Hexagonal ABO3 oxides (A, B = cation) are a class of rich materials for realizing novel quantum phenomena. Their hexagonal symmetry, oxygen trigonal bipyramid coordination, and quasi-two dimensional layering give rise to properties distinct from those of the cubic ABO3 perovskites. As bulk materials, most of the focus in this class of materials has been on the rare-earth manganites, RMnO3 (R = rare earth); these materials display coupled ferroelectricity and antiferromagnetic order. In this review, we focus on the thin-film manifestations of the hexagonal ABO3 oxides. We cover the stability of the hexagonal oxides and substrates which can be used to template the hexagonal structure. We show how the thin-film geometry not only allows for further tuning of the bulk-stable manganites but also allows for the realization of metastable hexagonal oxides such as the RFeO3 that combine ferroelectricity with weak ferromagnetic order. The thin-film geometry is a promising platform to stabilize additional metastable hexagonal oxides to search for predicted high-temperature superconductivity and topological phases in this class of materials.

1.
H. Y.
Hwang
,
Y.
Iwasa
,
M.
Kawasaki
,
B.
Keimer
,
N.
Nagaosa
, and
Y.
Tokura
, “
Emergent phenomena at oxide interfaces
,”
Nat. Mater.
11
,
103
113
(
2012
).
2.
D. G.
Schlom
,
L.-Q.
Chen
,
X.
Pan
,
A.
Schmehl
, and
M. A.
Zurbuchen
, “
A thin film approach to engineering functionality into oxides
,”
J. Am. Ceram. Soc.
91
,
2429
2454
(
2008
).
3.
J.
Mannhart
and
D. G.
Schlom
, “
Oxide interfaces'an opportunity for electronics
,”
Science
327
,
1607
1611
(
2010
).
4.
L. T.
Nguyen
and
R.
Cava
, “
Hexagonal perovskites as quantum materials
,”
Chem. Rev.
121
,
2935
2965
(
2020
).
5.
H.
Yakel
,
W.
Koehler
,
E.
Bertaut
, and
E.
Forrat
, “
On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium
,”
Acta Crystallogr.
16
,
957
962
(
1963
).
6.
M.
Lilienblum
,
T.
Lottermoser
,
S.
Manz
,
S. M.
Selbach
,
A.
Cano
, and
M.
Fiebig
, “
Ferroelectricity in the multiferroic hexagonal manganites
,”
Nat. Phys.
11
,
1070
1073
(
2015
).
7.
B. B.
Van Aken
,
T. T.
Palstra
,
A.
Filippetti
, and
N. A.
Spaldin
, “
The origin of ferroelectricity in magnetoelectric YMnO3
,”
Nat. Mater.
3
,
164
170
(
2004
).
8.
C. J.
Fennie
and
K. M.
Rabe
, “
Ferroelectric transition in YMnO3 from first principles
,”
Phys. Rev. B
72
,
100103
(
2005
).
9.
E.
Bertaut
,
R.
Pauthenet
, and
M.
Mercier
, “
Magnetic properties and structures of yttrium manganite
,”
Phys. Lett.
7
,
110
111
(
1963
).
10.
Z. J.
Huang
,
Y.
Cao
,
Y. Y.
Sun
,
Y. Y.
Xue
, and
C. W.
Chu
, “
Coupling between the ferroelectric and antiferromagnetic orders in YMnO3
,”
Phys. Rev. B
56
,
2623
2626
(
1997
).
11.
M.
Fiebig
,
T.
Lottermoser
,
D.
Fröhlich
,
A. V.
Goltsev
, and
R. V.
Pisarev
, “
Observation of coupled magnetic and electric domains
,”
Nature
419
,
818
820
(
2002
).
12.
T.
Lottermoser
,
T.
Lonkai
,
U.
Amann
,
D.
Hohlwein
,
J.
Ihringer
, and
M.
Fiebig
, “
Magnetic phase control by an electric field
,”
Nature
430
,
541
544
(
2004
).
13.
B.
Lorenz
, “
Hexagonal manganites-(RMnO3): Class (I) multiferroics with strong coupling of magnetism and ferroelectricity
,”
ISRN Condens. Matter Phys.
2013
,
497073
.
14.
A.
Akbashev
,
A.
Semisalova
,
N.
Perov
, and
A.
Kaul
, “
Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R= Lu, Er-Tb)
,”
Appl. Phys. Lett.
99
,
122502
(
2011
).
15.
W.
Wang
,
J.
Zhao
,
W.
Wang
,
Z.
Gai
,
N.
Balke
,
M.
Chi
,
H. N.
Lee
,
W.
Tian
,
L.
Zhu
,
X.
Cheng
,
D. J.
Keavney
,
J.
Yi
,
T. Z.
Ward
,
P. C.
Snijders
,
H. M.
Christen
,
W.
Wu
,
J.
Shen
, and
X.
Xu
, “
Room-temperature multiferroic hexagonal LuFeO3 films
,”
Phys. Rev. Lett.
110
,
237601
(
2013
).
16.
S. M.
Disseler
,
J. A.
Borchers
,
C. M.
Brooks
,
J. A.
Mundy
,
J. A.
Moyer
,
D. A.
Hillsberry
,
E. L.
Thies
,
D. A.
Tenne
,
J.
Heron
,
M. E.
Holtz
,
J. D.
Clarkson
,
G. M.
Stiehl
,
P.
Schiffer
,
D. A.
Muller
,
D. G.
Schlom
, and
W. D.
Ratcliff
, “
Magnetic structure and ordering of multiferroic hexagonal LuFeO3
,”
Phys. Rev. Lett.
114
,
217602
(
2015
).
17.
H.
Das
,
A. L.
Wysocki
,
Y.
Geng
,
W.
Wu
, and
C. J.
Fennie
, “
Bulk magnetoelectricity in the hexagonal manganites and ferrites
,”
Nat. Commun.
5
,
2998
(
2014
).
18.
S.
Manipatruni
,
D. E.
Nikonov
,
C.-C.
Lin
,
T. A.
Gosavi
,
H.
Liu
,
B.
Prasad
,
Y.-L.
Huang
,
E.
Bonturim
,
R.
