Biofuel cells, which convert chemical energy into electrical energy at mild temperature and over moderate pH ranges, have been considered some of the most promising candidates for powering biomedical devices. However, most biofuel cells provide low power output and short-term operational stability due to their poor electron transfer. To address these issues, we use a unique amphiphilic assembly method to generate hybrid biofuel cells with high power output and good operational stability. This approach can induce favorable interfacial interactions between electrocatalysts and significantly improve the electron transfer kinetics of electrodes. In this study, glucose oxidase (in aqueous media) is repeatedly assembled with hydrophobic metal nanoparticles (in nonpolar media) on a conductive textile. The formed biofuel cell exhibits remarkably high power output (7.3 mW cm−2) and good operational durability. We believe that our assembly approach can provide a basis for preparing a variety of high-performance bioelectrochemical devices, including biofuel cells.

1.
S. J.
Updike
and
G. P.
Hicks
,
Nature
214
,
986
(
1967
).
2.
X.
Xiao
,
H.
Xia
,
R.
Wu
,
L.
Bai
,
L.
Yan
,
E.
Manager
,
S.
Cosnier
,
E.
Lojou
,
Z.
Zhu
, and
A.
Liu
,
Chem. Rev.
119
(
16
),
9509
(
2019
).
3.
K.
Elouarzaki
,
D.
Cheng
,
A. C.
Fisher
, and
J.-M.
Lee
,
Nat. Energy
3
,
574
(
2018
).
4.
R.
Ghosh
,
K. Y.
Pin
,
V. S.
Reddy
,
W. A. D. M.
Jayathilaka
,
D.
Ji
,
W.
Serrano-García
,
S. K.
Bhargava
,
S.
Ramakrishna
, and
A.
Chinnappan
,
Appl. Phys. Rev.
7
,
041309
(
2020
).
5.
M. J.
Moehlenbrock
and
S. D.
Minteer
,
Chem. Soc. Rev.
37
(
6
),
1188
(
2008
).
6.
N.
Mano
,
F.
Mao
, and
A.
Heller
,
J. Am. Chem. Soc.
124
(
44
),
12962
(
2002
).
7.
P.
Kavanagh
and
D.
Leech
,
Phys. Chem. Chem. Phys.
15
(
14
),
4859
(
2013
).
8.
C. H.
Kwon
,
S.-H.
Lee
,
Y.-B.
Choi
,
J. A.
Lee
,
S. H.
Kim
,
H.-H.
Kim
,
G. M.
Spinks
,
G. G.
Wallace
,
M. D.
Lima
,
M. E.
Kozlov
,
R. H.
Baughman
, and
S. J.
Kim
,
Nat. Commun.
5
,
3928
(
2014
).
9.
G.
Slaughter
and
T.
Kulkarni
,
J. Biochip Tissue Chip
5
(
1
),
1000110
(
2015
).
10.
M. J.
Cooney
,
V.
Svoboda
,
C.
Lau
,
G.
Martina
, and
S. D.
Minteer
,
Energy Environ. Sci.
1
,
320
(
2008
).
11.
A.
Zebda
,
C.
Gondran
,
A. L.
Goff
,
M.
Holzinger
,
P.
Cinquin
, and
S.
Cosnier
,
Nat. Commun.
2
,
370
(
2011
).
12.
K.
So
,
S.
Kawai
,
Y.
Hamano
,
Y.
Kitazumi
,
O.
Shirai
,
M.
Hibi
,
J.
Ogawa
, and
K.
Kano
,
Phys. Chem. Chem. Phys.
16
(
10
),
4823
(
2014
).
13.
O.
Yehezkeli
,
R.
Tel-Vered
,
S.
Raichlin
, and
I.
Willner
,
ACS Nano
5
(
3
),
2385
(
2011
).
14.
Y.
Xiao
,
F.
Patolsky
,
E.
Katz
,
J. F.
Hainfeld
, and
I.
Willner
,
Science
299
(
5614
),
1877
(
2003
).
15.
J. T.
Holland
,
C.
Lau
,
S.
Brozik
,
P.
Atanassov
, and
S.
Banta
,
J. Am. Chem. Soc.
133
(
48
),
19262
(
2011
).
16.
M.
Holzinger
,
A. L.
Goff
, and
S.
Cosnier
,
Electrochim. Acta
82
,
179
(
2012
).
17.
C. H.
Kwon
,
Y.
Ko
,
D.
Shin
,
S. W.
Lee
, and
J.
Cho
,
J. Mater. Chem. A
7
(
22
),
13495
(
2019
).
18.
D.
Wen
and
A.
Eychmüller
,
Small
12
(
34
),
4649
(
2016
).
19.
G.
Wohlfahrt
,
S.
Witt
,
J.
Hendle
,
D.
Schomburg
,
H. M.
Kalisz
, and
H.-J.
Hecht
,
Acta Crystallogr., Sect. D
55
,
969
(
1999
).
20.
X.
Xiao
,
T.
Siepenkoetter
,
P.
Conghaile
,
D.
Leech
, and
E.
Manager
,
ACS Appl. Mater. Interfaces
10
(
8
),
7107
(
2018
).
21.
B.
Shkodra
,
M.
Petrelli
,
M. A. C.
Angeli
,
D.
Garoli
,
N.
Nakatsuka
,
P.
Lugli
, and
L.
Petti
,
Appl. Phys. Rev.
