Optical tweezers employing forces produced by light underpin important manipulation tools employed in numerous areas of applied and biological physics. Conventional optical tweezers are widely based on refractive optics, and they require excessive auxiliary optical elements to reshape both amplitude and phase, as well as wavevector and angular momentum of light, and thus impose limitations on the overall cost and integration of optical systems. Metamaterials can provide both electric and optically induced magnetic responses in subwavelength optical structures, and they are highly beneficial to achieve unprecedented control of light required for many applications and can open new opportunities for optical manipulation. Here, we review the recent advances in the field of optical manipulation employing the physics and concepts of metamaterials and demonstrate that metamaterial structures could not only help to advance classical operations such as trapping, transporting, and sorting of particles, but they can uncover exotic optical forces such as pulling and lateral forces. In addition, apart from optical manipulation of particles (that can also be called “meta-tweezers”), metamaterials can be powered dynamically by light to realize ingenious “meta-robots.” This review culminates with an outlook discussing future novel opportunities in this recently emerged field ranging from enhanced particle manipulation to meta-robot actuation.

1.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
290
(
1986
).
2.
Y.
Zhang
,
C.
Min
,
X.
Dou
,
X.
Wang
,
H. P.
Urbach
,
M. G.
Somekh
, and
X.
Yuan
, “
Plasmonic tweezers: For nanoscale optical trapping and beyond
,”
Light Sci. Appl.
10
,
59
(
2021
).
3.
K.
Dholakia
and
T.
Čižmár
, “
Shaping the future of manipulation
,”
Nat. Photonics
5
,
335
342
(
2011
).
4.
A.
Ashkin
and
J. M.
Dziedzic
, “
Optical trapping and manipulation of viruses and bacteria
,”
Science
235
,
1517
1520
(
1987
).
5.
Y.
Pang
,
H.
Song
,
J. H.
Kim
,
X.
Hou
, and
W.
Cheng
, “
Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution
,”
Nat. Nanotechnol.
9
,
624
630
(
2014
).
6.
H.
Fujiwara
,
K.
Yamauchi
,
T.
Wada
,
H.
Ishihara
, and
K.
Sasaki
, “
Optical selection and sorting of nanoparticles according to quantum mechanical properties
,”
Sci. Adv.
7
,
eabd9551
(
2021
).
7.
Y.
Shi
,
K. T.
Nguyen
,
L. K.
Chin
,
Z.
Li
,
L.
Xiao
,
H.
Cai
,
R.
Yu
,
W.
Huang
,
S.
Feng
,
P. H.
Yap
,
J.
Liu
,
Y.
Zhang
, and
A. Q.
Liu
, “
Trapping and detection of single viruses in an optofluidic chip
,”
ACS Sens.
6
,
3445
3450
(
2021
).
8.
A. M.
Kaufman
and
K.-K.
Ni
, “
Quantum science with optical tweezer arrays of ultracold atoms and molecules
,”
Nat. Phys.
17
,
1324
1333
(
2021
).
9.
H.
Xin
,
Y.
Li
,
Y.-C.
Liu
,
Y.
Zhang
,
Y.-F.
Xiao
, and
B.
Li
, “
Optical forces: From fundamental to biological applications
,”
Adv. Mater.
32
,
2001994
(
2020
).
10.
I. D.
Stoev
,
B.
Seelbinder
,
E.
Erben
,
N.
Maghelli
, and
M.
Kreysing
, “
Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap
,”
eLight
1
,
7
(
2021
).
11.
C. J.
Bustamante
,
Y. R.
Chemla
,
S.
Liu
, and
M. D.
Wang
, “
Optical tweezers in single-molecule biophysics
,”
Nat. Rev. Methods Primers
1
,
25
(
2021
).
12.
M. D.
Wang
,
H.
Yin
,
R.
Landick
,
J.
Gelles
, and
S. M.
Block
, “
Stretching DNA with optical tweezers
,”
Biophys. J.
72
,
1335
1346
(
1997
).
13.
B.
Yang
,
H.
Sun
,
C.-J.
Huang
,
H.-Y.
Wang
,
Y.
Deng
,
H.-N.
Dai
,
Z.-S.
Yuan
, and
J.-W.
Pan
, “
Cooling and entangling ultracold atoms in optical lattices
,”
Science
369
,
550
553
(
2020
).
14.
M. E. J.
Friese
,
T. A.
Nieminen
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
, “
Optical alignment and spinning of laser-trapped microscopic particles
,”
Nature
394
,
348
350
(
1998
).
15.
M.
Padgett
and
R.
Bowman
, “
Tweezers with a twist
,”
Nat. Photonics
5
,
343
348
(
2011
).
16.
L.
Paterson
,
M. P.
MacDonald
,
J.
Arlt
,
W.
Sibbett
,
P. E.
Bryant
, and
K.
Dholakia
, “
Controlled rotation of optically trapped microscopic particles
,”
Science
292
,
912
914
(
2001
).
17.
P.
Jákl
,
T.
Čižmár
,
M.
Šerý
, and
P.
Zemánek
, “
Static optical sorting in a laser interference field
,”
Appl. Phys. Lett.
92
,
161110
(
2008
).
18.
P. Y.
Chiou
,
A. T.
Ohta
, and
M. C.
Wu
, “
Massively parallel manipulation of single cells and microparticles using optical images
,”
Nature
436
,
370
372
(
2005
).
19.
Y. Z.
Shi
,
S.
Xiong
,
Y.
Zhang
,
L. K.
Chin
,
Y. Y.
Chen
,
J. B.
Zhang
,
T. H.
Zhang
,
W.
Ser
,
A.
Larrson
,
S. H.
Lim
,
J. H.
Wu
,
T. N.
Chen
,
Z. C.
Yang
,
Y. L.
Hao
,
B.
Liedberg
,
P. H.
Yap
,
K.
Wang
,
D. P.
Tsai
,
C. W.
Qiu
, and
A. Q.
Liu
, “
Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement
,”
Nat. Commun.
9
,
815
(
2018
).
20.
Y.
Shi
,
S.
Xiong
,
K.
Chin Lip
,
J.
Zhang
,
W.
Ser
,
J.
Wu
,
T.
Chen
,
Z.
Yang
,
Y.
Hao
,
B.
Liedberg
,
H.
Yap Peng
,
P.
Tsai Din
,
C.-W.
Qiu
, and
Q.
Liu Ai
, “
Nanometer-precision linear sorting with synchronized optofluidic dual barriers
,”
Sci. Adv.
4
,
eaao0773
(
2018
).
21.
F.
Nan
and
Z.
Yan
, “
Sorting metal nanoparticles with dynamic and tunable optical driven forces
,”
Nano Lett.
18
,
4500
4505
(
2018
).
22.
M. P.
MacDonald
,
G. C.
Spalding
, and
K.
Dholakia
, “
Microfluidic sorting in an optical lattice
,”
Nature
426
,
421
424
(
2003
).
23.
S. C.
Chapin
,
V.
Germain
, and
E. R.
Dufresne
, “
Automated trapping, assembly, and sorting with holographic optical tweezers
,”
Opt. Express
14
,
13095
13100
(
2006
).
24.
A.
Kastberg
,
W. D.
Phillips
,
S. L.
Rolston
,
R. J. C.
Spreeuw
, and
P. S.
Jessen
, “
Adiabatic cooling of cesium to 700 nK in an optical lattice
,”
Phys. Rev. Lett.
74
,
1542
1545
(
1995
).
25.
Y.
Wu
,
J. J.
Burau
,
K.
Mehling
,
J.
Ye
, and
S.
Ding
, “
High phase-space density of laser-cooled molecules in an optical lattice
,”
Phys. Rev. Lett.
127
,
263201
(
2021
).
26.
J.
Baumgartl
,
M.
Mazilu
, and
K.
Dholakia
, “
Optically mediated particle clearing using airy wavepackets
,”
Nat. Photonics
2
,
675
678
(
2008
).
27.
H.
Cheng
,
W.
Zang
,
W.
Zhou
, and
J.
Tian
, “
Analysis of optical trapping and propulsion of Rayleigh particles using airy beam
,”
Opt. Express
18
,
20384
20394
(
2010
).
28.
H. Y.
Kuo
,
S.
Vyas
,
C. H.
Chu
,
M. K.
Chen
,
X.
Shi
,
H.
Misawa
,
Y.-J.
Lu
,
Y.
Luo
, and
D. P.
Tsai
, “
Cubic-phase metasurface for three-dimensional optical manipulation
,”
Nanomaterials
11
,
1730
(
2021
).
29.
H.
Li
,
Y.
Cao
,
L.-M.
Zhou
,
X.
Xu
,
T.
Zhu
,
Y.
Shi
,
C.-W.
Qiu
, and
W.
Ding
, “
Optical pulling forces and their applications
,”
Adv. Opt. Photonics
12
,
288
366
(
2020
).
30.
J.
Chen
,
J.
Ng
,
Z.
Lin
, and
C. T.
Chan
, “
Optical pulling force
,”
Nat. Photonics
5
,
531
534
(
2011
).
31.
X.
Li
,
J.
Chen
,
Z.
Lin
, and
J.
Ng
, “
Optical pulling at macroscopic distances
,”
Sci. Adv.
5
,
eaau7814
(
2019
).
32.
A.
Novitsky
,
C.-W.
Qiu
, and
H.
Wang
, “
Single gradientless light beam drags particles as tractor beams
,”
Phys. Rev. Lett.
107
,
203601
(
2011
).
33.
T.
Zhu
,
Y.
Cao
,
L.
Wang
,
Z.
Nie
,
T.
Cao
,
F.
Sun
,
Z.
Jiang
,
M.
Nieto-Vesperinas
,
Y.
Liu
,
C.-W.
Qiu
, and
W.
Ding
, “
Self-induced backaction optical pulling force
,”
Phys. Rev. Lett.
120
,
123901
(
2018
).
34.
Y.
Shi
,
T.
Zhu
,
T.
Zhang
,
A.
Mazzulla
,
D. P.
Tsai
,
W.
Ding
,
A. Q.
Liu
,
G.
Cipparrone
,
J. J.
Sáenz
, and
C.-W.
Qiu
, “
Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
,”
Light Sci. Appl.
9
,
62
(
2020
).
35.
S. B.
Wang
and
C. T.
Chan
, “
Lateral optical force on chiral particles near a surface
,”
Nat. Commun.
5
,
3307
(
2014
).
36.
H.
Chen
,
H.
Zheng
,
W.
Lu
,
S.
Liu
,
J.
Ng
, and
Z.
Lin
, “
Lateral optical force due to the breaking of electric-magnetic symmetry
,”
Phys. Rev. Lett.
125
,
073901
(
2020
).
37.
T.
Zhang
,
M. R. C.
Mahdy
,
Y.
Liu
,
J. H.
Teng
,
C. T.
Lim
,
Z.
Wang
, and
C.-W.
