Shape-memory hydrogels (SMHs) have been used for various biomedical applications, such as injectable scaffolds in noninvasive procedures and as carriers for drugs and stem cells. However, most SMH studies have investigated properties related to shape recovery rather than bioactivities governed by hydrogel micro/nanostructure. In this study, one of the main structural proteins in tissues and organs, collagen, was incorporated into SMHs, and by varying the fabrication procedure, two different collagen-based SMHs were obtained. The first was a collagen Cryo-gel that could immediately recover its programmed shape. The second was a fibrous collagen gel (F-gel) fabricated by collagen fibrillation that required more time for recovery but possessed a much higher shape fixity ratio and better supported cell adhesion and growth in vitro. To combine the advantages of the two hydrogels, we fabricated a new collagen-based biocomposite that incorporated fibrillated collagen and photo-crosslinkable methacrylated collagen (Col-ma). A collagen/Col-ma ratio of 5:5 was the most favorable for shape recovery and cellular activity.

1.
H.
Hong
,
Y. B.
Seo
,
J. S.
Lee
,
Y. J.
Lee
,
H.
Lee
,
O.
Ajiteru
,
M. T.
Sultan
,
O. J.
Lee
,
S. H.
Kim
, and
C. H.
Park
,
Biomater. Sci.
232
,
119679
(
2020
).
2.
X.
Zhao
,
B.
Guo
,
H.
Wu
,
Y.
Liang
, and
P. X.
Ma
,
Nat. Commun.
9
(
1
),
2784
(
2018
).
3.
Y.
Liu
,
K.
Xu
,
Q.
Chang
,
M. A.
Darabi
,
B.
Lin
,
W.
Zhong
, and
M.
Xing
,
Adv. Mater.
28
(
35
),
7758
(
2016
).
4.
Y.
Si
,
L.
Wang
,
X.
Wang
,
N.
Tang
,
J.
Yu
, and
B.
Ding
,
Adv. Mater.
29
(
24
),
1700339
(
2017
).
5.
H.
Qiu
,
H.
Guo
,
D.
Li
,
Y.
Hou
,
T.
Kuang
, and
J.
Ding
,
Trends Biotechnol.
38
(
6
),
579
(
2020
).
6.
S.
Ye
,
J. W.
Boeter
,
M.
Mihajlovic
,
F. G.
van Steenbeek
,
M. E.
van Wolferen
,
L. A.
Oosterhoff
,
A.
Marsee
,
M.
Caiazzo
,
L. J.
van der Laan
, and
L. C.
Penning
,
Adv. Funct. Mater.
30
(
48
),
2000893
(
2020
).
7.
G. G.
Giobbe
,
C.
Crowley
,
C.
Luni
,
S.
Campinoti
,
M.
Khedr
,
K.
Kretzschmar
,
M. M.
De Santis
,
E.
Zambaiti
,
F.
Michielin
, and
L.
Meran
,
Nat. Commun.
10
(
1
),
5658
(
2019
).
8.
O.
Chaudhuri
,
Biomater. Sci.
5
(
8
),
1480
(
2017
).
9.
J.
Xie
,
M.
Bao
,
S. M. C.
Bruekers
, and
W. T.
Huck
,
ACS Appl. Mater. Interfaces
9
(
23
),
19630
(
2017
).
10.
N.
Annabi
,
A.
Tamayol
,
J. A.
Uquillas
,
M.
Akbari
,
L. E.
Bertassoni
,
C.
Cha
,
G.
Camci‐Unal
,
M. R.
Dokmeci
,
N. A.
Peppas
, and
A.
Khademhosseini
,
Adv. Mater.
26
(
1
),
85
(
2014
).
11.
L. J.
Eggermont
,
Z. J.
Rogers
,
T.
Colombani
,
A.
Memic
, and
S. A.
Bencherif
,
Trends Biotechnol.
38
(
4
),
418
(
2020
).
12.
D.
Zhang
,
O. J.
George
,
K. M.
Petersen
,
A. C.
Jimenez-Vergara
,
M. S.
Hahn
, and
M. A.
Grunlan
,
ActaBiomater.
10
(
11
),
4597
(
2014
).
13.
L.
Wang
,
L.
Cao
,
J.
Shansky
,
Z.
Wang
,
D.
Mooney
, and
H.
Vandenburgh
,
Mol. Ther.
22
(
8
),
1441
(
2014
).
14.
T.
He
,
B.
Li
,
T.
Colombani
,
K.
Joshi-Navare
,
S.
Mehta
,
J.
Kisiday
,
S. A.
Bencherif
, and
A. G.
Bajpayee
,
Tissue Eng. Part A
27
,
748
760
(
2021
).
15.
F.
Zhang
,
L.
Xiong
,
Y.
Ai
,
Z.
Liang
, and
Q.
