plasma production by laser
,”
Phys. Rep.
6
,
187
239
(
1973
).
230.
I.
Beilis
, “
Mechanism of laser plasma production and of plasma interaction with a target
,”
Appl. Phys. Lett.
89
,
091503
(
2006
).
231.
K.
Liu
 et al., “
A review of laser-induced breakdown spectroscopy for plastic analysis
,”
TrAC Trends Anal. Chem.
110
,
327
334
(
2019
).
232.
S.
Niu
,
L.
Zheng
,
A. Q.
Khan
,
G.
Feng
, and
H.
Zeng
, “
Laser-induced breakdown spectroscopic detection of trace level heavy metal in solutions on a laser-pretreated metallic target
,”
Talanta
179
,
312
317
(
2018
).
233.
P. D.
Ilhardt
 et al., “
High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS)
,”
Soil Biol. Biochem.
131
,
119
132
(
2019
).
234.
P. S.
Hsu
 et al., “
Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal
,”
Appl. Phys. Lett.
113
,
214103
(
2018
).
235.
D.
Zhang
,
Q.
Gao
,
B.
Li
,
Z.
Zhu
, and
Z.
Li
, “
Instantaneous one-dimensional equivalence ratio measurements in methane/air mixtures using femtosecond laser-induced plasma spectroscopy
,”
Opt. Express
27
,
2159
2169
(
2019
).
236.
X.
Wang
 et al., “
Surface hardness analysis of aged composite insulators via laser-induced plasma spectra characterization
,”
IEEE Trans. Plasma Sci.
47
,
387
394
(
2019
).
237.
R. H.
El-Saeid
,
M.
Abdelhamid
,
Z.
Abdel-Salam
, and
M.
Abdel-Harith
, “
Exploiting LIBS to analyze selected rocks and to determine their surface hardness based on the diagnostics of laser-induced plasma
,”
Appl. Phys. B
126
,
10
(
2020
).
238.
H.
Tang
,
P.
Qiu
,
R.
Cao
,
J.
Zhuang
, and
S.
Xu
, “
Repulsive magnetic field–assisted laser-induced plasma micromachining for high-quality microfabrication
,”
Int. J. Adv. Manuf. Syst.
102
,
2223
2229
(
2019
).
239.
J. C.
Miller
, in
Laser Ablation: Principles and Applications Electronic Processes in Laser Ablation of Semiconductors
(
Springer
,
2013
), pp.
11
49
.
240.
T.
Itina
, in
Laser Ablation: From Fundamentals to Applications
, Protected Laser Evaporation Ablation and Deposition (
BoD—Books on Demand
,
2017
), pp.
57
80
.
241.
U.
Sarma
and
S. N.
Joshi
, “
Machining of micro-channels on polycarbonate by using laser-induced plasma assisted ablation (LIPAA)
,”
Opt. Laser Technol.
128
,
106257
(
2020
).
242.
K.
Huang
 et al., “
Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process
,”
Compos. Sci. Technol.
192
,
108105
(
2020
).
243.
T.
Han
 et al., “
Laser-assisted printed flexible sensors: A review
,”
Sensors
19
,
1462
(
2019
).
244.
J.
Luo
 et al., “
Gold nanoparticles decorated graphene oxide/nanocellulose paper for NIR laser-induced photothermal ablation of pathogenic bacteria
,”
Carbohydr. Polym.
198
,
206
214
(
2018
).
245.
N.
Ahmed
,
R.
Ahmed
, and
M. A.
Baig
, “
Analytical analysis of different karats of gold using laser induced breakdown spectroscopy (LIBS) and laser ablation time of flight mass spectrometer (LA-TOF-MS)
,”
Plasma Chem. Plasma Process.
38
,
207
222
(
2018
).
246.
C.
Gottlieb
,
T.
Günther
, and
G.
Wilsch
, “
Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy
,”
Spectrochim. Acta, Part B
142
,
74
84
(
2018
).
247.
E.
Sedghamiz
,
M.
Liu
, and
W.
Wenzel
, “
Challenges and limits of mechanical stability in 3D direct laser writing
,”
Nat. Commun.
13
,
2115
(
2022
).
248.
A. V.
Belikov
and
A. V.
Skrypnik
, “
Soft tissue cutting efficiency by 980 nm laser with carbon‐, erbium‐, and titanium‐doped optothermal fiber converters
,”
Lasers Surg. Med.
51
,
185
200
(
2019
).
249.
S. B.
Han
,
Y.-C.
Liu
,
K.