Qiu
, “
All-optical chirality-sensitive sorting via reversible lateral forces in interference fields
,”
ACS Nano
11
,
4292
4300
(
2017
).
38.
F. J.
Rodríguez-Fortuño
,
N.
Engheta
,
A.
Martínez
, and
A. V.
Zayats
, “
Lateral forces on circularly polarizable particles near a surface
,”
Nat. Commun.
6
,
8799
(
2015
).
39.
O.
Ilic
,
I.
Kaminer
,
B.
Zhen
,
D.
Miller Owen
,
H.
Buljan
, and
M.
Soljačić
, “
Topologically enabled optical nanomotors
,”
Sci. Adv.
3
,
e1602738
(
2017
).
40.
H.
Li
,
Y.
Cao
,
B.
Shi
,
T.
Zhu
,
Y.
Geng
,
R.
Feng
,
L.
Wang
,
F.
Sun
,
Y.
Shi
,
M. A.
Miri
,
M.
Nieto-Vesperinas
,
C.-W.
Qiu
, and
W.
Ding
, “
Momentum-topology-induced optical pulling force
,”
Phys. Rev. Lett.
124
,
143901
(
2020
).
41.
J.
Ng
,
Z.
Lin
, and
C. T.
Chan
, “
Theory of optical trapping by an optical vortex beam
,”
Phys. Rev. Lett.
104
,
103601
(
2010
).
42.
K. Y.
Bliokh
,
F. J.
Rodríguez-Fortuño
,
F.
Nori
, and
A. V.
Zayats
, “
Spin–orbit interactions of light
,”
Nat. Photonics
9
,
796
808
(
2015
).
43.
Y.
Zhao
,
D.
Shapiro
,
D.
McGloin
,
D. T.
Chiu
, and
S.
Marchesini
, “
Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam
,”
Opt. Express
17
,
23316
23322
(
2009
).
44.
S.-Y.
Huang
,
G.-L.
Zhang
,
Q.
Wang
,
M.
Wang
,
C.
Tu
,
Y.
Li
, and
H.-T.
Wang
, “
Spin-to-orbital angular momentum conversion via light intensity gradient
,”
Optica
8
,
1231
1236
(
2021
).
45.
K. Y.
Bliokh
,
A. Y.
Bekshaev
, and
F.
Nori
, “
Extraordinary momentum and spin in evanescent waves
,”
Nat. Commun.
5
,
3300
(
2014
).
46.
K. Y.
Bliokh
and
F.
Nori
, “
Transverse and longitudinal angular momenta of light
,”
Phys. Rep.
592
,
1
38
(
2015
).
47.
A. Y.
Bekshaev
,
K. Y.
Bliokh
, and
F.
Nori
, “
Transverse spin and momentum in two-wave interference
,”
Phys. Rev. X
5
,
011039
(
2015
).
48.
M.
Neugebauer
,
J. S.
Eismann
,
T.
Bauer
, and
P.
Banzer
, “
Magnetic and electric transverse spin density of spatially confined light
,”
Phys. Rev. X
8
,
021042
(
2018
).
49.
M.
Antognozzi
,
C. R.
Bermingham
,
R. L.
Harniman
,
S.
Simpson
,
J.
Senior
,
R.
Hayward
,
H.
Hoerber
,
M. R.
Dennis
,
A. Y.
Bekshaev
,
K. Y.
Bliokh
, and
F.
Nori
, “
Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever
,”
Nat. Phys.
12
,
731
735
(
2016
).
50.
L.
Liu
,
A. D.
Donato
,
V.
Ginis
,
S.
Kheifets
,
A.
Amirzhan
, and
F.
Capasso
, “
Three-dimensional measurement of the helicity-dependent forces on a Mie particle
,”
Phys. Rev. Lett.
120
,
223901
(
2018
).
51.
P.
Shi
,
L.
Du
,
C.
Li
,
A. V.
Zayats
, and
X.
Yuan
, “
Transverse spin dynamics in structured electromagnetic guided waves
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2018816118
(
2021
).
52.
J. S.
Eismann
,
L. H.
Nicholls
,
D. J.
Roth
,
M. A.
Alonso
,
P.
Banzer
,
F. J.
Rodríguez-Fortuño
,
A. V.
Zayats
,
F.
Nori
, and
K. Y.
Bliokh
, “
Transverse spinning of unpolarized light
,”
Nat. Photonics
15
,
156
161
(
2021
).
53.
A. H. J.
Yang
,
S. D.
Moore
,
B. S.
Schmidt
,
M.
Klug
,
M.
Lipson
, and
D.
Erickson
, “
Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides
,”
Nature
457
,
71
75
(
2009
).
54.
L. K.
Chin
,
Y.
Shi
, and
A.-Q.
Liu
, “
Optical forces in silicon nanophotonics and optomechanical systems: Science and applications
,”
Adv. Devices Instrum.
2020
,
1964015
.
55.
D. S.
Bykov
,
S.
Xie
,
R.
Zeltner
,
A.
Machnev
,
G. K. L.
Wong
,
T. G.
Euser
, and
P. S. J.
Russell
, “
Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre
,”
Light Sci. Appl.
7
,
22
(
2018
).
56.
S.
Mandal
,
X.
Serey
, and
D.
Erickson
, “
Nanomanipulation using silicon photonic crystal resonators
,”
Nano Lett.
10
,
99
104
(
2010
).
57.
E.
Jaquay
,
L. J.
Martínez
,
C. A.
Mejia
, and
M. L.
Povinelli
, “
Light-assisted, templated self-assembly using a photonic-crystal slab
,”
Nano Lett.
13
,
2290
2294
(
2013
).
58.
E.
Jaquay
,
L. J.
Martínez
,
N.
Huang
,
C. A.
Mejia
,
D.
Sarkar
, and
M. L.
Povinelli
, “
Light-assisted, templated self-assembly of gold nanoparticle chains
,”
Nano Lett.
14
,
5184
5188
(
2014
).
59.
J.
Xiong
and
S.-T.
Wu
, “
Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications
,”
eLight
1
,
3
(
2021
).
60.
Y.
Pang
and
R.
Gordon
, “
Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film
,”
Nano Lett.
11
,
3763
3767
(
2011
).
61.
M. L.
Juan
,
R.
Gordon
,
Y.
Pang
,
F.
Eftekhari
, and
R.
Quidant
, “
Self-induced back-action optical trapping of dielectric nanoparticles
,”
Nat. Phys.
5
,
915
919
(
2009
).
62.
M. L.
Juan
,
M.
Righini
, and
R.
Quidant
, “
Plasmon nano-optical tweezers
,”
Nat. Photonics
5
,
349
356
(
2011
).
63.
Y.
Pang
and
R.
Gordon
, “
Optical trapping of a single protein
,”
Nano Lett.
12
,
402
406
(
2012
).
64.
M.
Righini
,
A. S.
Zelenina
,
C.
Girard
, and
R.
Quidant
, “
Parallel and selective trapping in a patterned plasmonic landscape
,”
Nat. Phys.
3
,
477
480
(
2007
).
65.
J.
Berthelot
,
S. S.
Aćimović
,
M. L.
Juan
,
M. P.
Kreuzer
,
J.
Renger
, and
R.
Quidant
, “
Three-dimensional manipulation with scanning near-field optical nanotweezers
,”
Nat. Nanotechnol.
9
,
295
299
(
2014
).
66.
B. P.
Nadappuram
,
P.
Cadinu
,
A.
Barik
,
A. J.
Ainscough
,
M. J.
Devine
,
M.
Kang
,
J.
Gonzalez-Garcia
,
J. T.
Kittler
,
K. R.
Willison
,
R.
Vilar
,
P.
Actis
,
B.
Wojciak-Stothard
,
S.-H.
Oh
,
A. P.
Ivanov
, and
J. B.
Edel
, “
Nanoscale tweezers for single-cell biopsies
,”
Nat. Nanotechnol.
14
,
80
88
(
2019
).
67.
Y.
Li
,
X.
Liu
, and
B.
Li
, “
Single-cell biomagnifier for optical nanoscopes and nanotweezers
,”
Light Sci. Appl.
8
,
61
(
2019
).
68.
Y.
Shi
,
H.
Zhao
,
L. K.
Chin
,
Y.
Zhang
,
P. H.
Yap
,
W.
Ser
,
C.-W.
Qiu
, and
A. Q.
Liu
, “
Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale
,”
Nano Lett.
20
,
5193
5200
(
2020
).
69.
Y.
Shi
,
H.
Zhao
,
K. T.
Nguyen
,
Y.
Zhang
,
L. K.
Chin
,
T.
Zhu
,
Y.
Yu
,
H.
Cai
,
P. H.
Yap
,
P. Y.
Liu
,
S.
Xiong
,
J.
Zhang
,
C.-W.
Qiu
,
C. T.
Chan
, and
A. Q.
Liu
, “
Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving
,”
ACS Nano
13
,
12070
12080
(
2019
).
70.
J.
Gieseler
,
J. R.
Gomez-Solano
,
A.
Magazzù
,
I.
Pérez Castillo
,
L.
Pérez García
,
M.
Gironella-Torrent
,
X.
Viader-Godoy
,
F.
Ritort
,
G.
Pesce
,
A. V.
Arzola
,
K.
Volke-Sepúlveda
, and
G.
Volpe
, “
Optical tweezers—From calibration to applications: A tutorial
,”
Adv. Opt. Photonics
13
,
74
241
(
2021
).
71.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
, “
Controlling electromagnetic fields
,”
Science
312
,
1780
1782
(
2006
).
72.
J. B.
Pendry
, “
A chiral route to negative refraction
,”
Science
306
,
1353
1355
(
2004
).
73.
J. B.
Pendry
,
A.
Aubry
,
D. R.
Smith
, and
S. A.
Maier
, “
Transformation optics and subwavelength control of light
,”
Science
337
,
549
552
(
2012
).
74.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
, “
Metamaterials and negative refractive index
,”
Science
305
,
788
792
(
2004
).
75.
N. I.
Zheludev
and
Y. S.
Kivshar
, “
From metamaterials to metadevices
,”
Nat. Mater.
11
,
917
924
(
2012
).
76.
A. A.
Zharov
,
I. V.
Shadrivov
, and
Y. S.
Kivshar
, “
Nonlinear properties of left-handed metamaterials
,”
Phys. Rev. Lett.
91
,
037401
(
2003
).
77.
N.
Yu
,
P.
Genevet
,
A.
Kats Mikhail
,
F.
Aieta
,
J.-P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
, “
Light propagation with phase discontinuities: Generalized laws of reflection and refraction
,”
Science
334
,
333
337
(
2011
).
78.
N.
Yu
and
F.
Capasso
, “
Flat optics with designer metasurfaces
,”
Nat. Mater.
13
,
139
150
(
2014
).
79.
G.
Li
,
S.
Zhang
, and
T.