Liang
,
Adv. Sci.
5
(
8
),
1800450
(
2018
).
16.
J. M.
Korde
and
B.
Kandasubramanian
,
Chem. Eng. J.
379
,
122430
(
2020
).
17.
G.
Huang
,
F.
Li
,
X.
Zhao
,
Y.
Ma
,
Y.
Li
,
M.
Lin
,
G.
Jin
,
T. J.
Lu
,
G. M.
Genin
, and
F.
Xu
,
Chem. Rev.
117
(
20
),
12764
(
2017
).
18.
M. D.
Shoulders
and
R. T.
Raines
,
Annu. Rev. Biochem.
78
,
929
(
2009
).
19.
L.
Koláčná
,
J.
Bakešová
,
F.
Varga
,
E.
KošťákováKuželova
,
L.
Plánka
,
A.
Nečas
,
D.
Lukáš
,
E.
Amler
, and
V.
Pelouch
,
Physiol. Res.
56
,
S51
S60
(
2007
).
20.
S.-W.
Chang
and
M. J.
Buehler
,
Mater. Today
17
(
2
),
70
(
2014
).
21.
A. E.
Hafner
,
N. G.
Gyori
,
C. A.
Bench
,
L. K.
Davis
, and
A.
Šarić
,
Biophys. J.
119
(
9
),
1791
(
2020
).
22.
S.
Morozova
and
M.
Muthukumar
,
J. Chem. Phys.
149
(
16
),
163333
(
2018
).
23.
M. J.
Kratochvil
,
A. J.
Seymour
,
T. L.
Li
,
S. P.
Paşca
,
C. J.
Kuo
, and
S. C.
Heilshorn
,
Nat. Rev. Mater.
4
(
9
),
606
(
2019
).
24.
H.
Liu
,
Y.
Wang
,
K.
Cui
,
Y.
Guo
,
X.
Zhang
, and
J.
Qin
,
Adv. Mater.
31
(
50
),
1902042
(
2019
).
25.
M.
Razavi
,
R.
Primavera
,
B. D.
Kevadiya
,
J.
Wang
,
P.
Buchwald
, and
A. S.
Thakor
,
Adv. Funct. Mater.
30
(
15
),
1902463
(
2020
).
26.
L.-B.
Jiang
,
D.-H.
Su
,
P.
Liu
,
Y.-Q.
Ma
,
Z.-Z.
Shao
, and
J.
Dong
,
Osteoarthrotic Cartilage
26
(
10
),
1389
(
2018
).
27.
O.
Guillaume
,
S. M.
Naqvi
,
K.
Lennon
, and
C. T.
Buckley
,
J. Biomater. Appl.
29
(
9
),
1230
(
2015
).
28.
H.
Hwangbo
,
H.
Lee
,
E. J.
Roh
,
W.
Kim
,
H. P.
Joshi
,
S. Y.
Kwon
,
U. Y.
Choi
,
I.-B.
Han
, and
G. H.
Kim
,
Appl. Phys. Rev.
8
(
2
),
021403
(
2021
).
29.
Y. B.
Kim
,
H.
Lee
, and
G. H.
Kim
,
ACS Appl. Mater. Interfaces
8
(
47
),
32230
(
2016
).
30.
R.
Xing
,
K.
Liu
,
T.
Jiao
,
N.
Zhang
,
K.
Ma
,
R.
Zhang
,
Q.
Zou
,
G.
Ma
, and
X.
Yan
,
Adv. Mater.
28
(
19
),
3669
(
2016
).
31.
C.
Mu
,
D.
Li
,
W.
Lin
,
Y.
Ding
, and
G.
Zhang
,
Biopolymers
86
(
4
),
282
(
2007
).
32.
K. E.
Drzewiecki
,
D. R.
Grisham
,
A. S.
Parmar
,
V.
Nanda
, and
D. I.
Shreiber
,
Biophys. J.
111
(
11
),
2377
(
2016
).
33.
S. A.
Bencherif
,
R. W.
Sands
,
D.
Bhatta
,
P.
Arany
,
C. S.
Verbeke
,
D. A.
Edwards
, and
D. J.
Mooney
,
Proc. Natl. Acad. Sci.
109
(
48
),
19590
(
2012
).
34.
S. J.
Hollister
,
Nat. Mater.
4
(
7
),
518
(
2005
).
35.
N.
Davidenko
,
C.
Schuster
,
D.
Bax
,
N.
Raynal
,
R.
Farndale
,
S.
Best
, and
R.
Cameron
,
ActaBiomater.
25
,
131
(
2015
).
36.
Y.
Ma
,
M.
Lin
,
G.
Huang
,
Y.
Li
,
S.
Wang
,
G.
Bai
,
T. J.
Lu
, and
F.
Xu
,
Adv. Mater.