Ramesh
, and
I. A.
Young
, “
Scalable energy-efficient magnetoelectric spin-orbit logic
,”
Nature
565
,
35
42
(
2019
).
19.
T.
Choi
,
Y.
Horibe
,
H.
Yi
,
Y. J.
Choi
,
W.
Wu
, and
S.-W.
Cheong
, “
Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3
,”
Nat. Mater.
9
,
253
258
(
2010
).
20.
D.
Meier
,
J.
Seidel
,
A.
Cano
,
K.
Delaney
,
Y.
Kumagai
,
M.
Mostovoy
,
N. A.
Spaldin
,
R.
Ramesh
, and
M.
Fiebig
, “
Anisotropic conductance at improper ferroelectric domain walls
,”
Nat. Mater.
11
,
284
288
(
2012
).
21.
J. A.
Mundy
,
J.
Schaab
,
Y.
Kumagai
,
A.
Cano
,
M.
Stengel
,
I. P.
Krug
,
D. M.
Gottlob
,
H.
Doǧanay
,
M. E.
Holtz
,
R.
Held
,
Z.
Yan
,
E.
Bourret
,
C. M.
Schneider
,
D. G.
Schlom
,
D. A.
Muller
,
R.
Ramesh
,
N. A.
Spaldin
, and
D.
Meier
, “
Functional electronic inversion layers at ferroelectric domain walls
,”
Nat. Mater.
16
,
622
627
(
2017
).
22.
S. M.
Griffin
,
M.
Lilienblum
,
K. T.
Delaney
,
Y.
Kumagai
,
M.
Fiebig
, and
N. A.
Spaldin
, “
Scaling behavior and beyond equilibrium in the hexagonal manganites
,”
Phys. Rev. X
2
,
041022
(
2012
).
23.
S.-Z.
Lin
,
X.
Wang
,
Y.
Kamiya
,
G.-W.
Chern
,
F.
Fan
,
D.
Fan
,
B.
Casas
,
Y.
Liu
,
V.
Kiryukhin
,
W. H.
Zurek
,
C. D.
Batista
, and
S.-W.
Cheong
, “
Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics
,”
Nat. Phys.
10
,
970
977
(
2014
).
24.
Q. N.
Meier
,
M.
Lilienblum
,
S. M.
Griffin
,
K.
Conder
,
E.
Pomjakushina
,
Z.
Yan
,
E.
Bourret
,
D.
Meier
,
F.
Lichtenberg
,
E. K. H.
Salje
,
N. A.
Spaldin
,
M.
Fiebig
, and
A.
Cano
, “
Global formation of topological defects in the multiferroic hexagonal manganites
,”
Phys. Rev. X
7
,
041014
(
2017
).
25.
Q. N.
Meier
,
A.
Stucky
,
J.
Teyssier
,
S. M.
Griffin
,
D.
van der Marel
, and
N. A.
Spaldin
, “
Manifestation of structural higgs and goldstone modes in the hexagonal manganites
,”
Phys. Rev. B
102
,
014102
(
2020
).
26.
M.
Norman
, “
Colloquium: Herbertsmithite and the search for the quantum spin liquid
,”
Rev. Mod. Phys.
88
,
041002
(
2016
).
27.
Y.
Kasahara
,
T.
Ohnishi
,
Y.
Mizukami
,
O.
Tanaka
,
S.
Ma
,
K.
Sugii
,
N.
Kurita
,
H.
Tanaka
,
J.
Nasu
,
Y.
Motome
,
T.
Shibauchi
, and
Y.
Matsuda
, “
Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid
,”
Nature
559
,
227
231
(
2018
).
28.
V.
Kataev
,
A.
Möller
,
U.
Löw
,
W.
Jung
,
N.
Schittner
,
M.
Kriener
, and
A.
Freimuth
, “
Structural and magnetic properties of the new low-dimensional spin magnet InCu2/3V1/3O3
,”
J. Magn. Magn. Mater.
290
,
310
313
(
2005
).
29.
Y.
Yan
,
Z.
Li
,
T.
Zhang
,
X.
Luo
,
G.
Ye
,
Z.
Xiang
,
P.
Cheng
,
L.-J.
Zou
, and
X.
Chen
, “
Magnetic properties of the doped spin-1/2 honeycomb-lattice compound In3Cu2VO9
,”
Phys. Rev. B
85
,
085102
(
2012
).
30.
D.-Y.
Liu
,
Y.
Guo
,
X.-L.
Zhang
,
J.-L.
Wang
,
Z.
Zeng
,
H.-Q.
Lin
, and
L.-J.
Zou
, “
Interlayer magnetic-frustration-driven quantum spin disorder in the honeycomb compound In3Cu2VO9
,”
Europhys. Lett.
103
,
47010
(
2013
).
31.
W.
Wu
,
M. M.
Scherer
,
C.
Honerkamp
, and
K. L.
Hur
, “
Correlated Dirac particles and superconductivity on the honeycomb lattice
,”
Phys. Rev. B
87
,
094521
(
2013
).
32.
D. A.
Vander Griend
,
S.
Boudin
,
V.
Caignaert
,
K. R.
Poeppelmeier
,
Y.
Wang
,
V. P.
Dravid
,
M.
Azuma
,
M.
Takano
,
Z.
Hu
, and
J. D.
Jorgensen
, “
La4Cu3MoO12: A novel cuprate with unusual magnetism
,”
J. Am. Chem. Soc.
121
,
4787
4792
(
1999
).
33.
L.
Clark
,
G.
Sala
,
D. D.
Maharaj
,
M. B.
Stone
,
K. S.
Knight
,
M. T.
Telling
,
X.
Wang
,
X.
Xu
,
J.
Kim
,
Y.
Li
,
S.-W.
Cheong
, and
B. D.
Gaulin
, “
Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3
,”
Nat. Phys.
15
,
262
268
(
2019
).
34.
J. A.
Mundy
,
Q.
Mao
,
C. M.
Brooks
,
D. G.
Schlom
, and
D. A.
Muller
, “
Atomic-resolution chemical imaging of oxygen local bonding environments by electron energy loss spectroscopy
,”
Appl. Phys. Lett.
101
,
042907
(
2012
).
35.
S.
Remsen
and
B.