Zentgraf
, “
Nonlinear photonic metasurfaces
,”
Nat. Rev. Mater.
2
,
17010
(
2017
).
80.
D.
Lin
,
P.
Fan
,
E.
Hasman
, and
L.
Brongersma Mark
, “
Dielectric gradient metasurface optical elements
,”
Science
345
,
298
302
(
2014
).
81.
X.
Yin
,
Z.
Ye
,
J.
Rho
,
Y.
Wang
, and
X.
Zhang
, “
Photonic spin hall effect at metasurfaces
,”
Science
339
,
1405
1407
(
2013
).
82.
S.
Chang
,
X.
Guo
, and
X.
Ni
, “
Optical metasurfaces: Progress and applications
,”
Annu. Rev. Mater. Res.
48
,
279
302
(
2018
).
83.
M.
Khorasaninejad
,
T. C.
Wei
,
C.
Devlin Robert
,
J.
Oh
,
Y.
Zhu Alexander
, and
F.
Capasso
, “
Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging
,”
Science
352
,
1190
1194
(
2016
).
84.
S.
Wang
,
P. C.
Wu
,
V.-C.
Su
,
Y.-C.
Lai
,
M.-K.
Chen
,
H. Y.
Kuo
,
B. H.
Chen
,
Y. H.
Chen
,
T.-T.
Huang
,
J.-H.
Wang
,
R.-M.
Lin
,
C.-H.
Kuan
,
T.
Li
,
Z.
Wang
,
S.
Zhu
, and
D. P.
Tsai
, “
A broadband achromatic metalens in the visible
,”
Nat. Nanotechnol.
13
,
227
232
(
2018
).
85.
W.
Zhu
,
Q.
Song
,
L.
Yan
,
W.
Zhang
,
P.-C.
Wu
,
L. K.
Chin
,
H.
Cai
,
D. P.
Tsai
,
Z. X.
Shen
,
T. W.
Deng
,
S. K.
Ting
,
Y.
Gu
,
G. Q.
Lo
,
D. L.
Kwong
,
Z. C.
Yang
,
R.
Huang
,
A.-Q.
Liu
, and
N.
Zheludev
, “
A flat lens with tunable phase gradient by using random access reconfigurable metamaterial
,”
Adv. Mater.
27
,
4739
4743
(
2015
).
86.
A.
Krasnok
,
D.
Baranov
,
H.
Li
,
M.-A.
Miri
,
F.
Monticone
, and
A.
Alú
, “
Anomalies in light scattering
,”
Adv. Opt. Photonics
11
,
892
951
(
2019
).
87.
M.
Decker
,
I.
Staude
,
M.
Falkner
,
J.
Dominguez
,
D. N.
Neshev
,
I.
Brener
,
T.
Pertsch
, and
Y. S.
Kivshar
, “
High-efficiency dielectric Huygens' surfaces
,”
Adv. Opt. Mater.
3
,
813
820
(
2015
).
88.
Y.
Liang
,
K.
Koshelev
,
F.
Zhang
,
H.
Lin
,
S.
Lin
,
J.
Wu
,
B.
Jia
, and
Y.
Kivshar
, “
Bound states in the continuum in anisotropic plasmonic metasurfaces
,”
Nano Lett.
20
,
6351
6356
(
2020
).
89.
M. V.
Gorkunov
,
A. A.
Antonov
, and
Y. S.
Kivshar
, “
Metasurfaces with maximum chirality empowered by bound states in the continuum
,”
Phys. Rev. Lett.
125
,
093903
(
2020
).
90.
Q.
Song
,
S.
Khadir
,
S.
Vézian
,
B.
Damilano
,
P.
de Mierry
,
S.
Chenot
,
V.
Brandli
,
R.
Laberdesque
,
B.
Wattellier
, and
P.
Genevet
, “
Printing polarization and phase at the optical diffraction limit: Near- and far-field optical encryption
,”
Nanophotonics
10
,
697
704
(
2021
).
91.
H.
Chen
,
C. T.
Chan
, and
P.
Sheng
, “
Transformation optics and metamaterials
,”
Nat. Mater.
9
,
387
396
(
2010
).
92.
R.
Liu
,
C.
Ji
,
J. J.
Mock
,
J. Y.
Chin
,
T. J.
Cui
, and
D. R.
Smith
, “
Broadband ground-plane cloak
,”
Science
323
,
366
369
(
2009
).
93.
A.
Poddubny
,
I.
Iorsh
,
P.
Belov
, and
Y.
Kivshar
, “
Hyperbolic metamaterials
,”
Nat. Photonics
7
,
948
957
(
2013
).
94.
H.-T.
Chen
,
W. J.
Padilla
,
J. M. O.
Zide
,
A. C.
Gossard
,
A. J.
Taylor
, and
R. D.
Averitt
, “
Active terahertz metamaterial devices
,”
Nature
444
,
597
600
(
2006
).
95.
W.
Zhang
,
Q.
Song
,
W.
Zhu
,
Z.
Shen
,
P.
Chong
,
D. P.
Tsai
,
C.
Qiu
, and
A. Q.
Liu
, “
Metafluidic metamaterial: A review
,”
Adv. Phys.: X
3
,
1417055
(
2018
).
96.
M.
Shaltout Amr
,
M.
Shalaev Vladimir
, and
L.
Brongersma Mark
, “
Spatiotemporal light control with active metasurfaces
,”
Science
364
,
eaat3100
(
2019
).
97.
W. M.
Zhu
,
A. Q.
Liu
,
T.
Bourouina
,
D. P.
Tsai
,
J. H.
Teng
,
X. H.
Zhang
,
G. Q.
Lo
,
D. L.
Kwong
, and
N. I.
Zheludev
, “
Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy
,”
Nat. Commun.
3
,
1274
(
2012
).
98.
S.
Cueff
,
A.
Taute
,
A.
Bourgade
,
J.
Lumeau
,
S.
Monfray
,
Q.
Song
,
P.
Genevet
,
B.
Devif
,
X.
Letartre
, and
L.
Berguiga
, “
Reconfigurable flat optics with programmable reflection amplitude using lithography-free phase-change material ultra-thin films
,”
Adv. Opt. Mater.
9
,
2001291
(
2021
).
99.
C.
Devlin Robert
,
A.
Ambrosio
,
A.
Rubin Noah
,
J. P. B.
Mueller
, and
F.
Capasso
, “
Arbitrary spin-to–orbital angular momentum conversion of light
,”
Science
358
,
896
901
(
2017
).
100.
H.
Zhou
,
B.
Sain
,
Y.
Wang
,
C.
Schlickriede
,
R.
Zhao
,
X.
Zhang
,
Q.
Wei
,
X.
Li
,
L.
Huang
, and
T.
Zentgraf
, “
Polarization-encrypted orbital angular momentum multiplexed metasurface holography
,”
ACS Nano
14
,
5553
5559
(
2020
).
101.
M.
Lapine
, “
New degrees of freedom in nonlinear metamaterials
,”
Phys. Status Solidi B
254
,
1600462
(
2017
).
102.
I. V.
Shadrivov
,
M.
Lapine
, and
Y. S.
Kivshar
,
Nonlinear, Tunable and Active Metamaterials
(
Springer
,
2015
).
103.
M.
Lapine
,
I. V.
Shadrivov
,
D. A.
Powell
, and
Y. S.
Kivshar
, “
Magnetoelastic metamaterials
,”
Nat. Mater.
11
,
30
33
(
2012
).
104.
V. V.
Datsyuk
and
O. R.
Pavlyniuk
, “
Maxwell stress on a small dielectric sphere in a dielectric
,”
Phys. Rev. A
91
,
023826
(
2015
).
105.
B. A.
Kemp
, “
Resolution of the Abraham-Minkowski debate: Implications for the electromagnetic wave theory of light in matter
,”
J. Appl. Phys.
109
,
111101
(
2011
).
106.
D.
Gao
,
W.
Ding
,
M.
Nieto-Vesperinas
,
X.
Ding
,
M.
Rahman
,
T.
Zhang
,
C.
Lim
, and
C.-W.
Qiu
, “
Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects
,”
Light Sci. Appl.
6
,
e17039
(
2017
).
107.
D. B.
Phillips
,
M. J.
Padgett
,
S.
Hanna
,
Y. L. D.
Ho
,
D. M.
Carberry
,
M. J.
Miles
, and
S. H.
Simpson
, “
Shape-induced force fields in optical trapping
,”
Nat. Photonics
8
,
400
405
(
2014
).
108.
M.
Bethune-Waddell
and
K. J.
Chau
, “
Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter
,”
Rep. Prog. Phys.
78
,
122401
(
2015
).
109.
S.
Sukhov
,
V.
Kajorndejnukul
,
R. R.
Naraghi
, and
A.
Dogariu
, “
Dynamic consequences of optical spin–orbit interaction
,”
Nat. Photonics
9
,
809
812
(
2015
).
110.
V.
Kajorndejnukul
,
W.
Ding
,
S.
Sukhov
,
C.-W.
Qiu
, and
A.
Dogariu
, “
Linear momentum increase and negative optical forces at dielectric interface
,”
Nat. Photonics
7
,
787
790
(
2013
).
111.
C.-W.
Qiu
,
W.
Ding
,
M. R. C.
Mahdy
,
D.
Gao
,
T.
Zhang
,
F. C.
Cheong
,
A.
Dogariu
,
Z.
Wang
, and
C. T.
Lim
, “
Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams
,”
Light Sci. Appl.
4
,
e278
(
2015
).
112.
R. N. C.
Pfeifer
,
T. A.
Nieminen
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
, “
Colloquium: Momentum of an electromagnetic wave in dielectric media
,”
Rev. Mod. Phys.
79
,
1197
1216
(
2007
).
113.
P. W.
Milonni
and
R. W.
Boyd
, “
Momentum of light in a dielectric medium
,”
Adv. Opt. Photonics
2
,
519
553
(
2010
).
114.
M.
Mansuripur
, “
Resolution of the Abraham–Minkowski controversy
,”
Opt. Commun.
283
,
1997
2005
(
2010
).
115.
D. J.
Griffiths
, “
Resource letter EM-1: Electromagnetic momentum
,”
Am. J. Phys.
80
,
7
18
(
2011
).
116.
B. A.
Kemp
,
T. M.
Grzegorczyk
, and
J. A.
Kong
, “
Optical momentum transfer to absorbing Mie particles
,”
Phys. Rev. Lett.
97
,
133902
(
2006
).
117.
S. M.
Barnett
and
R.
Loudon
, “
The enigma of optical momentum in a medium
,”
Philos. Trans. R. Soc. A
368
,
927
939
(
2010
).
118.
K. Y.
Bliokh
,
A. Y.
Bekshaev
, and
F.
Nori
, “
Optical momentum and angular momentum in complex media: From the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons
,”
New J. Phys.
19
,
123014
(
2017
).
119.
