The all-solid-state battery (ASSB) has become one of the most promising next-generation battery systems, since the aspect of safety has emerged as a crucial criterion for new large-scale applications such as in electric vehicles. Despite the recent remarkable progress in the performance enhancement, the real-world implementation of the ASSB still requires full comprehension/evaluation of its properties and performance under various practical operational conditions. Unlike batteries employed in conventional electronic devices, those in electric vehicles—the major application that the ASSB is expected to be employed—would be exposed to wide temperature variations (−20 to ∼70 °C) at various states of charges due to their outdoor storage and irregular discharge/rest/charge conditions depending on vehicle drivers' usage patterns. Herein, we investigate the reliability of a Li6PS5Cl-based ASSB system in practically harsh but plausible storage conditions and reveal that it is vulnerable to elevated-temperature storage as low as 70 °C, which, in contrast to the common belief, causes significant degradation of the electrolyte and consequently irreversible buildup of the cell resistance. It is unraveled that this storage condition induces the decomposition of Li6PS5Cl in contact with the cathode material, involving the SOx gas evolution particularly at charged states, which creates a detrimental porous cathode/electrolyte interface, thereby leading to the large interfacial resistance. Our findings indicate that the stability of the solid electrolyte, which has been believed to be failsafe, needs to be carefully revisited at various practical operational conditions for actual applications in ASSBs.

1.
F.
Zhu
,
M. S.
Islam
,
L.
Zhou
,
Z.
Gu
,
T.
Liu
,
X.
Wang
,
J.
Luo
,
C.-W.
Nan
,
Y.
Mo
, and
C.
Ma
, “
Single-atom-layer traps in a solid electrolyte for lithium batteries
,”
Nat. Commun.
11
(
1
),
1
(
2020
).
2.
M. J.
Wang
,
E.
Carmona
,
A.
Gupta
,
P.
Albertus
, and
J.
Sakamoto
, “
Enabling ‘lithium-free’ manufacturing of pure lithium metal solid-state batteries through in situ plating
,”
Nat. Commun.
11
(
1
),
1
(
2020
).
3.
T. K.
Schwietert
,
V. A.
Arszelewska
,
C.
Wang
,
C.
Yu
,
A.
Vasileiadis
,
N. J. J.
de Klerk
,
J.
Hageman
,
T.
Hupfer
,
I.
Kerkamm
,
Y.
Xu
et al., “
Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes
,”
Nat. Mater.
19
(
4
),
428
(
2020
).
4.
S.
Kim
,
C.
Jung
,
H.
Kim
,
K. E.
Thomas‐Alyea
,
G.
Yoon
,
B.
Kim
,
M. E.
Badding
,
Z.
Song
,
J.
Chang
, and
J.
Kim
, “
The role of interlayer chemistry in Li‐metal growth through a garnet‐type solid electrolyte
,”
Adv. Energy Mater.
10
(
12
),
1903993
(
2020
).
5.
A.
Hayashi
,
N.
Masuzawa
,
S.
Yubuchi
,
F.
Tsuji
,
C.
Hotehama
,
A.
Sakuda
, and
M.
Tatsumisago
, “
A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature
,”
Nat. Commun.
10
(
1
),
1
(
2019
).
6.
J. M.
Tarascon
and
M.
Armand
,
Issues and Challenges Facing Rechargeable Lithium Batteries
(
World Scientific
,
2011
), pp.
171
179
.
7.
R.
Pfenninger
,
M.
Struzik
,
I.
Garbayo
,
E.
Stilp
, and
J. L. M.
Rupp
, “
A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films
,”
Nat. Energy
4
(
6
),
475
(
2019
).
8.
A. R.
Baird
,
E. J.
Archibald
,
K. C.
Marr
, and
O. A.
Ezekoye
, “
Explosion hazards from lithium-ion battery vent gas
,”
J. Power Sources
446
,
227257
(
2020
).
9.
Q.
Wang
,
P.
Ping
,
X.
Zhao
,
G.
Chu
,
J.
Sun
, and
C.
Chen
, “
Thermal runaway caused fire and explosion of lithium ion battery
,”
J. Power Sources
208
,
210
(
2012
).