Dabrowski
, “
Synthesis and oxygen storage capacities of hexagonal Dy1−xYxMnO
3+δ,”
Chem. Mater.
23
,
3818
3827
(
2011
).
36.
J.
Hu
,
C.
Le
, and
X.
Wu
, “
Predicting unconventional high-temperature superconductors in trigonal bipyramidal coordinations
,”
Phys. Rev. X
5
,
041012
(
2015
).
37.
X.
Huang
,
T. R.
Paudel
,
S.
Dong
, and
E. Y.
Tsymbal
, “
Hexagonal rare-earth manganites as promising photovoltaics and light polarizers
,”
Phys. Rev. B
92
,
125201
(
2015
).
38.
H.
Han
,
S.
Song
,
J. H.
Lee
,
K. J.
Kim
,
G. W.
Kim
,
T.
Park
, and
H. M.
Jang
, “
Switchable photovoltaic effects in hexagonal manganite thin films having narrow band gaps
,”
Chem. Mater.
27
,
7425
7432
(
2015
).
39.
J.
Li
,
A. W.
Sleight
, and
M.
Subramanian
, “
Determination of the local environment of Mn3+ and In3+ in the YInO3–YMnO3 solid solution, which exhibits an intense blue color
,”
Chem. Mater.
28
,
6050
6053
(
2016
).
40.
S. H.
Skjærvø
,
E. T.
Wefring
,
S. K.
Nesdal
,
N. H.
Gaukås
,
G. H.
Olsen
,
J.
Glaum
,
T.
Tybell
, and
S. M.
Selbach
, “
Interstitial oxygen as a source of p-type conductivity in hexagonal manganites
,”
Nat. Commun.
7
,
13745
(
2016
).
41.
J.
Kasahara
,
T.
Katayama
,
S.
Mo
,
A.
Chikamatsu
,
Y.
Hamasaki
,
S.
Yasui
,
M.
Itoh
, and
T.
Hasegawa
, “
Room-temperature antiferroelectricity in multiferroic hexagonal rare-earth ferrites
,”
ACS Appl. Mater. Interfaces
13
,
4230
4235
(
2021
).
42.
L.
Wu
,
C. Y.
Jimmy
,
L.
Zhang
,
X.
Wang
, and
S.
Li
, “
Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide
,”
J. Solid State Chem.
177
,
3666
3674
(
2004
).
43.
Y.
Zhang
,
J.
Yang
,
J.
Xu
,
Q.
Gao
, and
Z.
Hong
, “
Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities
,”
Mater. Lett.
81
,
1
4
(
2012
).
44.
B.
Zhang
,
M.
Seki
,
H.
Zhou
,
J.
Chen
, and
H.
Tabata
, “
InFeO3 photoelectrode with two-dimensional superlattice for visible- and ultraviolet-light-driven water splitting
,”
APL Mater.
8
,
051107
(
2020
).
45.
D.
Choudhury
,
A.
Hazarika
,
A.
Venimadhav
,
C.
Kakarla
,
K. T.
Delaney
,
P. S.
Devi
,
P.
Mondal
,
R.
Nirmala
,
J.
Gopalakrishnan
,
N. A.
Spaldin
,
U. V.
Waghmare
, and
D. D.
Sarma
, “
Electric and magnetic polarizabilities of hexagonal Ln2CuTiO6 (Ln = Y, Dy, Ho, Er, and Yb)
,”
Phys. Rev. B
82
,
134203
(
2010
).
46.
M. G.
Kim
,
B.
Winn
,
S.
Chi
,
A. T.
Savici
,
J. A.
Rodriguez-Rivera
,
W. C.
Chen
,
X.
Xu
,
Y.
Li
,
J. W.
Kim
,
S.-W.
Cheong
, and
V.
Kiryukhin
, “
Spin-liquid-like state in pure and Mn-doped TbInO3 with a nearly triangular lattice
,”
Phys. Rev. B
100
,
024405
(
2019
).
47.
S. F.
Weber
,
S. M.
Griffin
, and
J. B.
Neaton
, “
Topological semimetal features in the multiferroic hexagonal manganites
,”
Phys. Rev. Mater.
3
,
064206
(
2019
).
48.
C.
Lu
,
L.-D.
Zhang
,
X.
Wu
,
F.
Yang
, and
J.
Hu
, “
d+id chiral superconductivity in a triangular lattice from trigonal bipyramidal complexes
,”
Phys. Rev. B
97
,
165110
(
2018
).
49.
J.
Nordlander
,
M.
Campanini
,
M. D.
Rossell
,
R.
Erni
,
Q. N.
Meier
,
A.
Cano
,
N.
Spaldin
,
M.
Fiebig
, and
M.
Trassin
, “
The ultrathin limit of improper ferroelectricity
,”
Nat. Commun.
10
,
5591
(
2019
).
50.
J. A.
Mundy
,
C. M.
Brooks
,
M. E.
Holtz
,
J. A.
Moyer
,
H.
Das
,
A. F.
Rébola
,
J. T.
Heron
,
J. D.
Clarkson
,
S. M.
Disseler
,
Z.
Liu
,
A.
Farhan
,
R.
Held
,
R.
Hovden
,
E.
Padgett
,
Q.
Mao
,
H.
Paik
,
R.
Misra
,
L. F.
Kourkoutis
,
E.
Arenholz
,
A.
Scholl
,
J. A.
Borchers
,
W. D.
Ratcliff
,
R.
Ramesh
,
C. J.
Fennie
,
P.
Schiffer
,
D. A.
Muller
, and
D. G.
Schlom
, “
Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic
,”
Nature
537
,
523
527
(
2016
).
51.
L. M.
Garten
,
Z.
Jiang
,
H.
Paik
,
J. D.
Perkins
,
A.
Kakekhani
,
R.
Fei
,
D. J.
Werder
,
M. E.
Holtz
,
D. S.
Ginley
,
A. M.
Rappe
,
D. E.
Schlom
, and
M. L.
Staruch
, “
Stromataxic stabilization of a metastable layered ScFeO3 polymorph
,”
Chem. Mater.
33
,
7423
7431
(
2021
).
52.