30
(
49
),
1705911
(
2018
).
37.
M.
Nair
,
R. K.
Johal
,
S. W.
Hamaia
,
S. M.
Best
, and
R. E.
Cameron
,
Biomaterials
254
,
120109
(
2020
).
38.
B. Q. Y.
Chan
,
Z. W. K.
Low
,
S. J. W.
Heng
,
S. Y.
Chan
,
C.
Owh
, and
X. J.
Loh
,
ACS Appl. Mater. Interfaces
8
(
16
),
10070
(
2016
).
39.
M.
Kim
,
Y.
Choe
, and
G.
Kim
,
Chem. Eng. J.
365
,
220
(
2019
).
40.
A.
Lucantonio
,
G.
Noselli
,
X.
Trepat
,
A.
DeSimone
, and
M.
Arroyo
,
Phys. Rev. Lett.
115
(
18
),
188105
(
2015
).
41.
P.
Viswanathan
,
M. G.
Ondeck
,
S.
Chirasatitsin
,
K.
Ngamkham
,
G. C.
Reilly
,
A. J.
Engler
, and
G.
Battaglia
,
Biomaterials
52
,
140
(
2015
).
42.
K.
Suresh
,
A.
Chowdhury
,
S. K.
Kumar
, and
G.
Kumaraswamy
,
Macromolecules
52
(
15
),
5955
(
2019
).
43.
K.
Kanamori
,
M.
Aizawa
,
K.
Nakanishi
, and
T.
Hanada
,
Adv. Mater.
19
(
12
),
1589
(
2007
).
44.
C.
Löwenberg
,
M.
Balk
,
C.
Wischke
,
M.
Behl
, and
A.
Lendlein
,
Acc. Chem. Res.
50
(
4
),
723
(
2017
).
45.
A.
Han
,
G.
Mondin
,
N. G.
Hegelbach
,
N. F.
de Rooij
, and
U.
Staufer
,
J. Colloid Interface Sci.
293
(
1
),
151
(
2006
).
46.
D.
Yang
,
M.
Krasowska
,
C.
Priest
,
M. N.
Popescu
, and
J.
Ralston
,
J. Phys. Chem. C
115
(
38
),
18761
(
2011
).
47.
H. R.
Moreira
,
L. P.
daSilva
,
R. L.
Reis
, and
A. P.
Marques
,
Polymers
12
(
2
),
329
(
2020
).
48.
F.
Ak
,
Z.
Oztoprak
,
I.
Karakutuk
, and
O.
Okay
,
Biomacromolecules
14
(
3
),
719
(
2013
).
49.
D. E.
Discher
,
P.
Janmey
, and
Y.-L.
Wang
,
Science
310
(
5751
),
1139
(
2005
).
50.
I.
Ahmed
,
A. S.
Ponery
,
A.
Nur-E-Kamal
,
J.
Kamal
,
A. S.
Meshel
,
M. P.
Sheetz
,
M.
Schindler
, and
S.
Meiners
,
Mol. Cell Biochem.
301
(
1
),
241
(
2007
).
51.
G.
Giannone
,
Nat. Cell Biol.
17
(
7
),
845
(
2015
).
52.
A. D.
Bershadsky
,
C.
Ballestrem
,
L.
Carramusa
,
Y.
Zilberman
,
B.
Gilquin
,
S.
Khochbin
,
A. Y.
Alexandrova
,
A. B.
Verkhovsky
,
T.
Shemesh
, and
M. M.
Kozlov
,
Eur. J. Cell Biol.
85
(
3–4
),
165
(
2006
).
53.
D. M.
Pirone
,
W. F.
Liu
,
S. A.
Ruiz
,
L.
Gao
,
S.
Raghavan
,
C. A.
Lemmon
,
L. H.
Romer
, and
C. S.
Chen
,
J. Cell Biol.
174
(
2
),
277
(
2006
).
54.
I.
Capila
and
R. J.
Linhardt
,
Angew. Chem., Int. Ed.
41
(
3
),
390
(
2002
).
55.
X.
Xu
,
A. K.
Jha
,
R. L.
Duncan
, and
X.
Jia
,
Acta Biomater.
7
(
8
),
3050
(
2011
).
56.
J.
Fang
,
P.
Li
,
X.
Lu
,
L.
Fang
,
X.
, and
F.
Ren
,
Acta Biomater.
88
,
503
(
2019
).
57.
H.
Capella-Monsonís
,
J. Q.
Coentro
,
V.
Graceffa
,
Z.
Wu
, and
D. I.
Zeugolis
,
Nat. Protoc.
13
(
3
),
507
(
2018
).
58.
K.
Meyer
and
P.
Klobes
,
Fresenius' J. Anal. Chem.
363
(
2
),
174
(
1999
).

Supplementary Material

You do not currently have access to this content.