10.
X.
Feng
,
M.
Ouyang
,
X.
Liu
,
L.
Lu
,
Y.
Xia
, and
X.
He
, “
Thermal runaway mechanism of lithium ion battery for electric vehicles: A review
,”
Energy Storage Mater.
10
,
246
(
2018
).
11.
Z.
Guirong
and
Z.
Henghai
, “
Research of the electric vehicle safety
,” in
World Automation Congress
(
IEEE
,
2012
), p.
1
.
12.
D. O.
Shin
,
K.
Oh
,
K. M.
Kim
,
K.-Y.
Park
,
B.
Lee
,
Y.-G.
Lee
, and
K.
Kang
, “
Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction
,”
Sci. Rep
5
(
1
),
18053
(
2015
).
13.
J. J.
Kim
,
K.
Yoon
,
I.
Park
, and
K.
Kang
, “
Progress in the development of sodium‐ion solid electrolytes
,”
Small Methods
1
(
10
),
1700219
(
2017
).
14.
D.
Chang
,
K.
Oh
,
S. J.
Kim
, and
K.
Kang
, “
Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes
,”
Chem. Mater.
30
(
24
),
8764
(
2018
).
15.
L.
Xu
,
S.
Tang
,
Y.
Cheng
,
K.
Wang
,
J.
Liang
,
C.
Liu
,
Y.-C.
Cao
,
F.
Wei
, and
L.
Mai
, “
Interfaces in solid-state lithium batteries
,”
Joule
2
(
10
),
1991
(
2018
).
16.
K.
Yoon
,
J.-J.
Kim
,
W. M.
Seong
,
M. H.
Lee
, and
K.
Kang
, “
Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery
,”
Sci. Rep.
8
(
1
),
8066
(
2018
).
17.
Y.-G.
Lee
,
S.
Fujiki
,
C.
Jung
,
N.
Suzuki
,
N.
Yashiro
,
R.
Omoda
,
D.-S.
Ko
,
T.
Shiratsuchi
,
T.
Sugimoto
, and
S.
Ryu
, “
High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
,”
Nat. Energy
5
(
4
),
299
(
2020
).
18.
Y.
Kato
,
S.
Hori
,
T.
Saito
,
K.
Suzuki
,
M.
Hirayama
,
A.
Mitsui
,
M.
Yonemura
,
H.
Iba
, and
R.
Kanno
, “
High-power all-solid-state batteries using sulfide superionic conductors
,”
Nat. Energy
1
(
4
),
1
(
2016
).
19.
K.
Lee
,
S.
Han
,
J.
Lee
,
S.
Lee
,
J.
Kim
,
Y.
Ko
,
S.
Kim
,
K.
Yoon
,
J.-H.
Song
,
J. H.
Noh
, and
K.
Kang
, “
Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries
,”
Energy Lett.
7
(
1
),
381
(
2022
).
20.
K.
Yoon
,
S.
Lee
,
K.
Oh
, and
K.
Kang
, “
Challenges and strategies towards practically feasible solid-state lithium metal batteries
,”
Adv. Mater.
34
(
4
),
2104666
(
2022
).
21.
D.
Cao
,
X.
Sun
,
Q.
Li
,
A.
Natan
,
P.
Xiang
, and
H.
Zhu
, “
Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations
,”
Matter
3
(
1
),
57
(
2020
).
22.
J. M.
Whiteley
,
J. H.
Woo
,
E.
Hu
,
K.-W.
Nam
, and
S.-H.
Lee
, “
Empowering the lithium metal battery through a silicon-based superionic conductor
,”
J. Electrochem. Soc.
161
(
12
),
A1812
(
2014
).
23.
B.
Liang
,
S.
Tang
,
Q.
Jiang
,
C.
Chen
,
X.
Chen
,
S.
Li
, and
X.
Yan
, “
Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3
,”
Electrochim. Acta
169
,
334
(
2015
).
24.
S.
Wenzel
,
D. A.
Weber
,
T.
Leichtweiss
,
M. R.
Busche
,
J.
Sann
, and
J.
Janek
, “
Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
,”
Solid State Ion.