N. B.
Chichkov
and
B. N.
Chichkov
, “
On the origin of photon mass, momentum, and energy in a dielectric medium [Invited]
,”
Opt. Mater. Express
11
,
2722
2729
(
2021
).
120.
K. Y.
Bliokh
,
A. Y.
Bekshaev
, and
F.
Nori
, “
Optical momentum, spin, and angular momentum in dispersive media
,”
Phys. Rev. Lett.
119
,
073901
(
2017
).
121.
T. G.
Philbin
and
O.
Allanson
, “
Optical angular momentum in dispersive media
,”
Phys. Rev. A
86
,
055802
(
2012
).
122.
F.
Alpeggiani
,
K. Y.
Bliokh
,
F.
Nori
, and
L.
Kuipers
, “
Electromagnetic helicity in complex media
,”
Phys. Rev. Lett.
120
,
243605
(
2018
).
123.
R.-Y.
Zhang
,
Z.
Xiong
,
N.
Wang
,
Y.
Chen
, and
C. T.
Chan
, “
Electromagnetic energy–momentum tensors in general dispersive bianisotropic media
,”
J. Opt. Soc. Am. B
38
,
3135
3149
(
2021
).
124.
J. P.
Gordon
, “
Radiation forces and momenta in dielectric media
,”
Phys. Rev. A
8
,
14
21
(
1973
).
125.
R. N. C.
Pfeifer
,
T. A.
Nieminen
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
, “
Erratum: Colloquium: Momentum of an electromagnetic wave in dielectric media [Rev. Mod. Phys. 79, 1197 (2007)]
,”
Rev. Mod. Phys.
81
,
443
(
2009
).
126.
Z.
Mikura
, “
Variational formulation of the electrodynamics of fluids and its application to the radiation pressure problem
,”
Phys. Rev. A
13
,
2265
2275
(
1976
).
127.
Y.
Shi
,
T.
Zhu
,
K. T.
Nguyen
,
Y.
Zhang
,
S.
Xiong
,
P. H.
Yap
,
W.
Ser
,
S.
Wang
,
C.-W.
Qiu
,
C. T.
Chan
, and
A. Q.
Liu
, “
Optofluidic microengine in a dynamic flow environment via self-induced back-action
,”
ACS Photonics
7
,
1500
1507
(
2020
).
128.
T. A.
Nieminen
,
V. L. Y.
Loke
,
A. B.
Stilgoe
,
G.
Knöner
,
A. M.
Brańczyk
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
, “
Optical tweezers computational toolbox
,”
J. Opt. A: Pure Appl. Opt.
9
,
S196
S203
(
2007
).
129.
M.
Nieto-Vesperinas
,
J. J.
Sáenz
,
R.
Gómez-Medina
, and
L.
Chantada
, “
Optical forces on small magnetodielectric particles
,”
Opt. Express
18
,
11428
11443
(
2010
).
130.
A. Y.
Bekshaev
, “
Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows
,”
J. Opt.
15
,
044004
(
2013
).
131.
A.
Hayat
,
J. P. B.
Mueller
, and
F.
Capasso
, “
Lateral chirality-sorting optical forces
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
13190
(
2015
).
132.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley and Sons
,
2008
).
133.
M. S.
Mirmoosa
,
Y.
Ra'di
,
V. S.
Asadchy
,
C. R.
Simovski
, and
S. A.
Tretyakov
, “
Polarizabilities of nonreciprocal bianisotropic particles
,”
Phys. Rev. Appl.
1
,
034005
(
2014
).
134.
P. A.
Belov
,
S. I.
Maslovski
,
K. R.
Simovski
, and
S. A.
Tretyakov
, “
A condition imposed on the electromagnetic polarizability of a bianisotropic lossless scatterer
,”
Tech. Phys. Lett.
29
,
718
720
(
2003
).
135.
J.
Mun
,
M.
Kim
,
Y.
Yang
,
T.
Badloe
,
J.
Ni
,
Y.
Chen
,
C.-W.
Qiu
, and
J.
Rho
, “
Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena
,”
Light Sci. Appl.
9
,
139
(
2020
).
136.
F.
Bernal Arango
,
T.
Coenen
, and
A. F.
Koenderink
, “
Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval
,”
ACS Photonics
1
,
444
453
(
2014
).
137.
F.
Bernal Arango
and
A.
Femius Koenderink
, “
Polarizability tensor retrieval for magnetic and plasmonic antenna design
,”
New J. Phys.
15
,
073023
(
2013
).
138.
J. A.
Reyes-Avendaño
,
U.
Algredo-Badillo
,
P.
Halevi
, and
F.
Pérez-Rodríguez
, “
From photonic crystals to metamaterials: The bianisotropic response
,”
New J. Phys.
13
,
073041
(
2011
).
139.
K.
Sinha
, “
Repulsive vacuum-induced forces on a magnetic particle
,”
Phys. Rev. A
97
,
032513
(
2018
).
140.
Z.
Körpinar
and
T.
Körpinar
, “
Optical tangent hybrid electromotives for tangent hybrid magnetic particle
,”
Optik
247
,
167823
(
2021
).
141.
C.
Caloz
and
A.
Sihvola
, “
Electromagnetic chirality. I. The microscopic perspective [electromagnetic perspectives]
,”
IEEE Antennas Propag. Mag.
62
,
58
71
(
2020
).
142.
M. V.
Berry
, “
Optical currents
,”
J. Opt. A: Pure Appl. Opt.
11
,
094001
(
2009
).
143.
Y.
Shi
,
L.-M.
Zhou
,
A. Q.
Liu
,
M.
Nieto-Vesperinas
,
T.
Zhu
,
A.
Hassanfiroozi
,
J.
Liu
,
H.
Zhang
,
D. P.
Tsai
,
H.
Li
,
W.
Ding
,
W.
Zhu
,
Y. F.
Yu
,
A.
Mazzulla
,
G.
Cipparrone
,
P. C.
Wu
,
C. T.
Chan
, and
C.-W.
Qiu
, “
Superhybrid mode-enhanced optical torques on mie-resonant particles
,”
Nano Lett.
22
,
1769
1777
(
2022
).
144.
I. D.
Toftul
,
K. Y.
Bliokh
,
M. I.
Petrov
, and
F.
Nori
, “
Acoustic radiation force and torque on small particles as measures of the canonical momentum and spin densities
,”
Phys. Rev. Lett.
123
,
183901
(
2019
).
145.
S.
Albaladejo
,
M. I.
Marqués
,
M.
Laroche
, and
J. J.
Sáenz
, “
Scattering forces from the curl of the spin angular momentum of a light field
,”
Phys. Rev. Lett.
102
,
113602
(
2009
).
146.
M. F.
Picardi
,
K. Y.
Bliokh
,
F. J.
Rodríguez-Fortuño
,
F.
Alpeggiani
, and
F.
Nori
, “
Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes
,”
Optica
5
,
1016
1026
(
2018
).
147.
F.
Cardano
and
L.
Marrucci
, “
Spin–orbit photonics
,”
Nat. Photonics
9
,
776
778
(
2015
).
148.
Y.
Shen
,
X.
Wang
,
Z.
Xie
,
C.
Min
,
X.
Fu
,
Q.
Liu
,
M.
Gong
, and
X.
Yuan
, “
Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities
,”
Light Sci. Appl.
8
,
90
(
2019
).
149.
A.
Bekshaev
,
K. Y.
Bliokh
, and
M.
Soskin
, “
Internal flows and energy circulation in light beams
,”
J. Opt.
13
,
053001
(
2011
).
150.
X.
Wang
,
Z.
Nie
,
Y.
Liang
,
J.
Wang
,
T.
Li
, and
B.
Jia
, “
Recent advances on optical vortex generation
,”
Nanophotonics
7
,
1533
1556
(
2018
).
151.
Z.
Jin
,
D.
Janoschka
,
J.
Deng
,
L.
Ge
,
P.
Dreher
,
B.
Frank
,
G.
Hu
,
J.
Ni
,
Y.
Yang
,
J.
Li
,
C.
Yu
,
D.
Lei
,
G.
Li
,
S.
Xiao
,
S.
Mei
,
H.
Giessen
,
F. M.
zu Heringdorf
, and
C.-W.
Qiu
, “
Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum
,”
eLight
1
,
5
(
2021
).
152.
F. L.
Kien
and
A.
Rauschenbeutel
, “
Negative azimuthal force of nanofiber-guided light on a particle
,”
Phys. Rev. A
88
,
063845
(
2013
).
153.
G.
Tkachenko
,
I.
Toftul
,
C.
Esporlas
,
A.
Maimaiti
,
F.
Le Kien
,
V. G.
Truong
, and
S. N.
Chormaic
, “
Light-induced rotation of dielectric microparticles around an optical nanofiber
,”
Optica
7
,
59
62
(
2020
).
154.
A.
Ashkin
,
J. M.
Dziedzic
, and
T.
Yamane
, “
Optical trapping and manipulation of single cells using infrared laser beams
,”
Nature
330
,
769
771
(
1987
).
155.
M.
Woerdemann
,
C.
Alpmann
,
M.
Esseling
, and
C.
Denz
, “
Advanced optical trapping by complex beam shaping
,”
Laser Photonics Rev.
7
,
839
854
(
2013
).
156.
Y.
Roichman
,
B.
Sun
,
Y.
Roichman
,
J.
Amato-Grill
, and
D. G.
Grier
, “
Optical forces arising from phase gradients
,”
Phys. Rev. Lett.
100
,
013602
(
2008
).
157.
Z.
Shen
,
Z.
Xiang
,
Z.
Wang
,
Y.
Shen
, and
B.
Zhang
, “
Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens
,”
Appl. Opt.
60
,
4820
4826
(
2021
).
158.
F.
Nan
and
Z.
Yan
, “
Creating multifunctional optofluidic potential wells for nanoparticle manipulation
,”
Nano Lett.
18
,
7400
7406
(
2018
).
159.
C. W.
Peterson
,
J.
Parker
,
S. A.
Rice
, and
N. F.
Scherer
, “
Controlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradients
,”
Nano Lett.
19
,
897
903
(
2019
).
160.
D.
Gao
,
A.
Novitsky
,
T.
Zhang
,
F. C.
Cheong
,
L.
Gao
,
C. T.
Lim
,
B.
Luk'yanchuk
, and
C.-W.
Qiu
, “
Unveiling the correlation between non-diffracting tractor beam and its singularity in Poynting vector
,”
Laser Photonics Rev.
9
,
75
82
(
2015
).
161.
A.
Callegari
,
M.
Mijalkov
,
A. B.
Gököz
, and
G.
Volpe
, “
Computational toolbox for optical tweezers in geometrical optics
,”
J. Opt. Soc. Am. B
32
,
B11
B19
(
2015
).
162.
Y.-R.
Chang
,
L.
Hsu
, and
S.