Mohamed-Noriega
, and
J. S.
Mehta
, “
Application of femtosecond laser in anterior segment surgery
,”
J. Ophthalmol.
2020
,
8263408
.
250.
F.
Campo
,
V.
D'Aguanno
,
A.
Greco
,
M.
Ralli
, and
M.
de Vincentiis
, “
The prognostic value of adding narrow‐band imaging in transoral laser microsurgery for early glottic cancer: A review
,”
Lasers Surg. Med.
52
,
301
306
(
2020
).
251.
Y.
Hu
and
K.
Masamune
, “
Flexible laser endoscope for minimally invasive photodynamic diagnosis (PDD) and therapy (PDT) toward efficient tumor removal
,”
Opt. Express
25
,
16795
16812
(
2017
).
252.
R.
Schieber
 et al., “
Effectiveness of direct laser interference patterning and peptide immobilization on endothelial cell migration for cardio-vascular applications: An in vitro study
,”
Nanomaterials
12
,
1217
(
2022
).
253.
S.-H.
Um
 et al., “
Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning
,”
Bioact. Mater.
6
,
3608
3619
(
2021
).
254.
J.
Zhang
,
Y.
Guan
,
W.
Lin
, and
X.
Gu
, “
Enhanced mechanical properties and biocompatibility of Mg-Gd-Ca alloy by laser surface processing
,”
Surf. Coat. Technol.
362
,
176
184
(
2019
).
255.
D.
Kuczyńska-Zemła
 et al., “
Effect of laser functionalization of titanium on bioactivity and biological response
,”
Appl. Surf. Sci.
525
,
146492
(
2020
).
256.
S.
Shaikh
 et al., “
Femtosecond laser induced surface modification for prevention of bacterial adhesion on 45S5 bioactive glass
,”
J. Non-Cryst. Solids
482
,
63
72
(
2018
).
257.
I.
Van Hengel
 et al., “
Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria
,”
Acta Biomater.
107
,
325
337
(
2020
).
258.
X.
Li
 et al., “
Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities
,”
Acta Biomater.
94
,
627
643
(
2019
).
259.
F. H.
Schünemann
 et al., “
Zirconia surface modifications for implant dentistry
,”
Mater. Sci. Eng. C
98
,
1294
1305
(
2019
).
260.
A. J.
Thompson
,
M.
Power
, and
G.-Z.
Yang
, “
Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning
,”
Opt. Express
26
,
14186
14200
(
2018
).
261.
M.
Quazi
 et al., “
A comprehensive assessment of laser welding of biomedical devices and implant materials: Recent research, development and applications
,”
Crit. Rev. Solid State Mater. Sci.
46
,
109
151
(
2021
).
262.
A.
Volpe
 et al., “
A smart procedure for the femtosecond laser-based fabrication of a polymeric lab-on-a-chip for capturing tumor cell
,”
Engineering
7
,
1434
1440
(
2021
).
263.
B.
Liao
,
R. F.
Xia
,
W.
Li
,
D.
Lu
, and
Z. M.
Jin
, “
3D-printed Ti6Al4V scaffolds with graded triply periodic minimal surface structure for bone tissue engineering
,”
J. Mater. Eng. Perform.
30
,
4993
5004
(
2021
).
264.
S.
Attarilar
 et al., “
3D Printing technologies in metallic implants: A thematic review on the techniques and procedures
,”
Int. J. Bioprint.
7
,
306
(
2021
).
265.
S. K.
Selvaraj
 et al., “
Additive manufacturing of dental material parts via laser melting deposition: A review, technical issues, and future research directions
,”
J. Manuf. Process.
76
,
67
78
(
2022
).
266.
U. B.
Sheela
 et al., in
3D Printing in Medicine and Surgery
, 3D Printing in Dental Implants (
Elsevier
,
2021
), pp.
83
104
.
267.
L.
Lan
 et al., “
One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface
,”
Biosens. Bioelectron.
165
,
112360
(
2020
).
268.
D.
Huerta-Murillo
 et al., “
Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy
,”
Appl. Surf. Sci.
463
,
838
846
(
2019
).
269.
K.
Sun
 et al., “
Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel
,”
Appl. Surf. Sci.
436
,
263
267
(
2018
).
270.
X.
Zhao
 et al., “
In vitro bio-tribological behaviour of textured nitride coating on selective laser melted Ti-6Al-4V alloy
,”
Surf. Coat. Technol.
409
,
126904
(
2021
).
271.
H.
Yashiro
and
M.