286
,
24
(
2016
).
25.
J.
Ma
,
B.
Chen
,
L.
Wang
, and
G.
Cui
, “
Progress and prospect on failure mechanisms of solid-state lithium batteries
,”
J. Power Sources
392
,
94
(
2018
).
26.
A.
Grundstein
,
V.
Meentemeyer
, and
J.
Dowd
, “
Maximum vehicle cabin temperatures under different meteorological conditions
,”
Int. J. Biometeorol.
53
(
3
),
255
(
2009
).
27.
Y.
Wu
,
S.
Wang
,
H.
Li
,
L.
Chen
, and
F.
Wu
, “
Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries
,”
InfoMat
3
(
8
),
827
(
2021
).
28.
G.
Hu
,
Y.
Tao
,
Y.
Lu
,
J.
Fan
,
L.
Li
,
J.
Xia
,
Y.
Huang
,
Z.
Zhang
,
H.
Su
, and
Y.
Cao
, “
Enhanced electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode materials modified with lithium‐ion conductive coating LiNbO3
,”
ChemElectroChem
6
(
18
),
4773
(
2019
).
29.
X.
Li
,
L.
Jin
,
D.
Song
,
H.
Zhang
,
X.
Shi
,
Z.
Wang
,
L.
Zhang
, and
L.
Zhu
, “
LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery
,”
J. Energy Chem.
40
,
39
(
2020
).
30.
D.
Hu
,
Q.
Zhang
,
J.
Tian
,
L.
Chen
,
N.
Li
,
Y.
Su
,
L.
Bao
,
Y.
Lu
,
D.
Cao
, and
K.
Yan
, “
High-temperature storage deterioration mechanism of cylindrical 21700-type batteries using Ni-rich cathodes under different SOCs
,”
ACS Appl. Mater. Interfaces
13
(
5
),
6286
(
2021
).
31.
J.
Schmitt
,
A.
Maheshwari
,
M.
Heck
,
S.
Lux
, and
M.
Vetter
, “
Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging
,”
J. Power Sources
353
,
183
(
2017
).
32.
X.
Liao
,
Q.
Huang
,
S.
Mai
,
X.
Wang
,
M.
Xu
,
L.
Xing
,
Y.
Liao
, and
W.
Li
, “
Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential
,”
J. Power Sources
286
,
551
(
2015
).
33.
P.
Keil
,
S. F.
Schuster
,
J.
Wilhelm
,
J.
Travi
,
A.
Hauser
,
R. C.
Karl
, and
A.
Jossen
, “
Calendar aging of lithium-ion batteries
,”
J. Electrochem. Soc.
163
(
9
),
A1872
(
2016
).
34.
H. H.
Ryu
,
G. T.
Park
,
C. S.
Yoon
, and
Y. K.
Sun
, “
Microstructural degradation of Ni‐rich Li [NixCoyMn1−x−y]O2 cathodes during accelerated calendar aging
,”
Small
14
(
45
),
1803179
(
2018
).
35.
B.
Balagopal
,
C. S.
Huang
, and
M.
Chow
, in
2018 IESES
(
IEEE
,
2018
), p.
32
.
36.
S. M.
Wood
,
C.
Fang
,
E. J.
Dufek
,
S. C.
Nagpure
,
S. V.
Sazhin
,
B.
Liaw
, and
Y. S.
Meng
, “
Predicting calendar aging in lithium metal secondary batteries: The impacts of solid electrolyte interphase composition and stability
,”
Adv. Energy Mater.
8
(
26
),
1801427
(
2018
).
37.
W. M.
Seong
,
K.-Y.
Park
,
M. H.
Lee
,
S.
Moon
,
K.
Oh
,
H.
Park
,
S.
Lee
, and
K.
Kang
, “
Abnormal self-discharge in lithium-ion batteries
,”
Energy Environ. Sci.
11
(
4
),
970
(
2018
).
38.
J.-H.
Kim
,
K.-J.
Park
,
S. J.
Kim
,
C. S.
Yoon
, and
Y.-K.
