Skin-integrated electronics that directly interact with machines are transforming our ways of life toward the emerging trend of the metaverse. Consequently, developing a wearable and skin-conformal interface that simultaneously features waterproofness, low cost, and low power consumption for human–machine interaction remains highly desired. Herein, a stretchable, inexpensive, and waterproof magnetoelastic sensor array has been developed as a secondary skin for self-powered human–machine interaction. The magnetoelastic sensor array utilizes the giant magnetoelastic effect in a soft system, which converts mechanical pressure to magnetic field variation and, when coupled with the magnetic induction, can generate electricity. In such a way, our magnetoelastic sensor array comprises the giant magnetomechanical coupling layer made up of nanomagnets and a porous silicone rubber matrix, and the magnetic induction layer, which are coils patterned by liquid metal. With programmable functionalities, the soft magnetoelastic sensor array can supply different commands by producing bespoke electric signals from human finger touch with an optimal signal-to-noise ratio of 34 dB and a rapid response time of 0.2s. To pursue a practical application, the soft magnetoelastic sensor array can wirelessly turn on and off a household lamp and control a music speaker via Bluetooth continuously in real time, even with contact with high-humidity environments such as heavy perspiration. With a collection of compelling features, the soft magnetoelastic sensor array puts forth a unique and savvy avenue of self-powered bioelectronic technology that practically enables a wider variety of applications for wearable human–machine interaction.

1.
Z.
Zhou
,
K.
Chen
,
X.
Li
,
S.
Zhang
,
Y.
Wu
,
Y.
Zhou
,
K.
Meng
,
C.
Sun
,
Q.
He
,
W.
Fan
,
E.
Fan
,
Z.
Lin
,
X.
Tan
,
W.
Deng
,
J.
Yang
, and
J.
Chen
, “
Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays
,”
Nat. Electron.
3
,
571
(
2020
).
2.
Z.
Yan
,
D.
Xu
,
Z.
Lin
,
P.
Wang
,
B.
Cao
,
H.
Ren
,
F.
Song
,
C.
Wan
,
L.
Wang
,
J.
Zhou
,
X.
Zhao
,
J.
Chen
,
Y.
Huang
, and
X.
Duan
, “
Highly stretchable van der Waals thin films for adaptable and breathable bioelectronic membranes
,”
Science
375
,
852
859
(
2022
).
3.
A.
Libanori
,
G.
Chen
,
X.
Zhao
,
Y.
Zhou
, and
J.
Chen
, “
Smart textiles for personalized healthcare
,”
Nat. Electron.
5
,
142
156
(
2022
).
4.
G.
Chen
,
Y.
Li
,
M.
Bick
, and
J.
Chen
, “
Smart textiles for electricity generation
,”
Chem. Rev.
120
,
3668
3720
(
2020
).
5.
G.
Chen
,
X.
Xiao
,
X.
Zhao
,
T.
Tat
,
M.
Bick
, and
J.
Chen
, “
Electronic textiles for wearable point-of-care systems
,”
Chem. Rev.
122
,
3259
3291
(
2022
).
6.
G.
Chen
,
Y.
Fang
,
X.
Zhao
,
T.
Tat
, and
J.
Chen
, “
Textiles for learning tactile interactions
,”
Nat. Electron.
4
,
175
(
2021
).
7.
S. I.
Rich
,
R. J.
Wood
, and
C.
Majidi
, “
Untethered soft robotics
,”
Nat. Electron.
1
,
102
112
(
2018
).
8.
W.
Heng
,
S.
Solomon
, and
W.
Gao
, “
Flexible electronics and devices as human–machine interfaces for medical robotics
,”
Adv. Mater.
34
,
2107902
(
2021
).
9.
X.
Xiao
,
Y.
Fang
,
X.
Xiao
,
J.
Xu
, and
J.
Chen
, “
Machine-learning-aided self-powered assistive physical therapy devices
,”
ACS Nano
15
,
18633
(
2021
).
10.
R.
Yin
,
D.
Wang
,
S.
Zhao
,
Z.
Lou
, and
G.
Shen
, “
Wearable sensors-enabled human–machine interaction systems: From design to application
,”
Adv. Funct. Mater.