Kakehata
, “
High crystalline hydroxyapatite coating by eclipse type pulsed-laser deposition for low annealing temperature
,”
Appl. Phys. Lett.
120
,
131602
(
2022
).
272.
S. A.
Yavari
 et al., “
Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials
,”
Addit. Manuf.
32
,
100991
(
2020
).
273.
B.
Hidalgo-Robatto
 et al., “
Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications
,”
Surf. Coat. Technol.
333
,
168
177
(
2018
).
274.
J.
Cao
,
R.
Lian
, and
X.
Jiang
, “
Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility
,”
Appl. Surf. Sci.
515
,
146069
(
2020
).
275.
R. A.
Sallam
and
E. A.
Arnout
, “
Effect of Er:YAG laser etching on shear bond strength of orthodontic bracket
,”
Saudi Med. J.
39
,
922
(
2018
).
276.
R.
Beard
,
M. R.
Van Horn
, and
B.
Bucklen
, “
53. Biomimetic laser-etched titanium promotes gene expression of early bone markers
,”
Spine J.
20
,
S25
(
2020
).
277.
A. V.
Kabashin
,
A.
Singh
,
M. T.
Swihart
,
IN.
Zavestovskaya
, and
P. N.
Prasad
, “
Laser-processed nanosilicon: A multifunctional nanomaterial for energy and healthcare
,”
ACS Nano
13
,
9841
9867
(
2019
).
278.
E. R.
Mamleyev
 et al., “
Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors
,”
npj Flexible Electron.
3
,
2
(
2019
).
279.
D.
Chioibasu
 et al., “
Prototype orthopedic bone plates 3D printed by laser melting deposition
,”
Materials
12
,
906
(
2019
).
280.
L.
Zeußel
,
J.
Hampl
,
F.
Weise
,
S.
Singh
, and
A.
Schober
, “
Bio-inspired 3D micro structuring of a liver lobule via direct laser writing: A comparative study with SU-8 and SUEX
,”
J. Laser Appl.
34
,
012007
(
2022
).
281.
T.
Aizawa
and
T.
Inohara
, “
Pico-and femtosecond laser micromachining for surface texturing
,”
Micromachining
1
,
1
24
(
2019
).
282.
L.
Ren
 et al., “
Fabrication of flexible microneedle array electrodes for wearable bio-signal recording
,”
Sensors
18
,
1191
(
2018
).
283.
C.
Li
 et al., “
In vitro bioactivity and biocompatibility of bio-inspired Ti-6Al-4V alloy surfaces modified by combined laser micro/nano structuring
,”
Molecules
25
,
1494
(
2020
).
284.
L.
Zhu
 et al., “
Design and compressive fatigue properties of irregular porous scaffolds for orthopedics fabricated using selective laser melting
,”
ACS Biomater. Sci. Eng.
7
,
1663
1672
(
2021
).
285.
P.
Caravaggi
 et al., “
CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization
,”
J. Biomed. Mater. Res. Part B
107
,
2343
2353
(
2019
).
286.
F. J.
Alamos
 et al., “
Effect of powder reuse on orthopedic metals produced through selective laser sintering
,”
Manuf. Lett.
31
,
40
44
(
2022
).
287.
M. S.
Chaar
,
N.
Passia
, and
M.
Kern
, “
Long-term clinical outcome of posterior metal-ceramic crowns fabricated with direct metal laser-sintering technology
,”
J. Prosthodont. Res.
64
,
354
357
(
2020
).
288.
M. Y.
Shen
 et al., “
Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask
,”
Appl. Phys. Lett.
82
,
1715
1717
(
2003
).
289.
F.
Costache
,
S.
Kouteva-Arguirova
, and
J.
Reif
, “
Sub–damage–threshold femtosecond laser ablation from crystalline Si: Surface nanostructures and phase transformation
,”
Appl. Phys. A
79
,
1429
1432
(
2004
).
290.
H.
Qin
 et al., “
Solidification pattern, microstructure and texture development in laser powder bed fusion (LPBF) of Al10SiMg alloy
,”
Mater. Charact.
145
,
29
38
(
2018
).
291.
T.-R.
Shiu
,
C. P.
Grigoropoulos
,
D. G.
Cahill
, and
R.
Greif
, “
Mechanism of bump formation on glass substrates during laser texturing
,”
Int. J. Appl. Phys.
86
,
1311
1316
(
1999
).
292.
D. S.
Patel
,
A.
Singh
,
K.
Balani
, and
J.
Ramkumar
, “
Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V
,”
Surf. Coat. Technol.
349
,
816
829
(
2018
).