R. D.
Shannon
and
C. T.
Prewitt
, “
Revised values of effective ionic radii
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
26
,
1046
1048
(
1970
).
53.
R. I.
Hines
, “
Atomistic simulation and ab initio studies of polar solids
,” Ph.D. thesis (
University of Bristol
,
1997
).
54.
D.
Reinen
, “
The Jahn–Teller effect in solid state chemistry of transition metal compounds
,”
J. Solid State Chem.
27
,
71
85
(
1979
).
55.
K.
Kamata
,
T.
Nakajima
, and
T.
Nakamura
, “
Thermogravimetric study of rare earth manganites AMnO3 (A= Sm, Dy, Y, Er, Yb) at 1200 C
,”
Mater. Res. Bull.
14
,
1007
1012
(
1979
).
56.
K.-H.
Hellwege
,
Landolt Bornstein, Numerical Data And Functional Relationship In Science And Technology
, Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystal (
Springer
,
1979
).
57.
K.
Nagashio
and
K.
Kuribayashi
, “
Metastable phase formation from an undercooled rare-earth orthoferrite melt
,”
J. Am. Ceram. Soc.
85
,
2550
2556
(
2002
).
58.
T.
Katayama
,
Y.
Hamasaki
,
S.
Yasui
,
A.
Miyahara
, and
M.
Itoh
, “
Epitaxial thin film growth of garnet-, GdFeO3-, and YMnO3-type LuFeO3 using pulsed laser deposition
,”
Thin Solid Films
642
,
41
44
(
2017
).
59.
R.
Uecker
,
R.
Bertram
,
M.
Brützam
,
Z.
Galazka
,
T. M.
Gesing
,
C.
Guguschev
,
D.
Klimm
,
M.
Klupsch
,
A.
Kwasniewski
, and
D. G.
Schlom
, “
Large-lattice-parameter perovskite single-crystal substrates
,”
J. Cryst. Growth
457
,
137
142
(
2017
).
60.
N.
Fujimura
,
T.
Ishida
,
T.
Yoshimura
, and
T.
Ito
, “
Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices
,”
Appl. Phys. Lett.
69
,
1011
1013
(
1996
).
61.
V.
Laukhin
,
V.
Skumryev
,
X.
Martí
,
D.
Hrabovsky
,
F.
Sánchez
,
M. V.
García-Cuenca
,
C.
Ferrater
,
M.
Varela
,
U.
Lüders
,
J. F.
Bobo
, and
J.
Fontcuberta
, “
Electric-field control of exchange bias in multiferroic epitaxial heterostructures
,”
Phys. Rev. Lett.
97
,
227201
(
2006
).
62.
D.
Lee
,
A.
Yoon
,
S. Y.
Jang
,
J. G.
Yoon
,
J. S.
Chung
,
M.
Kim
,
J. F.
Scott
, and
T. W.
Noh
, “
Giant flexoelectric effect in ferroelectric epitaxial thin films
,”
Phys. Rev. Lett.
107
,
057602
(
2011
).
63.
T.
Jungk
,
Á.
Hoffmann
,
M.
Fiebig
, and
E.
Soergel
, “
Electrostatic topology of ferroelectric domains in YMnO3
,”
Appl. Phys. Lett.
97
,
12904
(
2010
).
64.
N.
Sai
,
C. J.
Fennie
, and
A. A.
Demkov
, “
Absence of critical thickness in an ultrathin improper ferroelectric film
,”
Phys. Rev. Lett.
102
,
107601
(
2009
).
65.
A.
Bortis
,
M.
Trassin
,
M.
Fiebig
, and
T.
Lottermoser
, “
Manipulation of charged domain walls in geometric improper ferroelectric thin films: A phase-field study
,”
Phys. Rev. Mater.
6
,
064403
(
2022
).
66.
J.
Dho
,
C. W.
Leung
,
J. L.
MacManus-Driscoll
, and
M. G.
Blamire
, “
Epitaxial and oriented YMnO3 film growth by pulsed laser deposition
,”
J. Cryst. Growth
267
,
548
553
(
2004
).
67.
A.
Bosak
,
C.
Dubourdieu
,
J.-P.
Sénateur
,
O. Y.
Gorbenko
, and
A.
Kaul
, “
Epitaxial stabilization of hexagonal RMnO3 (R= Eu–Dy) manganites
,”
J. Mater. Chem.
12
,
800
801
(
2002
).
68.
J.-W.
Kim
,
L.
Schultz
,
K.
Dörr
,
B. B.
Van Aken
, and
M.
Fiebig
, “
Growth and multiferroic properties of hexagonal HoMnO3 films
,”
Appl. Phys. Lett.
90
,
012502
(
2007
).
69.
I.
Gélard
,
C.
Dubourdieu
,
S.
Pailhès
,
S.
Petit
, and
C.
Simon
, “
Neutron diffraction study of hexagonal manganite YMnO3, HoMnO3, and ErMnO3 epitaxial films
,”
Appl. Phys. Lett.
92
,
232506
(
2008
).
70.
S. Y.
Jang
,
D.
Lee
,
J.-H.
Lee
,
T. W.
Noh
,
Y.
Jo
,
M.-H.
Jung
, and
J.-S.
Chung
, “
Oxygen vacancy induced re-entrant spin glass behavior in multiferroic ErMnO3 thin films
,”
Appl. Phys. Lett.
93
,
162507
(
2008
).
71.
A.
Posadas
,
J.-B.
Yau
, and
C. H.
Ahn
, “
Epitaxial multiferroic hexagonal manganite thin films grown on ZnO
,”
Physica Status Solidi B
243
,
2085
2088
(
2006
).
72.
T.
Takahashi
,
T.
Yoshimura
, and
N.
Fujimura
, “
Growth and ferromagnetic properties of ferroelectric YbMnO3 thin films
,”
Jpn. J. Appl. Phys., Part I
45
,
7329
7331
(
2006
).
73.
K. R.
Balasubramaniam
,
S.
Havelia
,
P. A.
Salvador
,
H.
Zheng
, and
J. F.
Mitchell
, “
Epitaxial stabilization and structural properties of REMnO3 (RE = Dy, Gd, Sm) compounds in a layered, hexagonal ABO3 structure
,”
Appl. Phys. Lett.