Chi
, “
Optical trapping of a spherically symmetric sphere in the ray-optics regime: A model for optical tweezers upon cells
,”
Appl. Opt.
45
,
3885
3892
(
2006
).
163.
M. I.
Petrov
,
S. V.
Sukhov
,
A. A.
Bogdanov
,
A. S.
Shalin
, and
A.
Dogariu
, “
Surface plasmon polariton assisted optical pulling force
,”
Laser Photonics Rev.
10
,
116
122
(
2016
).
164.
N. A.
Kostina
,
D. A.
Kislov
,
A. N.
Ivinskaya
,
A.
Proskurin
,
D. N.
Redka
,
A.
Novitsky
,
P.
Ginzburg
, and
A. S.
Shalin
, “
Nanoscale tunable optical binding mediated by hyperbolic metamaterials
,”
ACS Photonics
7
,
425
433
(
2020
).
165.
N. K.
Paul
,
D.
Correas-Serrano
, and
J. S.
Gomez-Diaz
, “
Giant lateral optical forces on Rayleigh particles near hyperbolic and extremely anisotropic metasurfaces
,”
Phys. Rev. B
99
,
121408
(
2019
).
166.
A.
Ivinskaya
,
M. I.
Petrov
,
A. A.
Bogdanov
,
I.
Shishkin
,
P.
Ginzburg
, and
A. S.
Shalin
, “
Plasmon-assisted optical trapping and anti-trapping
,”
Light Sci. Appl.
6
,
e16258
(
2017
).
167.
P.
de Vries
,
D. V.
van Coevorden
, and
A.
Lagendijk
, “
Point scatterers for classical waves
,”
Rev. Mod. Phys.
70
,
447
466
(
1998
).
168.
E. C.
Le Ru
,
W. R. C.
Somerville
, and
B.
Auguié
, “
Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers
,”
Phys. Rev. A
87
,
012504
(
2013
).
169.
N.
Kostina
,
M.
Petrov
,
A.
Ivinskaya
,
S.
Sukhov
,
A.
Bogdanov
,
I.
Toftul
,
M.
Nieto-Vesperinas
,
P.
Ginzburg
, and
A.
Shalin
, “
Optical binding via surface plasmon polariton interference
,”
Phys. Rev. B
99
,
125416
(
2019
).
170.
A.
Ivinskaya
,
N.
Kostina
,
A.
Proskurin
,
M. I.
Petrov
,
A. A.
Bogdanov
,
S.
Sukhov
,
A. V.
Krasavin
,
A.
Karabchevsky
,
A. S.
Shalin
, and
P.
Ginzburg
, “
Optomechanical manipulation with hyperbolic metasurfaces
,”
ACS Photonics
5
,
4371
4377
(
2018
).
171.
H.
Ren
,
G.
Briere
,
X.
Fang
,
P.
Ni
,
R.
Sawant
,
S.
Héron
,
S.
Chenot
,
S.
Vézian
,
B.
Damilano
,
V.
Brändli
,
S. A.
Maier
, and
P.
Genevet
, “
Metasurface orbital angular momentum holography
,”
Nat. Commun.
10
,
2986
(
2019
).
172.
Q.
Song
,
M.
Odeh
,
J.
Zúñiga-Pérez
,
B.
Kanté
, and
P.
Genevet
, “
Plasmonic topological metasurface by encircling an exceptional point
,”
Science
373
,
1133
1137
(
2021
).
173.
Y.-W.
Huang
,
W. T.
Chen
,
W.-Y.
Tsai
,
P. C.
Wu
,
C.-M.
Wang
,
G.
Sun
, and
D. P.
Tsai
, “
Aluminum plasmonic multicolor meta-hologram
,”
Nano Lett.
15
,
3122
3127
(
2015
).
174.
Z.-L.
Deng
and
G.
Li
, “
Metasurface optical holography
,”
Mater. Today Phys.
3
,
16
32
(
2017
).
175.
Q.
Song
, “
Novel metasurface phase-modulation mechanism
,”
Light Sci. Appl.
10
,
184
(
2021
).
176.
S. A.
Maier
, “
Plasmonic field enhancement and SERS in the effective mode volume picture
,”
Opt. Express
14
,
1957
1964
(
2006
).
177.
Z.
Sekkat
,
S.
Hayashi
,
D. V.
Nesterenko
,
A.
Rahmouni
,
S.
Refki
,
H.
Ishitobi
,
Y.
Inouye
, and
S.
Kawata
, “
Plasmonic coupled modes in metal-dielectric multilayer structures: Fano resonance and giant field enhancement
,”
Opt. Express
24
,
20080
20088
(
2016
).
178.
E. N.
Bulgakov
and
D. N.
Maksimov
, “
Light enhancement by quasi-bound states in the continuum in dielectric arrays
,”
Opt. Express
25
,
14134
14147
(
2017
).
179.
D.
Lee
,
S.
So
,
G.
Hu
,
M.
Kim
,
T.
Badloe
,
H.
Cho
,
J.
Kim
,
H.
Kim
,
C.-W.
Qiu
, and
J.
Rho
, “
Hyperbolic metamaterials: Fusing artificial structures to natural 2D materials
,”
eLight
2
,
1
(
2022
).
180.
P.
Shekhar
,
J.
Atkinson
, and
Z.
Jacob
, “
Hyperbolic metamaterials: Fundamentals and applications
,”
Nano Convergence
1
,
14
(
2014
).
181.
R.
Jin
,
Y.
Xu
,
Z.-G.
Dong
, and
Y.
Liu
, “
Optical pulling forces enabled by hyperbolic metamaterials
,”
Nano Lett.
21
,
10431
10437
(
2021
).
182.
L.
Marrucci
,
C.
Manzo
, and
D.
Paparo
, “
Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media
,”
Phys. Rev. Lett.
96
,
163905
(
2006
).
183.
Y.-W.
Huang
,
N. A.
Rubin
,
A.
Ambrosio
,
Z.
Shi
,
R. C.
Devlin
,
C.-W.
Qiu
, and
F.
Capasso
, “
Versatile total angular momentum generation using cascaded J-plates
,”
Opt. Express
27
,
7469
7484
(
2019
).
184.
H. M.
Ozaktas
and
D.
Mendlovic
, “
Fractional Fourier optics
,”
J. Opt. Soc. Am. A
12
,
743
751
(
1995
).
185.
R. W.
Gerchberg
, “
A practical algorithm for the determination of phase from image and diffraction plane pictures
,”
Optik
35
,
237
246
(
1972
).
186.
Q.
Song
,
A.
Baroni
,
P. C.
Wu
,
S.
Chenot
,
V.
Brandli
,
S.
Vézian
,
B.
Damilano
,
P.
de Mierry
,
S.
Khadir
,
P.
Ferrand
, and
P.
Genevet
, “
Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces
,”
Nat. Commun.
12
,
3631
(
2021
).
187.
G.
Milione
,
H. I.
Sztul
,
D. A.
Nolan
, and
R. R.
Alfano
, “
Higher-order Poincar'e sphere, Stokes parameters, and the angular momentum of light
,”
Phys. Rev. Lett.
107
,
053601
(
2011
).
188.
Z. H.
Jiang
,
L.
Kang
,
T.
Yue
,
H.-X.
Xu
,
Y.
Yang
,
Z.
Jin
,
C.
Yu
,
W.
Hong
,
D. H.
Werner
, and
C.-W.
Qiu
, “
A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order Poincaré sphere beams
,”
Adv. Mater.
32
,
1903983
(
2020
).
189.
M.
Liu
,
P.
Huo
,
W.
Zhu
,
C.
Zhang
,
S.
Zhang
,
M.
Song
,
S.
Zhang
,
Q.
Zhou
,
L.
Chen
,
H. J.
Lezec
,
A.
Agrawal
,
Y.
Lu
, and
T.
Xu
, “
Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface
,”
Nat. Commun.
12
,
2230
(
2021
).
190.
N.
Segal
,
S.
Keren-Zur
,
N.
Hendler
, and
T.
Ellenbogen
, “
Controlling light with metamaterial-based nonlinear photonic crystals
,”
Nat. Photonics
9
,
180
184
(
2015
).
191.
H.
Liu
,
C.
Guo
,
G.
Vampa
,
J. L.
Zhang
,
T.
Sarmiento
,
M.
Xiao
,
P. H.
Bucksbaum
,
J.
Vučković
,
S.
Fan
, and
D. A.
Reis
, “
Enhanced high-harmonic generation from an all-dielectric metasurface
,”
Nat. Phys.
14
,
1006
1010
(
2018
).
192.
T.
Lepetit
and
B.
Kanté
, “
Metamaterial quasi-phase matching
,”
Nat. Photonics
9
,
148
150
(
2015
).
193.
M.
Tymchenko
,
J. S.
Gomez-Diaz
,
J.
Lee
,
N.
Nookala
,
M. A.
Belkin
, and
A.
Alù
, “
Gradient nonlinear pancharatnam-berry metasurfaces
,”
Phys. Rev. Lett.
115
,
207403
(
2015
).
194.
B.
Liu
,
B.
Sain
,
B.
Reineke
,
R.
Zhao
,
C.
Meier
,
L.
Huang
,
Y.
Jiang
, and
T.
Zentgraf
, “
Nonlinear wavefront control by geometric-phase dielectric metasurfaces: Influence of mode field and rotational symmetry
,”
Adv. Opt. Mater.
8
,
1902050
(
2020
).
195.
A.
Hassanfiroozi
,
P.-S.
Huang
,
S.-H.
Huang
,
K.-I.
Lin
,
Y.-T.
Lin
,
C.-F.
Chien
,
Y.
Shi
,
W.-J.
Lee
, and
P. C.
Wu
, “
A toroidal-fano-resonant metasurface with optimal cross-polarization efficiency and switchable nonlinearity in the near-infrared
,”
Adv. Opt. Mater.
9
,
2101007
(
2021
).
196.
K.
Wang
,
G.
Titchener James
,
S.
Kruk Sergey
,
L.
Xu
,
H.-P.
Chung
,
M.
Parry
,
I.
Kravchenko Ivan
,
Y.-H.
Chen
,
S.
Solntsev Alexander
,
S.
Kivshar Yuri
,
N.
Neshev Dragomir
, and
A.
Sukhorukov Andrey
, “
Quantum metasurface for multiphoton interference and state reconstruction
,”
Science
361
,
1104
1108
(
2018
).
197.
L.
Li
,
Z.
Liu
,
X.
Ren
,
S.
Wang
,
V.-C.
Su
,
M.-K.
Chen
,
H. C.
Cheng
,
Y.
Kuo Hsin
,
B.
Liu
,
W.
Zang
,
G.
Guo
,
L.
Zhang
,
Z.
Wang
,
S.
Zhu
, and
P.
Tsai Din
, “
Metalens-array–based high-dimensional and multiphoton quantum source
,”
Science
368
,
1487
1490
(
2020
).