293.
C.
Sciancalepore
,
L.
Gemini
,
L.
Romoli
, and
F.
Bondioli
, “
Study of the wettability behavior of stainless steel surfaces after ultrafast laser texturing
,”
Surf. Coat. Technol.
352
,
370
377
(
2018
).
294.
A. I.
Aguilar-Morales
,
S.
Alamri
, and
A. F.
Lasagni
, “
Micro-fabrication of high aspect ratio periodic structures on stainless steel by picosecond direct laser interference patterning
,”
J. Mater. Process. Technol.
252
,
313
321
(
2018
).
295.
A. H. A.
Lutey
 et al., “
Towards laser-textured antibacterial surfaces
,”
Sci. Rep.
8
,
10112
(
2018
).
296.
R.
Kumari
,
T.
Scharnweber
,
W.
Pfleging
,
H.
Besser
, and
J. D.
Majumdar
, “
Laser surface textured titanium alloy (Ti-6Al-4V). II. Studies on bio-compatibility
,”
Appl. Surf. Sci.
357
,
750
758
(
2015
).
297.
R. R.
Behera
 et al., “
Deposition of biphasic calcium phosphate film on laser surface textured Ti-6Al-4V and its effect on different biological properties for orthopedic applications
,”
J. Alloys Compd.
842
,
155683
(
2020
).
298.
B.
Dashtbozorg
 et al., “
Development of surfaces with antibacterial durability through combined S phase plasma hardening and athermal femtosecond laser texturing
,”
Appl. Surf. Sci.
565
,
150594
(
2021
).
299.
Y.-Y.
Chang
,
J.-H.
Zhang
, and
H.-L.
Huang
, “
Effects of laser texture oxidation and high-temperature annealing of TiV alloy thin films on mechanical and antibacterial properties and cytotoxicity
,”
Mater.
11
,
2495
(
2018
).
300.
Q.
Pan
,
Y.
Cao
,
W.
Xue
,
D.
Zhu
, and
W.
Liu
, “
Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property
,”
Langmuir
35
,
11414
11421
(
2019
).
301.
D.
Nagle Travessa
 et al., “
The effect of surface laser texturing on the corrosion performance of the biocompatible β-Ti12Mo6Zr2Fe alloy
,”
Surf. Coat. Technol.
405
,
126628
(
2021
).
302.
Z.
Yu
,
S.
Yin
,
W.
Zhang
,
X.
Jiang
, and
J.
Hu
, “
Picosecond laser texturing on titanium alloy for biomedical implants in cell proliferation and vascularization
,”
J. Biomed. Mater. Res. Part B
108
,
1494
1504
(
2020
).
303.
S.
Sedaghat
 et al., “
Laser-induced mesoporous nickel oxide as a highly sensitive nonenzymatic glucose sensor
,”
ACS Appl. Nano Mater.
3
,
5260
5270
(
2020
).
304.
Y.
Han
 et al., “
A study on tribological properties of textured Co-Cr-Mo alloy for artificial hip joints
,”
Int. J. Refract. Met. Hard Mater.
95
,
105463
(
2021
).
305.
B.
Fotovvati
,
N.
Namdari
, and
A.
Dehghanghadikolaei
, “
On coating techniques for surface protection: A review
,”
J. Manuf. Mater. Process.
3
,
28
(
2019
).
306.
J. C. W.
Mah
,
A.
Muchtar
,
M. R.
Somalu
, and
M. J.
Ghazali
, “
Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques
,”
Int. J. Hydrogen Energy
42
,
9219
9229
(
2017
).
307.
S.
Adhikari
,
S.
Selvaraj
, and
D.-H.
Kim
, “
Progress in powder coating technology using atomic layer deposition
,”
Adv. Mater. Interfaces
5
,
1800581
(
2018
).
308.
X.
Wang
,
J.
Jiang
, and
Y.
Tian
, “
A review on macroscopic and microstructural features of metallic coating created by pulsed laser material deposition
,”
Micromachines
13
,
659
(
2022
).
309.
M.
Moradi
,
M.
Karami Moghadam
, and
M.
Kazazi
, “
Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating
,”
Optik
178
,
614
622
(
2019
).
310.
N.
Barka
,
S.
Sattarpanah Karganroudi
,
R.
Fakir
,
P.
Thibeault
, and
V. B.
Feujofack Kemda
, “
Effects of laser hardening process parameters on hardness profile of 4340 steel spline—An experimental approach
,”
Coatings
10
,
342
(
2020
).
311.