Sun
, “
A method of increasing the energy density of layered Ni-rich Li [Ni1 − 2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2)
,”
J. Mater. Chem. A
7
(
6
),
2694
(
2019
).
39.
S. S.
Zhang
, “
Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials
,”
J. Energy Chem.
41
,
135
(
2020
).
40.
J.
Zhang
,
C.
Zheng
,
L.
Li
,
Y.
Xia
,
H.
Huang
,
Y.
Gan
,
C.
Liang
,
X.
He
,
X.
Tao
, and
W.
Zhang
, “
Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl‐based all‐solid‐state lithium batteries
,”
Adv. Energy Mater.
10
(
4
),
1903311
(
2020
).
41.
F.
Friedrich
,
B.
Strehle
,
A. T. S.
Freiberg
,
K.
Kleiner
,
S. J.
Day
,
C.
Erk
,
M.
Piana
, and
H. A.
Gasteiger
, “
Capacity fading mechanisms of NCM-811 cathodes in lithium-ion batteries studied by X-ray diffraction and other diagnostics
,”
J. Electrochem. Soc.
166
(
15
),
A3760
(
2019
).
42.
D. H. S.
Tan
,
E. A.
Wu
,
H.
Nguyen
,
Z.
Chen
,
M. A. T.
Marple
,
J.-M.
Doux
,
X.
Wang
,
H.
Yang
,
A.
Banerjee
, and
Y. S.
Meng
, “
Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte
,”
Energy Lett.
4
(
10
),
2418
(
2019
).
43.
J.
Li
,
L. E.
Downie
,
L.
Ma
,
W.
Qiu
, and
J. R.
Dahn
, “
Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries
,”
J. Electrochem. Soc.
162
(
7
),
A1401
(
2015
).
44.
J.
Li
,
R.
Shunmugasundaram
,
R.
Doig
, and
J. R.
Dahn
, “
In situ x-ray diffraction study of layered Li–Ni–Mn–Co oxides: Effect of particle size and structural stability of core–shell materials
,”
Chem. Mater.
28
(
1
),
162
(
2016
).
45.
Y.
Zhu
,
X.
He
, and
Y.
Mo
, “
Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations
,”
ACS Appl. Mater. Interfaces
7
(
42
),
23685
(
2015
).
46.
W. D.
Richards
,
L. J.
Miara
,
Y.
Wang
,
J. C.
Kim
, and
G.
Ceder
, “
Interface stability in solid-state batteries
,”
Chem. Mater.
28
(
1
),
266
(
2016
).
47.
A.
Banerjee
,
H.
Tang
,
X.
Wang
,
J.-H.
Cheng
,
H.
Nguyen
,
M.
Zhang
,
D. H. S.
Tan
,
T. A.
Wynn
,
E. A.
Wu
, and
J.-M.
Doux
, “
Revealing nanoscale solid–solid interfacial phenomena for long-life and high-energy all-solid-state batteries
,”
ACS Appl. Mater. Interfaces
11
(
46
),
43138
(
2019
).
48.
R.
Jung
,
M.
Metzger
,
F.
Maglia
,
C.
Stinner
, and
H. A.
Gasteiger
, “
Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries
,”
J. Electrochem. Soc
164
(
7
),
A1361
(
2017
).
49.
B.
Strehle
,
K.
Kleiner
,
R.
Jung
,
F.
Chesneau
,
M.
Mendez
,
H. A.
Gasteiger
, and
M.
Piana
, “
The role of oxygen release from Li-and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry
,”
J. Electrochem. Soc.
164
(
2
),
A400
(
2017
).
50.
R.
Jung
,
M.
Metzger
,
F.
Maglia
,
C.
Stinner
, and
H. A.
Gasteiger
, “
Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon
,”
J. Phys. Chem. Lett.
8
(
19
),
4820
(
2017
).
51.
J.
Wandt
,
A. T. S.
Freiberg
,
A.
Ogrodnik
, and
H. A.
Gasteiger
, “
Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries
,”
Mater. Today
21
(
8
),
825
(
2018
).
52.
J.
Rodríguez-Carvajal
,
FullProf
(
CEA/Saclay
,
France
,
2001
).

Supplementary Material

You do not currently have access to this content.