198.
B.
Assouar
,
B.
Liang
,
Y.
Wu
,
Y.
Li
,
J.-C.
Cheng
, and
Y.
Jing
, “
Acoustic metasurfaces
,”
Nat. Rev. Mater.
3
,
460
472
(
2018
).
199.
T.
Brunet
,
A.
Merlin
,
B.
Mascaro
,
K.
Zimny
,
J.
Leng
,
O.
Poncelet
,
C.
Aristégui
, and
O.
Mondain-Monval
, “
Soft 3D acoustic metamaterial with negative index
,”
Nat. Mater.
14
,
384
388
(
2015
).
200.
J.
Chen
,
J.
Xiao
,
D.
Lisevych
,
A.
Shakouri
, and
Z.
Fan
, “
Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens
,”
Nat. Commun.
9
,
4920
(
2018
).
201.
Y.
Li
,
Y.-G.
Peng
,
L.
Han
,
M.-A.
Miri
,
W.
Li
,
M.
Xiao
,
X.-F.
Zhu
,
J.
Zhao
,
A.
Alù
,
S.
Fan
, and
C.-W.
Qiu
, “
Anti–parity-time symmetry in diffusive systems
,”
Science
364
,
170
173
(
2019
).
202.
Y.
Li
,
W.
Li
,
T.
Han
,
X.
Zheng
,
J.
Li
,
B.
Li
,
S.
Fan
, and
C.-W.
Qiu
, “
Transforming heat transfer with thermal metamaterials and devices
,”
Nat. Rev. Mater.
6
,
488
507
(
2021
).
203.
D.
Conteduca
,
G.
Brunetti
,
G.
Pitruzzello
,
F.
Tragni
,
K.
Dholakia
,
T. F.
Krauss
, and
C.
Ciminelli
, “
Exploring the limit of multiplexed near-field optical trapping
,”
ACS Photonics
8
,
2060
2066
(
2021
).
204.
X.
Wang
,
Y.
Dai
,
Y.
Zhang
,
C.
Min
, and
X.
Yuan
, “
Plasmonic manipulation of targeted metallic particles by polarization-sensitive metalens
,”
ACS Photonics
5
,
2945
2950
(
2018
).
205.
M.
He
,
Y.
Guo
,
C.
Li
,
X.
Tong
,
H.
Liu
,
G.
Li
, and
L.
Zhang
, “
Metasurface-based wide-angle beam steering for optical trapping
,”
IEEE Access
8
,
37275
37280
(
2020
).
206.
T.
Cao
,
L.
Zhang
, and
M. J.
Cryan
, “
Optical forces in metal/dielectric/metal fishnet metamaterials in the visible wavelength regime
,”
IEEE Photonics J.
4
,
1861
1869
(
2012
).
207.
V.
Yannopapas
and
N. V.
Vitanov
, “
All-optical nanotraps for atoms atop flat metamaterial lenses: A theoretical study
,”
J. Phys.: Condens. Matter
21
,
245901
(
2009
).
208.
T.
Chantakit
,
C.
Schlickriede
,
B.
Sain
,
F.
Meyer
,
T.
Weiss
,
N.
Chattham
, and
T.
Zentgraf
, “
All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers
,”
Photonics Res.
8
,
1435
1440
(
2020
).
209.
Z.
Lu
,
J. A.
Murakowski
,
C. A.
Schuetz
,
S.
Shi
,
G. J.
Schneider
,
J. P.
Samluk
, and
D. W.
Prather
, “
Perfect lens makes a perfect trap
,”
Opt. Express
14
,
2228
2235
(
2006
).
210.
S.
Suwannasopon
,
F.
Meyer
,
C.
Schlickriede
,
P.
Chaisakul
,
J.
T-Thienprasert
,
J.
Limtrakul
,
T.
Zentgraf
, and
N.
Chattham
, “
Miniaturized metalens based optical tweezers on liquid crystal droplets for lab-on-a-chip optical motors
,”
Crystals
9
,
515
(
2019
).
211.
L. P.
Neukirch
,
E.
von Haartman
,
J. M.
Rosenholm
, and
A. N.
Vamivakas
, “
Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond
,”
Nat. Photonics
9
,
653
657
(
2015
).
212.
J.
Millen
,
T.
Deesuwan
,
P.
Barker
, and
J.
Anders
, “
Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere
,”
Nat. Nanotechnol.
9
,
425
429
(
2014
).
213.
Y.
Zheng
,
L.-M.
Zhou
,
Y.
Dong
,
C.-W.
Qiu
,
X.-D.
Chen
,
G.-C.
Guo
, and
F.-W.
Sun
, “
Robust optical-levitation-based metrology of nanoparticle's position and mass
,”
Phys. Rev. Lett.
124
,
223603
(
2020
).
214.
D. E.
Chang
,
C. A.
Regal
,
S. B.
Papp
,
D. J.
Wilson
,
J.
Ye
,
O.
Painter
,
H. J.
Kimble
, and
P.
Zoller
, “
Cavity opto-mechanics using an optically levitated nanosphere
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
1005
(
2010
).
215.
O.
Romero-Isart
,
A. C.
Pflanzer
,
F.
Blaser
,
R.
Kaltenbaek
,
N.
Kiesel
,
M.
Aspelmeyer
, and
J. I.
Cirac
, “
Large quantum superpositions and interference of massive nanometer-sized objects
,”
Phys. Rev. Lett.
107
,
020405
(
2011
).
216.
M.
Aspelmeyer
,
T. J.
Kippenberg
, and
F.
Marquardt
, “
Cavity optomechanics
,”
Rev. Mod. Phys.
86
,
1391
1452
(
2014
).
217.
K.
Shen
,
Y.
Duan
,
P.
Ju
,
Z.
Xu
,
X.
Chen
,
L.
Zhang
,
J.
Ahn
,
X.
Ni
, and
T.
Li
, “
On-chip optical levitation with a metalens in vacuum
,”
Optica
8
,
1359
1362
(
2021
).
218.
G.
Memoli
,
M.
Caleap
,
M.
Asakawa
,
D. R.
Sahoo
,
B. W.
Drinkwater
, and
S.
Subramanian
, “
Metamaterial bricks and quantization of meta-surfaces
,”
Nat. Commun.
8
,
14608
(
2017
).
219.
U.
Leonhardt
and
T. G.
Philbin
, “
Quantum levitation by left-handed metamaterials
,”
New J. Phys.
9
,
254
254
(
2007
).
220.
H.
Zhang
,
M.
Gu
,
X. D.
Jiang
,
J.
Thompson
,
H.
Cai
,
S.
Paesani
,
R.
Santagati
,
A.
Laing
,
Y.
Zhang
,
M. H.
Yung
,
Y. Z.
Shi
,
F. K.
Muhammad
,
G. Q.
Lo
,
X. S.
Luo
,
B.
Dong
,
D. L.
Kwong
,
L. C.
Kwek
, and
A. Q.
Liu
, “
An optical neural chip for implementing complex-valued neural network
,”
Nat. Commun.
12
,
457
(
2021
).
221.
T.
Ellenbogen
,
N.
Voloch-Bloch
,
A.
Ganany-Padowicz
, and
A.
Arie
, “
Nonlinear generation and manipulation of airy beams
,”
Nat. Photonics
3
,
395
398
(
2009
).
222.
W. T.
Chen
,
M.
Khorasaninejad
,
A. Y.
Zhu
,
J.
Oh
,
R. C.
Devlin
,
A.
Zaidi
, and
F.
Capasso
, “
Generation of wavelength-independent subwavelength Bessel beams using metasurfaces
,”
Light Sci. Appl.
6
,
e16259
(
2017
).
223.
M.
Plidschun
,
H.
Ren
,
J.
Kim
,
R.
Förster
,
S. A.
Maier
, and
M. A.
Schmidt
, “
Ultrahigh numerical aperture meta-fibre for flexible optical trapping
,”
Light Sci. Appl.
10
,
57
(
2021
).
224.
J.
Yang
,
I.
Ghimire
,
P. C.
Wu
,
S.
Gurung
,
C.
Arndt
,
D. P.
Tsai
, and
H. W. H.
Lee
, “
Photonic crystal fiber metalens
,”
Nanophotonics
8
,
443
449
(
2019
).
225.
H.
Pahlevaninezhad
,
M.
Khorasaninejad
,
Y.-W.
Huang
,
Z.
Shi
,
L. P.
Hariri
,
D. C.
Adams
,
V.
Ding
,
A.
Zhu
,
C.-W.
Qiu
,
F.
Capasso
, and
M. J.
Suter
, “
Nano-optic endoscope for high-resolution optical coherence tomography in vivo
,”
Nat. Photonics
12
,
540
547
(
2018
).
226.
R.
Yu
,
Y.
Chen
,
L.
Shui
, and
L.
Xiao
, “
Hollow-core photonic crystal fiber gas sensing
,”
Sensors
20
,
2996
(
2020
).
227.
T.
Cao
,
L.
Mao
,
Y.
Qiu
,
L.
Lu
,
A.
Banas
,
K.
Banas
,
R. E.
Simpson
, and
H.-C.
Chui
, “
Fano resonance in asymmetric plasmonic nanostructure: Separation of sub-10 nm enantiomers
,”
Adv. Opt. Mater.
7
,
1801172
(
2019
).
228.
D. G.
Kotsifaki
,
V. G.
Truong
, and
S.
Nic Chormaic
, “
Dynamic multiple nanoparticle trapping using metamaterial plasmonic tweezers
,”
Appl. Phys. Lett.
118
,
021107
(
2021
).
229.
R.
Kotb
,
M.
El Maklizi
,
Y.
Ismail
, and
M. A.
Swillam
, “
Optical trapping and manipulation of nanoparticles using a meta plasmonic structure
,”
J. Opt.
18
,
015002
(
2015
).
230.
M.
Daly
,
M.
Sergides
, and
S.
Nic Chormaic
, “
Optical trapping and manipulation of micrometer and submicrometer particles
,”
Laser Photonics Rev.
9
,
309
329
(
2015
).
231.
A. A. E.
Saleh
and
J. A.
Dionne
, “
Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures
,”
Nano Lett.
12
,
5581
5586
(
2012
).
232.
D. G.
Kotsifaki
,
V. G.
Truong
, and
S. N.
Chormaic
, “
Fano-resonant, asymmetric, metamaterial-assisted tweezers for single nanoparticle trapping
,”
Nano Lett.
20
,
3388
3395
(
2020
).
233.
J. C.
Ndukaife
,
Y.
Xuan
,
A. G. A.
Nnanna
,
A. V.
Kildishev
,
V. M.
Shalaev
,
S. T.
Wereley
, and
A.
Boltasseva
, “
High-resolution large-ensemble nanoparticle trapping with multifunctional thermoplasmonic nanohole metasurface
,”
ACS Nano
12
,
5376
5384
(
2018
).