O. S.
Adesina
 et al., “
Influence of phase composition and microstructure on corrosion behavior of laser based Ti-Co-Ni ternary coatings on Ti-6Al-4V alloy
,”
J. Alloys Compd.
827
,
154245
(
2020
).
312.
A. S.
Abbas
,
I. A.
Annon
, and
F. F.
Sayyid
, “
Studying the effect ZnONP deposited on ST37-2 by pulse laser depositions technique for corrosion protection using in oil storage applications
,”
J. Pet. Sci. Res.
12
,
290
301
(
2022
).
313.
Y.
Hu
and
W.
Cong
, “
A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites
,”
Ceram. Int.
44
,
20599
20612
(
2018
).
314.
Y.
Liu
,
T.
Xu
,
Y.
Liu
,
Y.
Gao
, and
C.
Di
, “
Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser
,”
J. Mater. Res. Technol.
9
,
8283
8288
(
2020
).
315.
A. K.
Das
, “
A review on coating with high entropy alloy developed by laser energy based surfacing process
,”
Mater. Today: Proc.
52
,
1551
1557
(
2022
).
316.
J. M. S. d.
Sousa
,
F.
Ratusznei
,
M.
Pereira
,
R. d. M.
Castro
, and
E. I. M.
Curi
, “
Abrasion resistance of Ni-Cr-B-Si coating deposited by laser cladding process
,”
Tribol. Int.
143
,
106002
(
2020
).
317.
T.
Bhardwaj
,
M.
Shukla
,
N. K.
Prasad
,
C. P.
Paul
, and
K. S.
Bindra
, “
Direct laser deposition-additive manufacturing of Ti–15Mo alloy: Effect of build orientation induced surface topography on corrosion and bioactivity
,”
Met. Mater. Int.
26
,
1015
1029
(
2020
).
318.
D.
Dhinasekaran
 et al., “
Pulsed laser deposition of nanostructured bioactive glass and hydroxyapatite coatings: Microstructural and electrochemical characterization
,”
Mater. Sci. Eng. C
130
,
112459
(
2021
).
319.
L.
Ma
 et al., “
Characterization of hydroxyapatite film obtained by Er:YAG pulsed laser deposition on sandblasted titanium: An in vitro study
,”
Materials
15
,
2306
(
2022
).
320.
M. K.
Ahmed
,
R.
Ramadan
,
M.
Afifi
, and
A. A.
Menazea
, “
Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications
,”
J. Mater. Res. Technol.
9
,
8854
8866
(
2020
).
321.
L.
Duta
, “
In vivo assessment of synthetic and biological-derived calcium phosphate-based coatings fabricated by pulsed laser deposition: A review
,”
Coatings
11
,
99
(
2021
).
322.
A. A.
Menazea
,
S. A.
Abdelbadie
, and
M. K.
Ahmed
, “
Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications
,”
Appl. Surf. Sci.
508
,
145299
(
2020
).
323.
A.
Das
and
M.
Shukla
, “
Surface morphology, bioactivity, and antibacterial studies of pulsed laser deposited hydroxyapatite coatings on stainless steel 254 for orthopedic implant applications
,”
Proc. Inst. Mech. Eng. L
233
,
120
127
(
2019
).
324.
A.
Gupta
 et al., “
Silver-doped laser-induced graphene for potent surface antibacterial activity and anti-biofilm action
,”
Chem. Commun.
55
,
6890
6893
(
2019
).
325.
B.
Priyadarshini
,
M.
Rama
,
C. Singh
, and
U.
Vijayalakshmi
, “
Bioactive coating as a surface modification technique for biocompatible metallic implants: A review
,”
J. Asian Ceram. Soc.
7
,
397
406
(
2019
).
326.
S.
Gnanavel
,
S.
Ponnusamy
,
L.
Mohan
, and
C.
Muthamizhchelvan
, “
In vitro corrosion behaviour of Ti-6Al-4V and 316L stainless steel alloys for biomedical implant applications
,”
J. Bio- Tribo-Corros.
4
,
1
(
2018
).
327.
C.
Ma
,
G.
Peng
,
L.
Nie
,
H.
Liu
, and
Y.
Guan
, “
Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement
,”
Appl. Surf. Sci.
445
,
211
216
(
2018
).
328.
S.-H.
Um
 et al., “
Robust hydroxyapatite coating by laser-induced hydrothermal synthesis
,”
Adv. Funct. Mater.
30
,
2005233
(
2020
).
329.
Y.
Chen
,
X.
Zhang
,
M. M.
Parvez
, and
F.