31
,
2008936
(
2021
).
11.
G.
Chen
,
X.
Zhao
,
S.
Andalib
,
J.
Xu
,
Y.
Zhou
,
T.
Tat
,
K.
Lin
, and
J.
Chen
, “
Discovering giant magnetoelasticity in soft matter for electronics textiles
,”
Matter
4
,
3725
3740
(
2021
).
12.
X.
Zhao
,
H.
Askari
, and
J.
Chen
, “
Nanogenerators for smart cities in the era of 5G and internet of things
,”
Joule
5
,
1391
(
2021
).
13.
M.
Amjadi
,
A.
Pichitpajongkit
,
S.
Lee
,
S.
Ryu
, and
I.
Park
, “
Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite
,”
ACS Nano
8
,
5154
(
2014
).
14.
C.
Tan
,
Z.
Dong
,
Y.
Li
,
H.
Zhao
,
X.
Huang
,
Z.
Zhou
,
J. W.
Jiang
,
Y.
Long
,
P.
Jiang
,
T. Y.
Zhang
, and
B.
Sun
, “
A high performance wearable strain sensor with advanced thermal management for motion monitoring
,”
Nat. Commun.
11
,
3530
(
2020
).
15.
S.
Chen
,
Y.
Song
,
D.
Ding
,
Z.
Ling
, and
F.
Xu
, “
Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers
,”
Adv. Funct. Mater.
28
,
1802547
(
2018
).
16.
Y.
Yu
,
J.
Nassar
,
C.
Xu
,
J.
Min
,
Y.
Yang
,
A.
Dai
,
R.
Doshi
,
A.
Huang
,
Y.
Song
,
R.
Gehlhar
,
A. D.
Ames
, and
W.
Gao
, “
Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces
,”
Sci. Rob.
5
,
aaz7946
(
2020
).
17.
J.
Lee
,
H.
Kwon
,
J.
Seo
,
S.
Shin
,
J. H.
Koo
,
C.
Pang
,
S.
Son
,
J. H.
Kim
,
Y. H.
Jang
,
D. E.
Kim
, and
T.
Lee
, “
Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics
,”
Adv. Mater.
27
,
2433
(
2015
).
18.
Y. C.
Huang
,
Y.
Liu
,
C.
Ma
,
H.-C.
Cheng
,
Q.
He
,
H.
Wu
,
C.
Wang
,
C. Y.
Lin
,
Y.
Huang
, and
X.
Duan
, “
Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors
,”
Nat. Electron.
3
,
59
(
2020
).
19.
Y.
Xiong
,
Y.
Shen
,
L.
Tian
,
Y.
Hu
,
P.
Zhu
,
R.
Sun
, and
C. P.
Wong
, “
A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring
,”
Nano Energy
70
,
104436
(
2020
).
20.
G.
Conta
,
A.
Libanori
,
T.
Tat
,
G.
Chen
, and
J.
Chen
, “
Triboelectric nanogenerators for therapeutic electrical stimulation
,”
Adv. Mater.
33
,
2007502
(
2021
).
21.
K.
Meng
,
S.
Zhao
,
Y.
Zhou
,
Y.
Wu
,
S.
Zhang
,
Q.
He
,
X.
Wang
,
Z.
Zhou
,
W.
Fan
,
X.
Tan
,
J.
Yang
, and
J.
Chen
, “
A wireless textile-based sensor system for self-powered personalized health care
,”
Matter
2
,
896
(
2020
).
22.
S.
Zhang
,
M.
Bick
,
X.
Xiao
,
G.
Chen
,
A.
Nashalian
, and
J.
Chen
, “
Leveraging triboelectric nanogenerators for bioengineering
,”
Matter
4
,
845
(
2021
).
23.
Z.
Lin
,
J.
Chen
,
X.
Li
,
Z.
Zhou
,
K.
Meng
,
W.
Wei
,
J.
Yang
, and
Z. L.
Wang
, “
Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring
,”
ACS Nano
11
,
8830
(
2017
).
24.
Y.
Fang
,
Y.
Zou
,
J.
Xu
,
G.