234.
C.
Hong
,
S.
Yang
,
I. I.
Kravchenko
, and
J. C.
Ndukaife
, “
Electrothermoplasmonic trapping and dynamic manipulation of single colloidal nanodiamond
,”
Nano Lett.
21
,
4921
4927
(
2021
).
235.
C.
Hong
,
S.
Yang
, and
J. C.
Ndukaife
, “
Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers
,”
Nat. Nanotechnol.
15
,
908
913
(
2020
).
236.
R.
Zhao
,
P.
Tassin
,
T.
Koschny
, and
C. M.
Soukoulis
, “
Optical forces in nanowire pairs and metamaterials
,”
Opt. Express
18
,
25665
25676
(
2010
).
237.
C.
Tang
,
Q.
Wang
,
F.
Liu
,
Z.
Chen
, and
Z.
Wang
, “
Optical forces in twisted split-ring-resonator dimer stereometamaterials
,”
Opt. Express
21
,
11783
11793
(
2013
).
238.
J.
Zhang
,
K. F.
MacDonald
, and
N. I.
Zheludev
, “
Giant optical forces in planar dielectric photonic metamaterials
,”
Opt. Lett.
39
,
4883
4886
(
2014
).
239.
A. A.
Bogdanov
,
A. S.
Shalin
, and
P.
Ginzburg
, “
Optical forces in nanorod metamaterial
,”
Sci. Rep.
5
,
15846
(
2015
).
240.
Y.
Guo
,
Y.
Liao
,
Y.
Yu
,
Y.
Shi
, and
S.
Xiong
, “
Nanoparticle trapping and manipulation using a silicon nanotrimer with polarized light
,”
Opt. Lett.
45
,
5604
5607
(
2020
).
241.
E. P.
Furlani
and
A.
Baev
, “
Optical nanotrapping using cloaking metamaterial
,”
Phys. Rev. E
79
,
026607
(
2009
).
242.
B. J.
Roxworthy
,
K. D.
Ko
,
A.
Kumar
,
K. H.
Fung
,
E. K. C.
Chow
,
G. L.
Liu
,
N. X.
Fang
, and
K. C.
Toussaint
, “
Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting
,”
Nano Lett.
12
,
796
801
(
2012
).
243.
D.
Hasan
,
C. P.
Ho
,
P.
Pitchappa
, and
C.
Lee
, “
Dipolar resonance enhancement and magnetic resonance in cross-coupled bow-tie nanoantenna array by plasmonic cavity
,”
ACS Photonics
2
,
890
898
(
2015
).
244.
R. A.
Jensen
,
I. C.
Huang
,
O.
Chen
,
J. T.
Choy
,
T. S.
Bischof
,
M.
Lončar
, and
M. G.
Bawendi
, “
Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures
,”
ACS Photonics
3
,
423
427
(
2016
).
245.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
246.
M.
Rybin
and
Y.
Kivshar
, “
Supercavity lasing
,”
Nature
541
,
164
165
(
2017
).
247.
A.
Kodigala
,
T.
Lepetit
,
Q.
Gu
,
B.
Bahari
,
Y.
Fainman
, and
B.
Kanté
, “
Lasing action from photonic bound states in continuum
,”
Nature
541
,
196
199
(
2017
).
248.
C. W.
Hsu
,
B.
Zhen
,
J.
Lee
,
S.-L.
Chua
,
S. G.
Johnson
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Observation of trapped light within the radiation continuum
,”
Nature
499
,
188
191
(
2013
).
249.
H.
Qin
,
W.
Redjem
, and
B.
Kanté
, “
Enhancement of optical forces at bound state in the continuum
,” arXiv:2202.04751.
250.
Y.
Shi
,
Y.
Wu
,
L. K.
Chin
,
Z.
Li
,
J.
Liu
,
M. K.
Chen
,
S.
Wang
,
Y.
Zhang
,
P. Y.
Liu
,
X.
Zhou
,
H.
Cai
,
W.
Jin
,
Y.
Yu
,
R.
Yu
,
W.
Huang
,
P. H.
Yap
,
L.
Xiao
,
W.
Ser
,
T. T. B.
Nguyen
,
Y.-T.
Lin
,
P. C.
Wu
,
J.
Liao
,
F.
Wang
,
C. T.
Chan
,
Y.
Kivshar
,
D. P.
Tsai
, and
A. Q.
Liu
, “
Multifunctional virus manipulation with large-scale arrays of all-dielectric resonant nanocavities
,”
Laser Photonics Rev.
16
,
2100197
(
2022
).
251.
S.
Liu
,
H.
Tong
, and
K.
Fang
, “
Optomechanical crystal with bound states in the continuum
,” arXiv:2202.06209.
252.
S.
Zanotto
,
G.
Conte
,
L. C.
Bellieres
,
A.
Griol
,
D.
Navarro-Urrios
,
A.
Tredicucci
,
A.
Martínez
, and
A.
Pitanti
, “
Optomechanical modulation spectroscopy of bound-states-in-the-continuum in a dielectric metasurface
,”
Phys. Rev. Appl.
17
,
044033
(
2022
).
253.
F.
Monticone
and
A.
Alù
, “
Embedded photonic eigenvalues in 3D nanostructures
,”
Phys. Rev. Lett.
112
,
213903
(
2014
).
254.
I.
Liberal
and
N.
Engheta
, “
Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities
,”
Sci. Adv.
2
,
e1600987
(
2016
).
255.
I.
Deriy
,
I.
Toftul
,
M.
Petrov
, and
A.
Bogdanov
, “
Bound states in the continuum in compact acoustic resonators
,”
Phys. Rev. Lett.
128
,
084301
(
2022
).
256.
C.
Huang
,
C.
Zhang
,
S.
Xiao
,
Y.
Wang
,
Y.
Fan
,
Y.
Liu
,
N.
Zhang
,
G.
Qu
,
H.
Ji
,
J.
Han
,
L.
Ge
,
Y.
Kivshar
, and
Q.
Song
, “
Ultrafast control of vortex microlasers
,”
Science
367
,
1018
1021
(
2020
).
257.
A.
Tittl
,
A.
Leitis
,
M.
Liu
,
F.
Yesilkoy
,
D.-Y.
Choi
,
N.
Neshev Dragomir
,
S.
Kivshar Yuri
, and
H.
Altug
, “
Imaging-based molecular barcoding with pixelated dielectric metasurfaces
,”
Science
360
,
1105
1109
(
2018
).
258.
F.
Yesilkoy
,
E. R.
Arvelo
,
Y.
Jahani
,
M.
Liu
,
A.
Tittl
,
V.
Cevher
,
Y.
Kivshar
, and
H.
Altug
, “
Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces
,”
Nat. Photonics
13
,
390
396
(
2019
).
259.
K.
Koshelev
,
S.
Kruk
,
E.
Melik-Gaykazyan
,
J.-H.
Choi
,
A.
Bogdanov
,
H.-G.
Park
, and
Y.
Kivshar
, “
Subwavelength dielectric resonators for nonlinear nanophotonics
,”
Science
367
,
288
292
(
2020
).
260.
S.
Yang
,
C.
Hong
,
Y.
Jiang
, and
J. C.
Ndukaife
, “
Nanoparticle trapping in a quasi-BIC system
,”
ACS Photonics
8
,
1961
1971
(
2021
).
261.
V.
Ginis
,
P.
Tassin
,
C. M.
Soukoulis
, and
I.
Veretennicoff
, “
Enhancing optical gradient forces with metamaterials
,”
Phys. Rev. Lett.
110
,
057401
(
2013
).
262.
A. S.
Shalin
,
S. V.
Sukhov
,
A. A.
Bogdanov
,
P. A.
Belov
, and
P.
Ginzburg
, “
Optical pulling forces in hyperbolic metamaterials
,”
Phys. Rev. A
91
,
063830
(
2015
).
263.
P.
Ginzburg
,
A. V.
Krasavin
,
A. N.
Poddubny
,
P. A.
Belov
,
Y. S.
Kivshar
, and
A. V.
Zayats
, “
Self-induced torque in hyperbolic metamaterials
,”
Phys. Rev. Lett.
111
,
036804
(
2013
).
264.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
130
(
2016
).
265.
J. P.
Reithmaier
,
G.
Sęk
,
A.
Löffler
,
C.
Hofmann
,
S.
Kuhn
,
S.
Reitzenstein
,
L. V.
Keldysh
,
V. D.
Kulakovskii
,
T. L.
Reinecke
, and
A.
Forchel
, “
Strong coupling in a single quantum dot–semiconductor microcavity system
,”
Nature
432
,
197
200
(
2004
).
266.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2014
).
267.
W.
Li
,
Y.
Yu
,
H.
Yan
,
Q.
Zeng
, and
T.-H.
Xiao
, “
Optical force induced by strong exciton-plasmon coupling
,”
Opt. Express
29
,
41600
41608
(
2021
).
268.
P.
Zhang
,
G.
Song
, and
L.
Yu
, “
Optical trapping of single quantum dots for cavity quantum electrodynamics
,”
Photonics Res.
6
,
182
185
(
2018
).
269.
A. M.
Kaufman
,
B. J.
Lester
, and
C. A.
Regal
, “
Cooling a single atom in an optical tweezer to its quantum ground state
,”
Phys. Rev. X
2
,
041014
(
2012
).
270.
C.
Gonzalez-Ballestero
,
M.
Aspelmeyer
,
L.
Novotny
,
R.
Quidant
, and
O.
Romero-Isart
, “
Levitodynamics: Levitation and control of microscopic objects in vacuum
,”
Science
374
,
eabg3027
(
2021
).
271.
A.
de los Ríos Sommer
,
N.
Meyer
, and
R.
Quidant
, “
Strong optomechanical coupling at room temperature by coherent scattering
,”
Nat. Commun.
12
,
276
(
2021
).
272.
L.
Neumeier
,
R.
Quidant
, and
D. E.
Chang
, “
Self-induced back-action optical trapping in nanophotonic systems
,”
New J. Phys.
17
,
123008
(
2015
).
273.
N.
Descharmes
,
U. P.
Dharanipathy
,
Z.
Diao
,
M.
Tonin
, and
R.
Houdré
, “
Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity
,”
Phys. Rev. Lett.
110
,
123601
(
2013
).
274.
C.
Min
,
Z.
Shen
,
J.
Shen
,
Y.
Zhang
,
H.
Fang
,
G.
Yuan
,
L.
Du
,
S.
Zhu
,
T.
Lei
, and
X.
Yuan
, “
Focused plasmonic trapping of metallic particles
,”
Nat. Commun.
4
,
2891
(
2013
).
275.
A. D.
Boardman
,
V. V.
Grimalsky
,
Y. S.
Kivshar
,
S. V.
Koshevaya
,
M.
Lapine
,
N. M.
Litchinitser
,
V. N.
Malnev
,
M.