Liou
, “
A review on metallic alloys fabrication using elemental powder blends by laser powder directed energy deposition process
,”
Materials
13
,
3562
(
2020
).
330.
J.
Wu
 et al., “
Laser fabrication of bioinspired gradient surfaces for wettability applications
,”
Adv. Mater. Interfaces
8
,
2001610
(
2021
).
331.
C. M.
Julien
and
A.
Mauger
, “
Pulsed laser deposited films for microbatteries
,”
Coatings
9
,
386
(
2019
).
332.
A.
Saboori
 et al., “
Application of directed energy deposition-based additive manufacturing in repair
,”
Appl. Sci.
9
,
3316
(
2019
).
333.
T.
Bhardwaj
,
M.
Shukla
,
C. P.
Paul
, and
K. S.
Bindra
, “
Direct energy deposition—Laser additive manufacturing of titanium-molybdenum alloy: Parametric studies, microstructure and mechanical properties
,”
J. Alloys Compd.
787
,
1238
1248
(
2019
).
334.
R.
Negrea
 et al., “
Akermanite-based coatings grown by pulsed laser deposition for metallic implants employed in orthopaedics
,”
Surf. Coat. Technol.
357
,
1015
1026
(
2019
).
335.
V. M.
Donnelly
and
A.
Kornblit
, “
Plasma etching: Yesterday, today, and tomorrow
,”
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
336.
Z.
Huang
,
N.
Geyer
,
P.
Werner
,
J.
de Boor
, and
U.
Gösele
, “
Metal-assisted chemical etching of silicon: A review
,”
Adv. Mater.
23
,
285
308
(
2011
).
337.
T.
Kan
,
V.
Strezov
, and
T. J.
Evans
, “
Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters
,”
Renewable Sustainable Energy Rev.
57
,
1126
1140
(
2016
).
338.
S. D.
Anuar Sharuddin
,
F.
Abnisa
,
W. M. A.
Wan Daud
, and
M. K.
Aroua
, “
A review on pyrolysis of plastic wastes
,”
Energy Convers. Manage.
115
,
308
326
(
2016
).
339.
C.
Huo
 et al., “
Metal-assisted chemical etching of silicon in oxidizing HF solutions: Origin, mechanism, development, and black silicon solar cell application
,”
Adv. Funct. Mater.
30
,
2005744
(
2020
).
340.
M. Y.
Arafat
 et al., “
Fabrication of black silicon via metal-assisted chemical etching—A review
,”
Sustainability
13
,
10766
(
2021
).
341.
T.
Hirano
,
K.
Nakade
,
S.
Li
,
K.
Kawai
, and
K.
Arima
, “
Chemical etching of a semiconductor surface assisted by single sheets of reduced graphene oxide
,”
Carbon
127
,
681
687
(
2018
).
342.
Y. H.
Choi
,
K. H.
Baik
,
S.
Kim
, and
J.
Kim
, “
Photoelectrochemical etching of ultra-wide bandgap β-Ga2O3 semiconductor in phosphoric acid and its optoelectronic device application
,”
Appl. Surf. Sci.
539
,
148130
(
2021
).
343.
M. N.
Uddin
 et al., “
An overview of recent developments in biomass pyrolysis technologies
,”
Energies
11
,
3115
(
2018
).
344.
G.
Wang
 et al., “
A review of recent advances in biomass pyrolysis
,”
Energy Fuels
34
,
15557
15578
(
2020
).
345.
E. G.
Pereira
,
H.
Fauller
,
M.
Magalhães
,
B.
Guirardi
, and
M. A.
Martins
, “
Potential use of wood pyrolysis coproducts: A review
,”
Environ. Prog. Sustainable Energy
41
,
e13705
(
2022
).
346.
T. Y. A.
Fahmy
,
Y.
Fahmy
,
F.
Mobarak
,
M.
El-Sakhawy
, and
R. E.
Abou-Zeid
, “
Biomass pyrolysis: Past, present, and future
,”
Environ. Dev. Sustainable
22
,
17
32
(
2020
).
347.
P.
Kasar
,
D. K.
Sharma
, and
M.
Ahmaruzzaman
, “
Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process
,”
J. Cleaner Prod.
265
,
121639
(
2020
).
348.
R. K.
Singh
,
D.
Pandey
,
T.
Patil
, and
A. N.
Sawarkar
, “
Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses
,”
Bioresour. Technol.
310
,
123464
(
2020
).
349.
S.
Gao
 et al., “
Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis
,”
Nat. Commun.