91
,
232901
(
2007
).
74.
J.-H.
Lee
,
P.
Murugavel
,
H.
Ryu
,
D.
Lee
,
J. Y.
Jo
,
J. W.
Kim
,
H. J.
Kim
,
K. H.
Kim
,
Y.
Jo
,
M.-H.
Jung
,
Y. H.
Oh
,
Y.-W.
Kim
,
J.-G.
Yoon
,
J.-S.
Chung
, and
T. W.
Noh
, “
Epitaxial stabilization of a new multiferroic hexagonal phase of TbMnO3 thin films
,”
Adv. Mater.
18
,
3125
3129
(
2006
).
75.
R.
Mandal
,
M.
Hirsbrunner
,
V.
Roddatis
,
R.
Gruhl
,
L.
Schüler
,
U.
Roß
,
S.
Merten
,
P.
Gegenwart
, and
V.
Moshnyaga
, “
Strain-driven structure-ferroelectricity relationship in hexagonal TbMnO3 films
,”
Phys. Rev. B
102
,
104106
(
2020
).
76.
C. R.
Serrao
,
S. B.
Krupanidhi
,
J.
Bhattacharjee
,
U. V.
Waghmare
,
A. K.
Kundu
, and
C. N. R.
Rao
, “
InMnO3: A biferroic
,”
J. Appl. Phys.
100
,
076104
(
2006
).
77.
Y.
Kumagai
,
A. A.
Belik
,
M.
Lilienblum
,
N.
Leo
,
M.
Fiebig
, and
N. A.
Spaldin
, “
Observation of persistent centrosymmetricity in the hexagonal manganite family
,”
Phys. Rev. B
85
,
174422
(
2012
).
78.
F. T.
Huang
,
X.
Wang
,
S. M.
Griffin
,
Y.
Kumagai
,
O.
Gindele
,
M. W.
Chu
,
Y.
Horibe
,
N. A.
Spaldin
, and
S. W.
Cheong
, “
Duality of topological defects in hexagonal manganites
,”
Phys. Rev. Lett.
113
,
267602
(
2014
).
79.
S. M.
Griffin
,
M.
Reidulff
,
S. M.
Selbach
, and
N. A.
Spaldin
, “
Defect chemistry as a crystal structure design parameter: Intrinsic point defects and Ga substitution in InMnO3
,”
Chem. Mater.
29
,
2425
2434
(
2017
).
80.
N.
Jehanathan
,
O.
Lebedev
,
I.
Gélard
,
C.
Dubourdieu
, and
G.
Van Tendeloo
, “
Structure and defect characterization of multiferroic ReMnO3 films and multilayers by TEM
,”
Nanotechnology
21
,
075705
(
2010
).
81.
J.
Nordlander
,
M. D.
Rossell
,
M.
Campanini
,
M.
Fiebig
, and
M.
Trassin
, “
Epitaxial integration of improper ferroelectric hexagonal YMnO3 thin films in heterostructures
,”
Phys. Rev. Mater.
4
,
124403
(
2020
).
82.
T.
Choi
and
J.
Lee
, “
Bi modification for low-temperature processing of YMnO3 thin films
,”
Appl. Phys. Lett.
84
,
5043
5045
(
2004
).
83.
S.
Imada
,
S.
Shouriki
,
E.
Tokumitsu
, and
H.
Ishiwara
, “
Epitaxial growth of ferroelectric YMnO3 thin films on Si (111) substrates by molecular beam epitaxy
,”
Jpn. J. Appl. Phys.
37
,
6497
6501
(
1998
).
84.
S.
Imada
,
T.
Kuraoka
,
E.
Tokumitsu
, and
H.
Ishiwara
, “
Ferroelectricity of YMnO3 thin films on Pt(111)/Al2O3(0001) and Pt(111)/Y2O3(111)/Si(111) structures grown by molecular beam epitaxy
,”
Jpn. J. Appl. Phys., Part I
40
,
666
671
(
2001
).
85.
X.
Martí
,
F.
Sánchez
,
D.
Hrabovsky
,
J.
Fontcuberta
,
V.
Laukhin
,
V.
Skumryev
,
M. V.
García-Cuenca
,
C.
Ferrater
,
M.
Varela
,
U.
Lüders
,
J. F.
Bobo
,
S.
Estradé
,
J.
Arbiol
, and
F.
Peiró
, “
Epitaxial growth of biferroic YMnO3(0 0 0 1) on platinum electrodes
,”
J. Cryst. Growth
299
,
288
294
(
2007
).
86.
K. H.
Wu
,
H.-J.
Chen
,
Y. T.
Chen
,
C. C.
Hsieh
,
C. W.
Luo
,
T. M.
Uen
,
J. Y.
Juang
,
J.-Y.
Lin
,
T.
Kobayashi
, and
M.
Gospodinov
, “
Marked enhancement of Néel temperature in strained YMnO3 thin films probed by femtosecond spectroscopy
,”
Europhys. Lett.
94
,
27006
(
2011
).
87.
Y.
Chye
,
T.
Liu
,
D.
Li
,
K.
Lee
,
D.
Lederman
, and
T. H.
Myers
, “
Molecular beam epitaxy of YMnO3 on c-plane GaN
,”
Appl. Phys. Lett.
88
,
132903
(
2006
).
88.
S.
Cheng
,
C.
Xu
,
S.
Deng
,
M.-G.
Han
,
S.
Bao
,
J.
Ma
,
C.
Nan
,
W.
Duan
,
L.
Bellaiche
,
Y.
Zhu
, and
J.
Zhu
, “
Interface reconstruction with emerging charge ordering in hexagonal manganite
,”
Sci. Adv.
4
,
eaar4298
(
2018
).
89.
H.
Pang
,
F.
Zhang
,
M.
Zeng
,
X.
Gao
,
M.
Qin
,
X.
Lu
,
J.
Gao
,
J.
Dai
, and
Q.
Li
, “
Preparation of epitaxial hexagonal YMnO3 thin films and observation of ferroelectric vortex domains
,”
npj Quantum Mater.
1
,
16015
(
2016
).
90.
D. J.
Kim
,
J. G.
Connell
,
S. S. A.
Seo
, and
A.