Chen
,
Y.
Zhou
,
W.
Deng
,
X.
Zhao
,
M.
Roustaei
,
T. K.
Hsiai
, and
J.
Chen
, “
Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor
,”
Adv. Mater.
33
,
2104178
(
2021
).
25.
P.-K.
Yang
,
S.-A.
Chou
,
C.-H.
Hsu
,
R. J.
Mathew
,
K.-H.
Chiang
,
J.-Y.
Yang
, and
Y.-T.
Chen
, “
Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications
,”
Nano Energy
75
,
104879
(
2020
).
26.
Y.
Su
,
C.
Chen
,
H.
Pan
,
Y.
Yang
,
G.
Chen
,
X.
Zhao
,
W.
Li
,
Q.
Gong
,
G.
Xie
,
Y.
Zhou
,
S.
Zhang
,
H.
Tai
,
Y.
Jiang
, and
J.
Chen
, “
Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring
,”
Adv. Funct. Mater.
31
,
2010962
(
2021
).
27.
D.
Zhang
,
D.
Wang
,
Z.
Xu
,
X.
Zhang
,
Y.
Yang
,
J.
Guo
,
B.
Zhang
, and
W.
Zhao
, “
Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators
,”
Coord. Chem. Rev.
427
,
213597
(
2021
).
28.
G.
Tang
,
Q.
Shi
,
Z.
Zhang
,
T.
He
,
Z.
Sun
, and
C.
Lee
, “
Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface
,”
Nano Energy
81
,
105582
(
2021
).
29.
B.
Zhang
,
J.
Chen
,
L.
Jin
,
W.
Deng
,
L.
Zhang
,
H.
Zhang
,
M.
Zhu
,
W.
Yang
, and
Z. L.
Wang
, “
Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors
,”
ACS Nano
10
,
6241
(
2016
).
30.
P.
Jiao
, “
Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators
,”
Nano Energy
88
,
106227
(
2021
).
31.
L.
Li
,
X.
Wang
,
P.
Zhu
,
H.
Li
,
F.
Wang
, and
J.
Wu
, “
The electron transfer mechanism between metal and amorphous polymers in humidity environment for triboelectric nanogenerator
,”
Nano Energy
70
,
104476
(
2020
).
32.
X.
Zhao
,
Y.
Zhou
,
J.
Xu
,
G.
Chen
,
Y.
Fang
,
T.
Tat
,
X.
Xiao
,
Y.
Song
,
S.
Li
, and
J.
Chen
, “
Soft fibers with magnetoelasticity for wearable electronics
,”
Nat. Commun.
12
,
6755
(
2021
).
33.
K.
Zeng
,
S. C.
Roy
, and
C. A.
Grimes
, “
Quantification of blood clotting kinetics I: Determination of activated clotting times as a function of heparin concentration using magnetoelastic sensors
,”
Sens. Lett.
5
,
425
(
2007
).
34.
S. C.
Roy
,
K. G.
Ong
,
K.
Zeng
, and
C. A.
Grimes
, “
Quantification of blood clotting kinetics II: Thromboelastograph analysis and measurement of erythrocyte sedimentation rate using magnetoelastic sensors
,”
Sens. Lett.
5
,
432
(
2007
).
35.
C. A.
Grimes
,
S. C.
Roy
,
S.
Rani
, and
Q.
Cai
, “
Theory, instrumentation and applications of magnetoelastic resonance sensors: A review
,”
Sensors
11
,
2809
(
2011
).
36.
Y.
Zhou
,
X.
Zhao
,
J.
Xu
,
Y.
Fang
,
G.
Chen
,
Y.
Song
,
S.
Li
, and
J.
Chen
, “
Giant magnetoelastic effect in soft systems for bioelectronics
,”
Nat. Mater.
20
,
1670
(
2021
).
37.
G.
Chen
,
Y.
Zhou
,
Y.
Fang
,
X.
Zhao
,
S.
Shen
,
T.
Tat
,
A.
Nashalian
, and
J.
Chen
, “
Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system
,”
ACS Nano
15
,
20582
–20589 (
2021
).

Supplementary Material

You do not currently have access to this content.