11
,
2016
(
2020
).
350.
E.
Emil Kaya
 et al., “
New proposal for size and size-distribution evaluation of nanoparticles synthesized via ultrasonic spray pyrolysis using search algorithm based on image-processing technique
,”
Materials
13
,
38
(
2020
).
351.
V.
Sheremetyev
 et al., “
Effect of dynamic chemical etching on the pore structure, permeability, and mechanical properties of Ti-Nb-Zr scaffolds for medical applications
,”
Acad. J. Manuf. Eng.
143
,
051004
(
2020
).
352.
K.
Zhang
,
S.
Lv
,
Q.
Zhou
, and
D.
Tang
, “
CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction
,”
Sens. Actuators, B
307
,
127631
(
2020
).
353.
J. A.
Hondred
,
Z. T.
Johnson
, and
J. C.
Claussen
, “
Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics
,”
J. Mater. Chem. C
8
,
11376
11388
(
2020
).
354.
I.
De Tullio
,
M.
Berardini
,
D.
Di Iorio
,
F.
Perfetti
, and
G.
Perfetti
, “
Comparative evaluation among laser-treated, machined, and sandblasted/acid-etched implant surfaces: An in vivo histologic analysis on sheep
,”
Int. J. Implant Dent.
6
,
7
(
2020
).
355.
E.
Velasco-Ortega
 et al., “
Long-term clinical outcomes of treatment with dental implants with acid etched surface
,”
Materials
13
,
1553
(
2020
).
356.
H.
Elsayed
 et al., “
Novel bioceramics from digital light processing of calcite/acrylate blends and low temperature pyrolysis
,”
Ceram. Int.
46
,
17140
17145
(
2020
).
357.
D.
Nakagawa
,
M.
Nakamura
,
S.
Nagai
, and
M.
Aizawa
, “
Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their responses to immunocytes
,”
J. Mater. Sci.: Mater. Med.
31
,
20
(
2020
).
358.
N. S.
Ismail
 et al., “
Effect of heating power towards synthesis of carbon dots through microwave pyrolysis method for optical-based biosensor
,”
AIP Conf. Proc.
2203
,
020057
(
2020
).
359.
Y.
Yu
and
Y.
Liu
, “
A large-pressure-range, large-sensing-distance wireless passive pressure sensor based on polymer infiltration pyrolysis-enhanced polymer-derived ceramic films
,”
Meas. Sci. Technol.
31
,
075103
(
2020
).
360.
S.
Kwon
 et al., “
Hierarchically porous, laser-pyrolyzed carbon electrode from black photoresist for on-chip microsupercapacitors
,”
Nanomaterials
11
,
2828
(
2021
).
361.
S.
Jiang
 et al., “
Thermal stress-induced fabrication of carbon micro/nanostructures and the application in high-performance enzyme-free glucose sensors
,”
Sens. Actuators, B
345
,
130364
(
2021
).
362.
J.
Li
 et al., “
Study of long-term biocompatibility and bio-safety of implantable nanogenerators
,”
Nano Energy
51
,
728
735
(
2018
).
363.
J.
Shin
 et al., “
Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis
,”
Nat. Mater.
20
,
100
107
(
2021
).
364.
Y.
Jiang
 et al., “
Laser-etched stretchable graphene–polymer composite array for sensitive strain and viscosity sensors
,”
Nano-Micro Lett.
11
,
99
(
2019
).
365.
F.
Zhang
 et al., “
Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching
,”
Sci. Rep.
8
,
2419
(
2018
).
366.
A.
Butkutė
 et al., “
Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication
,”
Opt. Express
29
,
23487
23499
(
2021
).
367.
H.
Misawa
and
S.
Juodkazis
, “
Laser matter interaction confined inside the bulk of a transparent solid
,” in
3D Laser Microfabrication: Principles and Applications
(
John Wiley and Sons
,
2006
), pp.
5
36
.
368.
J.
Smolík
 et al., “
3D micro-structuring by CW direct laser writing on PbO-Bi2O3-Ga2O3 glass
,”
Appl. Surf. Sci.
589
,
152993
(
2022
).
369.
S.
Mishra
and
V.
Yadava
, “
Laser beam micromachining (LBMM)—A review
,”
Opt. Lasers Eng.
73
,
89
122
(
2015
).
370.
J.
Cheng
 et al., “
A review of ultrafast laser materials micromachining
,”
Opt. Laser Technol.
46
,
88
102
(
2013
).
371.
S.
Wang
,
Z.
Zhou
,
B.
Li
,
C.