Gruverman
, “
Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films
,”
Nanotechnology
27
,
155705
(
2016
).
91.
J.
Fontcuberta
, “
Multiferroic RMnO3 thin films
,”
C. R. Phys.
16
,
204
226
(
2015
).
92.
S.
Cheng
,
M.
Li
,
S.
Deng
,
S.
Bao
,
P.
Tang
,
W.
Duan
,
J.
Ma
,
C.
Nan
, and
J.
Zhu
, “
Manipulation of magnetic properties by oxygen vacancies in multiferroic YMnO3
,”
Adv. Funct. Mater.
26
,
3589
3598
(
2016
).
93.
T.
Kordel
,
C.
Wehrenfennig
,
D.
Meier
,
T.
Lottermoser
,
M.
Fiebig
,
I.
Gélard
,
C.
Dubourdieu
,
J. W.
Kim
,
L.
Schultz
, and
K.
Dörr
, “
Nanodomains in multiferroic hexagonal RMnO3 films (R = Y, Dy, Ho, Er)
,”
Phys. Rev. B
80
,
045409
(
2009
).
94.
M.
Giraldo
,
Q. N.
Meier
,
A.
Bortis
,
D.
Nowak
,
N. A.
Spaldin
,
M.
Fiebig
,
M. C.
Weber
, and
T.
Lottermoser
, “
Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order
,”
Nat. Commun.
12
,
3093
(
2021
).
95.
Y.
Zhang
,
W.
Si
,
Y.
Jia
,
P.
Yu
,
R.
Yu
, and
J.
Zhu
, “
Controlling strain relaxation by interface design in highly lattice-mismatched heterostructure
,”
Nano Lett.
21
,
6867
6874
(
2021
).
96.
S.
Artyukhin
,
K. T.
Delaney
,
N. A.
Spaldin
, and
M.
Mostovoy
, “
Landau theory of topological defects in multiferroic hexagonal manganites
,”
Nat. Mater.
13
,
42
49
(
2014
).
97.
X.
Wang
,
M.
Mostovoy
,
M. G.
Han
,
Y.
Horibe
,
T.
Aoki
,
Y.
Zhu
, and
S.-W.
Cheong
, “
Unfolding of vortices into topological stripes in a multiferroic material
,”
Phys. Rev. Lett.
112
,
247601
(
2014
).
98.
H.
Tan
,
C.
Xu
,
M.
Li
,
S.
Wang
,
B.-L.
Gu
, and
W.
Duan
, “
Pressure and strain effects of hexagonal rare-earth manganites: A first-principles study
,”
J. Phys.: Condens. Matter
28
,
126002
(
2016
).
99.
C.
Dubourdieu
,
G.
Huot
,
I.
Gelard
,
H.
Roussel
,
O.
Lebedev
, and
G.
Van Tendeloo
, “
Thin films and superlattices of multiferroic hexagonal rare earth manganites
,”
Philos. Mag. Lett.
87
,
203
210
(
2007
).
100.
J.
Nordlander
,
M. D.
Rossell
,
M.
Campanini
,
M.
Fiebig
, and
M.
Trassin
, “
Inversion-symmetry engineering in layered oxide thin films
,”
Nano Lett.
21
,
2780
2785
(
2021
).
101.
J.
Nordlander
,
N.
Strkalj
,
M.
Fiebig
, and
M.
Trassin
, “
Probing ferroic states in oxide thin films using optical second harmonic generation
,”
Appl. Sci.
8
,
570
(
2018
).
102.
M. F.
Sarott
,
E.
Gradauskaite
,
J.
Nordlander
,
N.
Strkalj
, and
M.
Trassin
, “
In situ monitoring of epitaxial ferroelectric thin-film growth
,”
J. Phys.: Condens. Matter
33
,
293001
(
2021
).
103.
N.
Kumar
,
S.
Najmaei
,
Q.
Cui
,
F.
Ceballos
,
P. M.
Ajayan
,
J.
Lou
, and
H.
Zhao
, “
Second harmonic microscopy of monolayer MoS2
,”
Phys. Rev. B
87
,
161403
(
2013
).
104.
S.
Geller
,
J. B.
Jeffries
, and
P. J.
Curlander
, “
The crystal structure of a new high-temperature modification of YGaO3
,”
Acta Crystallogr., Sect. B Struct. Crystallogr. Cryst. Chem.
31
,
2770
2774
(
1975
).
105.
C.
Pistorius
and
G.
Kruger
, “
Stability and structure of noncentrosymmetric hexagonal LnInO3 (Ln = Eu, Gd, Tb, Dy, Ho, Y)
,”
J. Inorg. Nucl. Chem.
38
,
1471
1475
(
1976
).
106.
R.
Shukla
,
V.
Grover
,
K.
Srinivasu
,
B.
Paul
,
A.
Roy
,
R.
Gupta
, and
A. K.
Tyagi
, “
Rare earth indates (RE: La-Yb): Influence of the synthesis route and heat treatment on the crystal structure
,”
Dalton Trans.
47
,
6787
6799
(
2018
).
107.
I.
Nodari
,
A.
Alebouyeh
,
J.
Brice
,
R.
Gérardin
, and
O.
Evrard
, “
Caracterisation de nouveaux ferrites d'indium: In2Fe4O9 et InFeO3
,”
Mater. Res. Bull.
23
,
1039
1044
(
1988
).
108.
D. M.
Giaquinta
,
W. M.
Davis
, and
H. C.
zur Loye
, “
Structure of indium iron oxide
,”
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
50
,
5
7
(
1994
).
109.
M.
Seki
,
T.
Konya
,
K.
Inaba
, and
H.
Tabata
, “
Epitaxial thin films of InFe2O4 and InFeO3 with two-dimensional triangular lattice structures grown by pulsed laser deposition
,”
Appl. Phys. Express
3
,
105801
(
2010
).
110.
M. E.
Holtz
,
E. S.
Padgett
,
R.
Steinhardt
,
C. M.
Brooks
,
D.
Meier
,
D. G.
Schlom
,
D. A.
Muller
, and
J. A.
Mundy
, “
Dimensionality-induced change in topological order in multiferroic oxide superlattices
,”
Phys. Rev. Lett.