Noginov
,
Y. G.
Rapoport
, and
V. M.
Shalaev
, “
Active and tunable metamaterials
,”
Laser Photonics Rev.
5
,
287
307
(
2011
).
276.
S.
Xiao
,
T.
Wang
,
T.
Liu
,
C.
Zhou
,
X.
Jiang
, and
J.
Zhang
, “
Active metamaterials and metadevices: A review
,”
J. Phys. D: Appl. Phys.
53
,
503002
(
2020
).
277.
O.
Hess
,
J. B.
Pendry
,
S. A.
Maier
,
R. F.
Oulton
,
J. M.
Hamm
, and
K. L.
Tsakmakidis
, “
Active nanoplasmonic metamaterials
,”
Nat. Mater.
11
,
573
584
(
2012
).
278.
A. Q.
Liu
,
W. M.
Zhu
,
D. P.
Tsai
, and
N. I.
Zheludev
, “
Micromachined tunable metamaterials: A review
,”
J. Opt.
14
,
114009
(
2012
).
279.
W. M.
Zhu
,
A. Q.
Liu
,
X. M.
Zhang
,
D. P.
Tsai
,
T.
Bourouina
,
J. H.
Teng
,
X. H.
Zhang
,
H. C.
Guo
,
H.
Tanoto
,
T.
Mei
,
G. Q.
Lo
, and
D. L.
Kwong
, “
Switchable magnetic metamaterials using micromachining processes
,”
Adv. Mater.
23
,
1792
1796
(
2011
).
280.
L.
Yan
,
W.
Zhu
,
M. F.
Karim
,
H.
Cai
,
A. Y.
Gu
,
Z.
Shen
,
P. H. J.
Chong
,
D.-L.
Kwong
,
C.-W.
Qiu
, and
A. Q.
Liu
, “
0.2λ0 thick adaptive retroreflector made of spin-locked metasurface
,”
Adv. Mater.
30
,
1802721
(
2018
).
281.
Q.
Song
,
W.
Zhang
,
P. C.
Wu
,
W.
Zhu
,
Z. X.
Shen
,
P. H. J.
Chong
,
Q. X.
Liang
,
Z. C.
Yang
,
Y. L.
Hao
,
H.
Cai
,
H. F.
Zhou
,
Y.
Gu
,
G.-Q.
Lo
,
D. P.
Tsai
,
T.
Bourouina
,
Y.
Leprince-Wang
, and
A.-Q.
Liu
, “
Water-resonator-based metasurface: An ultrabroadband and near-unity absorption
,”
Adv. Opt. Mater.
5
,
1601103
(
2017
).
282.
T.
Driscoll
,
H.-T.
Kim
,
B.-G.
Chae
,
B.-J.
Kim
,
Y.-W.
Lee
,
N. M.
Jokerst
,
S.
Palit
,
D. R.
Smith
,
M. D.
Ventra
, and
D. N.
Basov
, “
Memory metamaterials
,”
Science
325
,
1518
1521
(
2009
).
283.
J.
Sautter
,
I.
Staude
,
M.
Decker
,
E.
Rusak
,
D. N.
Neshev
,
I.
Brener
, and
Y. S.
Kivshar
, “
Active tuning of all-dielectric metasurfaces
,”
ACS Nano
9
,
4308
4315
(
2015
).
284.
H.
Markovich
,
I. I.
Shishkin
,
N.
Hendler
, and
P.
Ginzburg
, “
Optical manipulation along an optical axis with a polarization sensitive meta-lens
,”
Nano Lett.
18
,
5024
5029
(
2018
).
285.
S.
Yin
,
F.
He
,
W.
Kubo
,
Q.
Wang
,
J.
Frame
,
N. G.
Green
, and
X.
Fang
, “
Coherently tunable metalens tweezers for optofluidic particle routing
,”
Opt. Express
28
,
38949
38959
(
2020
).
286.
M.
Danesh
,
M. J.
Zadeh
,
T.
Zhang
,
X.
Zhang
,
B.
Gu
,
J.-S.
Lu
,
T.
Cao
,
Z.
Liu
,
A. T. S.
Wee
,
M.
Qiu
,
Q.
Bao
,
S.
Maier
, and
C.-W.
Qiu
, “
Monolayer conveyor for stably trapping and transporting sub-1 nm particles
,”
Laser Photonics Rev.
14
,
2000030
(
2020
).
287.
X.
Xu
,
Y.
Yang
,
L.
Chen
,
X.
Chen
,
T.
Wu
,
Y.
Li
,
X.
Liu
,
Y.
Zhang
, and
B.
Li
, “
Optomechanical wagon-wheel effects for bidirectional sorting of dielectric nanoparticles
,”
Laser Photonics Rev.
15
,
2000546
(
2021
).
288.
Y. Y.
Tanaka
,
P.
Albella
,
M.
Rahmani
,
V.
Giannini
,
A.
Maier Stefan
, and
T.
Shimura
, “
Plasmonic linear nanomotor using lateral optical forces
,”
Sci. Adv.
6
,
eabc3726
(
2020
).
289.
D.
Andrén
,
D. G.
Baranov
,
S.
Jones
,
G.
Volpe
,
R.
Verre
, and
M.
Käll
, “
Microscopic metavehicles powered and steered by embedded optical metasurfaces
,”
Nat. Nanotechnol.
16
,
970
974
(
2021
).
290.
Y.
Shi
,
Z.
Li
,
P. Y.
Liu
,
B. T. T.
Nguyen
,
W.
Wu
,
Q.
Zhao
,
L. K.
Chin
,
M.
Wei
,
P. H.
Yap
,
X.
Zhou
,
H.
Zhao
,
D.
Yu
,
D. P.
Tsai
, and
A. Q.
Liu
, “
On-chip optical detection of viruses: A review
,”
Adv. Photonics Res.
2
,
2000150
(
2021
).
291.
O.
Ilic
and
H. A.
Atwater
, “
Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects
,”
Nat. Photonics
13
,
289
295
(
2019
).
292.
J.
Zhang
,
K. F.
MacDonald
, and
N. I.
Zheludev
, “
Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces
,”
Phys. Rev. B
85
,
205123
(
2012
).
293.
R.
Reimann
,
M.
Doderer
,
E.
Hebestreit
,
R.
Diehl
,
M.
Frimmer
,
D.
Windey
,
F.
Tebbenjohanns
, and
L.
Novotny
, “
GHz rotation of an optically trapped nanoparticle in vacuum
,”
Phys. Rev. Lett.
121
,
033602
(
2018
).
294.
J.
Ahn
,
Z.
Xu
,
J.
Bang
,
Y.-H.
Deng
,
T. M.
Hoang
,
Q.
Han
,
R.-M.
Ma
, and
T.
Li
, “
Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor
,”
Phys. Rev. Lett.
121
,
033603
(
2018
).
295.
J.
Ahn
,
Z.
Xu
,
J.
Bang
,
P.
Ju
,
X.
Gao
, and
T.
Li
, “
Ultrasensitive torque detection with an optically levitated nanorotor
,”
Nat. Nanotechnol.
15
,
89
93
(
2020
).
296.
T.
Li
,
X.
Xu
,
B.
Fu
,
S.
Wang
,
B.
Li
,
Z.
Wang
, and
S.
Zhu
, “
Integrating the optical tweezers and spanner onto an individual single-layer metasurface
,”
Photonics Res.
9
,
1062
1068
(
2021
).
297.
H.
Lv
and
X.
Chen
, “
New insights into the mechanism of fluid mixing in the micromixer based on alternating current electric heating with film heaters
,”
Int. J. Heat Mass Transfer
181
,
121902
(
2021
).
298.
D.
Hakobyan
and
E.
Brasselet
, “
Left-handed optical radiation torque
,”
Nat. Photonics
8
,
610
614
(
2014
).
299.
H.
Magallanes
and
E.
Brasselet
, “
Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques
,”
Nat. Photonics
12
,
461
464
(
2018
).
300.
P.
Hansen
,
Y.
Zheng
,
J.
Ryan
, and
L.
Hesselink
, “
Nano-optical conveyor belt. I. Theory
,”
Nano Lett.
14
,
2965
2970
(
2014
).
301.
Y.
Zheng
,
J.
Ryan
,
P.
Hansen
,
Y.-T.
Cheng
,
T.-J.
Lu
, and
L.
Hesselink
, “
Nano-optical conveyor belt. II. Demonstration of handoff between near-field optical traps
,”
Nano Lett.
14
,
2971
2976
(
2014
).
302.
J.-H.
Park
,
A.
Ndao
,
W.
Cai
,
L.
Hsu
,
A.
Kodigala
,
T.
Lepetit
,
Y.-H.
Lo
, and
B.
Kanté
, “
Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing
,”
Nat. Phys.
16
,
462
468
(
2020
).
303.
H.
Hodaei
,
A. U.
Hassan
,
S.
Wittek
,
H.
Garcia-Gracia
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
M.
Khajavikhan
, “
Enhanced sensitivity at higher-order exceptional points
,”
Nature
548
,
187
191
(
2017
).
304.
X.
Li
,
Y.
Liu
,
Z.
Lin
,
J.
Ng
, and
C. T.
Chan
, “
Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters
,”
Nat. Commun.
12
,
6597
(
2021
).
305.
Q.
Song
,
A.
Baroni
,
R.
Sawant
,
P.
Ni
,
V.
Brandli
,
S.
Chenot
,
S.
Vézian
,
B.
Damilano
,
P.
de Mierry
,
S.
Khadir
,
P.
Ferrand
, and
P.
Genevet
, “
Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces
,”
Nat. Commun.
11
,
2651
(
2020
).
306.
M.
Khorasaninejad
,
A.
Ambrosio
,
P.
Kanhaiya
, and
F.
Capasso
, “
Broadband and chiral binary dielectric meta-holograms
,”
Sci. Adv.
2
,
e1501258
(
2016
).
307.
Q.
Song
,
S.
Khadir
,
S.
Vézian
,
B.
Damilano
,
P. D.
Mierry
,
S.
Chenot
,
V.
Brandli
, and
P.
Genevet
, “
Bandwidth-unlimited polarization-maintaining metasurfaces
,”
Sci. Adv.
7
,
eabe1112
(
2021
).
308.
H.
Ren
,
X.
Fang
,
J.
Jang
,
J.
Bürger
,
J.
Rho
, and
S. A.
Maier
, “
Complex-amplitude metasurface-based orbital angular momentum holography in momentum space
,”
Nat. Nanotechnol.
15
,
948
955
(
2020
).
309.
Y.
Tang
,
S.
Ha
,
T.
Begou
,
J.
Lumeau
,
H. P.
Urbach
,
N. H.
Dekker
, and
A. J. L.
Adam
, “
Versatile multilayer metamaterial nanoparticles with tailored optical constants for force and torque transduction
,”
ACS Nano
14
,
14895
14906
(
2020
).
You do not currently have access to this content.