Wang
, and
Q.
Liu
, “
Progresses on new generation laser direct writing technique
,”
Mater. Today Nano
16
,
100142
(
2021
).
372.
S. D.
Gittard
and
R. J.
Narayan
, “
Laser direct writing of micro- and nano-scale medical devices
,”
Expert Rev. Med. Devices
7
,
343
356
(
2010
).
373.
L.
Jonusauskas
 et al., “
3D laser microfabrication of medical devices
,” in
Transactions on Additive Manufacturing Meets Medicine
(
Trans. AMMM
,
2020
).
374.
M. M.
Salman
, “
3D bio-print: A socio ethical view of bioprinting human organs and tissue structuring
,”
Indian J. Sci. Technol.
11
,
1
7
(
2018
).
375.
N.
Nagarajan
,
A.
Dupret-Bories
,
E.
Karabulut
,
P.
Zorlutuna
, and
N. E.
Vrana
, “
Enabling personalized implant and controllable biosystem development through 3D printing
,”
Biotechnol. Adv.
36
,
521
533
(
2018
).
376.
J. W.
Mwangi
 et al., “
Nitinol manufacturing and micromachining: A review of processes and their suitability in processing medical-grade nitinol
,”
J. Manuf. Process.
38
,
355
369
(
2019
).
377.
Z. Y. A.
Al-Shibaany
,
P.
Penchev
,
J.
Hedley
, and
S.
Dimov
, “
Laser micromachining of lithium niobate-based resonant sensors towards medical devices applications
,”
Sensors
20
,
2206
(
2020
).
378.
P.
Šugár
,
J.
Kováčik
,
J.
Šugárová
, and
B.
Ludrovcová
, “
A study of laser micromachining of PM processed Ti compact for dental implants applications
,”
Materials
12
,
2246
(
2019
).
379.
Z.-C.
Ma
,
Y.-L.
Zhang
,
B.
Han
,
Q.-D.
Chen
, and
H.-B.
Sun
, “
Femtosecond-laser direct writing of metallic micro/nanostructures: From fabrication strategies to future applications
,”
Small Methods
2
,
1700413
(
2018
).
380.
Y.-Y.
Cao
,
N.
Takeyasu
,
T.
Tanaka
,
X.-M.
Duan
, and
S.
Kawata
, “
3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction
,”
Small
5
,
1144
1148
(
2009
).
381.
E.
Blasco
 et al., “
Fabrication of conductive 3D gold-containing microstructures via direct laser writing
,”
Adv. Mater.
28
,
3592
3595
(
2016
).
382.
F.
Qiu
 et al., “
Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating
,”
J. Mater. Chem. B
2
,
357
362
(
2014
).
383.
T.
Zandrini
 et al., “
Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine
,”
Sci. Rep.
9
,
11761
(
2019
).
384.
F.
Rey
 et al., “
Advances in tissue engineering and innovative fabrication techniques for 3-D-structures: Translational applications in neurodegenerative diseases
,”
Cells
9
,
1636
(
2020
).
385.
I.
Zerva
,
E.
Katsoni
,
C.
Simitzi
,
E.
Stratakis
, and
I.
Athanassakis
, “
Laser micro-structured Si scaffold-implantable vaccines against salmonella typhimurium
,”
Vaccine
37
,
2249
2257
(
2019
).
386.
P.
Ball
, “
Engineering shark skin and other solutions
,”
Nature
400
,
507
509
(
1999
).
387.
U.
Hermens
 et al., “
Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials
,”
Appl. Surf. Sci.
418
,
499
507
(
2017
).
388.
H.
Lee
,
B. P.
Lee
, and
P. B.
Messersmith
, “
A reversible wet/dry adhesive inspired by mussels and geckos
,”
Nature
448
,
338
341
(
2007
).
389.
S.
Niu
 et al., “
Excellent structure-based multifunction of morpho butterfly wings: A review
,”
J. Bionic Eng.
12
,
170
189
(
2015
).
390.
A.
Papadopoulos
 et al., “
Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring
,”
Adv. Mater.
31
,
1901123
(
2019
).
391.
G. F. B.
Almeida
 et al., “
Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes
,”
Appl. Surf. Sci.
506
,
144762
(
2020
).
392.
M.
Janik
,
M.
Koba
,
A.
Celebańska
,
W. J.
Bock
, and
M.
Śmietana
, “
Live E. coli bacteria label-free sensing using a microcavity in-line Mach-Zehnder interferometer
,”
Sci. Rep.
8
,
17176
(
2018
).