126
,
157601
(
2021
).
111.
P.
Vogt
and
O.
Bierwagen
, “
The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy
,”
Appl. Phys. Lett.
106
,
081910
(
2015
).
112.
O. Y.
Gorbenko
,
S.
Samoilenkov
,
I.
Graboy
, and
A.
Kaul
, “
Epitaxial stabilization of oxides in thin films
,”
Chem. Mater.
14
,
4026
4043
(
2002
).
113.
P.
Dankov
, “
Laws of the formation and structure of protective films on metals
,”
Proc. (Dokl.) Acad. Sci. USSR
23
,
548
(
1939
).
114.
Y.
Hamasaki
,
T.
Shimizu
,
S.
Yasui
,
T.
Taniyama
,
O.
Sakata
, and
M.
Itoh
, “
Crystal isomers of ScFeO3
,”
Cryst. Growth Des.
16
,
5214
5222
(
2016
).
115.
A.
Bosak
,
A.
Kamenev
,
I.
Graboy
,
S.
Antonov
,
O. Y.
Gorbenko
,
A.
Kaul
,
C.
Dubourdieu
,
J.
Senateur
,
V.
Svechnikov
,
H.
Zandbergen
, and
B.
Holländer
, “
Epitaxial phase stabilisation phenomena in rare earth manganites
,”
Thin Solid Films
400
,
149
153
(
2001
).
116.
F.
Moussa
,
M.
Hennion
,
J.
Rodriguez-Carvajal
,
H.
Moudden
,
L.
Pinsard
, and
A.
Revcolevschi
, “
Spin waves in the antiferromagnet perovskite LaMnO3: A neutron-scattering study
,”
Phys. Rev. B
54
,
15149
(
1996
).
117.
S.
Geller
and
E.
Wood
, “
Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3
,”
Acta Crystallogr.
9
,
563
568
(
1956
).
118.
Ternary Compounds, Organic Semiconductors
, Landolt-Börnstein—Group III Condensed Matter Vol.
41E, edited by
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
(
Springer-Verlag
,
Berlin/Heidelberg
,
2000
).
119.
M.
Robbins
,
G.
Wertheim
,
A.
Menth
, and
R.
Sherwood
, “
Preparation and properties of polycrystalline cerium orthoferrite (CeFeO3)
,”
J. Phys. Chem. Solids
30
,
1823
1825
(
1969
).
120.
B.
Dabrowski
,
S.
Kolesnik
,
A.
Baszczuk
,
O.
Chmaissem
,
T.
Maxwell
, and
J.
Mais
, “
Structural, transport, and magnetic properties of RMnO3 perovskites (R= La, Pr, Nd, Sm, 153Eu, Dy)
,”
J. Solid State Chem.
178
,
629
637
(
2005
).
121.
G. J.
McCarthy
,
P. V.
Gallagher
, and
C.
Sipe
, “
Crystal chemistry of catalyst materials. I. Composition and unit cell parameters of ‘REMnO3’ phases prepared in air
,”
Mater. Res. Bull.
8
,
1277
1284
(
1973
).
122.
A. A.
Bossak
,
I. E.
Graboy
,
O. Y.
Gorbenko
,
A. R.
Kaul
,
M. S.
Kartavtseva
,
V. L.
Svetchnikov
, and
H. W.
Zandbergen
, “
XRD and HREM studies of epitaxially stabilized hexagonal orthoferrites RFeO3 (R = Eu–Lu)
,”
Chem. Mater.
16
,
1751
1755
(
2004
).
123.
S.
Quezel
,
F.
Tcheou
,
J.
Rossat-Mignod
,
G.
Quezel
, and
E.
Roudaut
, “
Magnetic structure of the perovskite-like compound TbMnO3
,”
Physica B+C
86
,
916
918
(
1977
).
124.
M.
Marezio
,
J.
Remeika
, and
P.
Dernier
, “
The crystal chemistry of the rare earth orthoferrites
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
26
,
2008
2022
(
1970
).
125.
W. C.
Chueh
,
F. E.
Gabaly
,
J. D.
Sugar
,
N. C.
Bartelt
,
A. H.
McDaniel
,
K. R.
Fenton
,
K. R.
Zavadil
,
T.
Tyliszczak
,
W.
Lai
, and
K. F.
McCarty
, “
Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping
,”
Nano Lett.
13
,
866
872
(
2013
).
126.
A.
Akbashev
,
V.
Roddatis
,
A.
Vasiliev
,
S.
Lopatin
,
V.
Amelichev
, and
A.
Kaul
, “
Reconstruction of the polar interface between hexagonal LuFeO3 and intergrown Fe3O4 nanolayers
,”
Sci. Rep.
2
,
672
(
2012
).
127.
J.
Greedan
,
M.
Bieringer
,
J.
Britten
,
D.
Giaquinta
, and
H.-C.
Zur Loye
, “
Synthesis, crystal structure, and unusual magnetic properties of InMnO3
,”
J. Solid State Chem.
116
,
118
130
(
1995
).
128.
Y.
Bréard
,
H.
Fjellvåg
, and
B.
Hauback
, “
Investigation of bixbyite type scandium oxides involving a magnetic cation: Sc2−xFexO3 (0 x 1)
,”
Solid State Commun.
151
,
223
226
(
2011
).
129.
M. F.
Bekheet
,
I.
Svoboda
,
N.
Liu
,
L.
Bayarjargal
,
E.
Irran
,
C.
Dietz
,
R. W.
Stark
,
R.
Riedel
, and
A.
Gurlo
, “
Ferroelectric InMnO3: Growth of single crystals, structure and high-temperature phase transitions
,”
J. Solid State Chem.
241
,
54
63
(
2016
).
130.
S.-J.
Ahn
,
J.-H.
Lee
,
Y. K.
Jeong
,
E.-H.
Na
,
Y. M.
Koo
, and
H. M.
Jang
, “
Artificially imposed hexagonal ferroelectricity in canted antiferromagnetic YFeO3 epitaxial thin films
,”
Mater. Chem. Phys.
138
,
929
936
(
2013
).
131.
X.
Xu
and
W.
Wang
, “
Multiferroic hexagonal ferrites (h-RFeO3, R= Y, Dy-Lu): A brief experimental review
,”
Mod. Phys. Lett. B
28
,
1430008
(
2014
).
132.
J. A.
Moyer
,
R.
Misra
,
J. A.
Mundy
,
C. M.
Brooks
,
J. T.
Heron
,
D. A.
Muller
,
D. G.
Schlom
, and
P.
Schiffer
, “
Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry
,”
APL Mater.
2
,
012106
(
2014
).
133.
Y. K.
Jeong
,
J.-H.
Lee
,
S.-J.
Ahn
, and
H. M.
Jang
, “
Epitaxially constrained hexagonal ferroelectricity and canted triangular spin order in LuFeO3 thin films
,”
Chem. Mater.
24
,
2426
2428
(
2012
).
134.
P.
Barrozo
,
D. R.
Småbråten
,
Y.
Tang
,
B.
Prasad
,
S.
Saremi
,
R.
Ozgur
,
V.
Thakare
,
R. A.
Steinhardt
,
M. E.
Holtz
,
V. A.
Stoica
,
L. W.
Martin
,
D. G.
Schlom
,
S. M.
Selbach
, and
R.
Ramesh
, “
Defect-enhanced polarization switching in the improper ferroelectric LuFeO3
,”
Adv. Mater.
32
,
2000508
(
2020
).
135.
J.
Casamento
,
M. E.
Holtz
,
H.
Paik
,
P.
Dang
,
R.
Steinhardt
,
H.
Xing
,
D. G.
Schlom
, and
D.
Jena
, “
Multiferroic LuFeO3 on GaN by molecular-beam epitaxy
,”
Appl. Phys. Lett.
116
,
102901
(
2020
).
136.
A. R.
Akbashev
,
V. V.
Roddatis
,
A. L.
Vasiliev
,
S.
Lopatin
,
A. S.
Semisalova
,
N. S.
Perov
,
V. A.
Amelichev
, and
A. R.
Kaul
, “
Reconstructed stacking faults in cobalt-doped hexagonal LuFeO3 revealed by mapping of cation distribution at the atomic scale
,”
CrystEngComm
14
,
5373
5376
(
2012
).
137.
D.
Lee
,
J.-H.
Lee
,
P.
Murugavel
,
S.
Jang
,
T.
Noh
,
Y.
Jo
,
M.-H.
Jung
,
Y.-D.
Ko
, and
J.-S.
Chung
, “
Epitaxial stabilization of artificial hexagonal GdMnO3 thin films and their magnetic properties
,”
Appl. Phys. Lett.
90
,
182504
(
2007
).
138.
S.
Harikrishnan
,
S.
Rößler
,
C. N.
Kumar
,
H.
Bhat
,
U.
Rößler
,
S.
Wirth
,
F.
Steglich
, and
S.
Elizabeth
, “
Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO3 single crystals
,”
J. Phys.: Condens. Matter
21
,
096002
(
2009
).
139.
J.
Iida
,
S.
Takekawa
, and
N.
Kimizuka
, “
Single crystal growth of LuFe2O4, LuFeCoO4 and YbFeMgO4 by the floating zone method
,”
J. Cryst. Growth
102
,
398
400
(
1990
).
140.
R. A.
Steinhardt
,
C. M.
Brooks
,
G. C.
Correa
,
M. E.
Holtz
,
R.
Ramesh
,
D. A.
Muller
,
J. A.
Mundy
, and
D. G.
Schlom
, “
DyFe2O4: A new trigonal rare-earth ferrite grown by molecular-beam epitaxy
,”
APL Mater.
9
,
041106
(
2021
).
141.
H.
Iida
,
T.
Koizumi
,
Y.
Uesu
,
K.
Kohn
,
N.
Ikeda
,
S.
Mori
,
R.
Haumont
,
P.-E.
Janolin
,
J.-M.
Kiat
,
M.
Fukunaga
, and
Y.
Noda
, “
Ferroelectricity and ferrimagnetism of hexagonal YbFeO3 thin films
,”
J. Phys. Soc. Jpn.
81
,
024719
(
2012
).
142.
H.
Yokota
,
T.
Nozue
,
S.
Nakamura
,
M.
Fukunaga
, and
A.
Fuwa
, “
Examination of ferroelectric and magnetic properties of hexagonal ErFeO3 thin films
,”
Jpn. J. Appl. Phys., Part I
54
,
10NA10
(
2015
).
143.
Y.
Hamasaki
,
T.
Katayama
,
S.
Yasui
,
T.
Shiraishi
,
A.
Akama
,
T.
Kiguchi
,
T.
Taniyama
, and
M.
Itoh
, “
Switchable third ScFeO3 polar ferromagnet with YMnO3-type structure
,”
J. Mater. Chem. C
8
,
4447
4452
(
2020
).
144.
J.
Li
,
U. G.
Singh
,
T. D.
Schladt
,
J. K.
Stalick
,
S. L.
Scott
, and
R.
Seshadri
, “
Hexagonal YFe1−xPdxO3−δ: Nonperovskite host compounds for Pd2+ and their catalytic activity for CO oxidation
,”
Chem. Mater.
20
,
6567
6576
(
2008
).
145.
A. A.
Belik
,
S.
Kamba
,
M.
Savinov
,
D.
Nuzhnyy
,
M.
Tachibana
,
E.
Takayama-Muromachi
, and
V.
Goian
, “
Magnetic and dielectric properties of hexagonal InMnO3
,”
Phys. Rev. B
79
,
054411
(
2009
).
146.
B.
Paul
,
S.
Chatterjee
,
S.
Gop
,
A.
Roy
,
V.
Grover
,
R.
Shukla
, and
A.
Tyagi
, “
Evolution of lattice dynamics in ferroelectric hexagonal REInO3 (RE = Ho, Dy, Tb, Gd, Eu, Sm) perovskites
,”
Mater. Res. Express
3
,
075703
(
2016
).
147.
U.
Adem
,
A. A.
Nugroho
,
A.
Meetsma
, and
T.
Palstra
, “
Ferroelectric displacements in multiferroic Y(Mn,Ga)O3
,”
Phys. Rev. B
75
,
014108
(
2007
).
You do not currently have access to this content.