8
,
041325
(
2021
).
22.
C. H.
Kwon
,
Y.
Ko
,
D.
Shin
,
M.
Kwon
,
J.
Park
,
W. K.
Bae
,
S. W.
Lee
, and
J.
Cho
,
Nat. Commun.
9
(
1
),
4479
(
2018
).
23.
Y.
Ko
,
H.
Baek
,
Y.
Kim
,
M.
Yoon
, and
J.
Cho
,
ACS Nano
7
(
1
),
143
(
2013
).
24.
D.
Nam
,
M.
Kwon
,
Y.
Ko
,
J.
Huh
,
S. W.
Lee
, and
J.
Cho
,
Appl. Phys. Rev.
8
,
011405
(
2021
).
25.
J.
Zhang
,
X.
Huang
,
L.
Zhang
,
Y.
Si
,
S.
Guo
,
H.
Su
, and
J.
Liu
,
Sustainable Energy Fuels
4
(
1
),
68
(
2020
).
26.
T.
Siepenkoetter
,
U.
Salaj-Kosla
,
X.
Xiao
,
S.
Belochapkine
, and
E.
Magner
,
Electroanalysis
28
(
10
),
2415
(
2016
).
27.
T.
Siepenkoetter
,
U.
Salaj-Kosla
,
X.
Xiao
,
P. O.
Conghaile
,
M.
Pita
,
R.
Ludwig
, and
E.
Magner
,
ChemPlusChem
82
(
4
),
553
(
2017
).
28.
29.
F.
Caruso
,
R. A.
Caruso
, and
H.
Möhwald
,
Science
282
(
5391
),
1111
(
1998
).
30.
M.
Brust
,
M.
Walker
,
D.
Bethell
,
D. J.
Schiffrin
, and
R.
Whyman
,
J. Chem. Soc.
7
(
7
),
801
(
1994
).
31.
32.
J.
Hernández
,
J.
Solla-Gullón
,
E.
Herrero
,
A.
Aldaz
, and
J. M.
Feliu
,
J. Phys. Chem. C
111
(
38
),
14078
(
2007
).
33.
X.
Ren
,
Q.
Lv
,
L.
Liu
,
B.
Liu
,
Y.
Wang
,
A.
Liu
, and
G.
Wu
,
Sustainable Energy Fuels
4
(
1
),
15
(
2020
).
34.
M.
Liu
,
R.
Zhang
, and
W.
Chen
,
Chem. Rev.
114
(
10
),
5117
(
2014
).
35.
Y.
Ko
,
Y.
Kim
,
H.
Baek
, and
J.
Cho
,
ACS Nano
5
(
12
),
9918
(
2011
).
36.
J.
Choi
and
M. F.
Rubner
,
Macromolecules
38
(
1
),
116
(
2005
).
37.
M.
Zhao
,
Y.
Gao
,
J.
Sun
, and
F.
Gao
,
Anal. Chem.
87
(
5
),
2615
(
2015
).
38.
Y.
Yu
,
Z.
Chen
,
S.
He
,
B.
Zhang
,
X.
Li
, and
M.
Yao
,
Biosens. Bioelectron.
52
,
147
(
2014
).
39.
C.
Cai
and
J.
Chen
,
Anal. Biochem.
332
(
1
),
75
(
2004
).
40.
M.
Frasconi
,
A.
Heyman
,
I.
Medalsy
,
D.
Porath
,
F.
Mazzei
, and
O.
Shoseyov
,
Langmuir
27
(
20
),
12606
(
2011
).
41.
J.
Hindmarsh
,
Electrical Machines and Their Applications, Biocatalyst in Non-Conventional Media
, 4th ed. (
Pergamon Press
,
1984
).
42.
E.
Laviron
,
J. Electroanal. Chem.
101
(
1
),
19
(
1979
).
43.
W.
Jia
,
G.
Valdés-Ramírez
,
A. J.
Bandodkar
,
J. R.
Windmiller
, and
J.
Wang
,
Angew. Chem., Int. Ed.
52
(
28
),
7233
(
2013
).
44.
I.
Jeerapan
,
J. R.
Sempionatto
,
A.
Pavinatto
,
J.-M.
You
, and
J.
Wang
,
J. Mater. Chem. A
4
(
47
),
18342
(
2016
).
45.
A. J.
Bandodkar
,
I.
Jeerapan
,
J.-M.
You
,
R.
Nuñez-Flores
, and
J.
Wang
,
Nano Lett.
16
(
1
),
721
(
2016
).
46.
S.
Yin
,
Z.
Jin
, and
T.
Miyake
,
Biosens. Bioelectron.
141
,
111471
(
2019
).
47.
Y.
Ogawa
,
Y.
Takai
,
Y.
Kato
,
H.
Kai
,
T.
Miyake
, and
M.
Nishizawa
,
Biosens. Bioelectron.
74
,
947
(
2015
).
48.
W.
Jia
,
X.
Wang
,
S.
Imani
,
A. J.
Bandodkar
,
J.
Ramírez
,
P. P.
Mercier
, and
J.
Wang
,
J. Mater. Chem. A
2
(
43
),
18184
(
2014
).
49.
D. I.
Gittins
and
F.
Caruso
,
Angew. Chem., Int. Ed.
40
(
16
),
3001
(
2001
).
50.
S.
Chen
,
K.
Huang
, and
J. A.
Stearns
,
Chem. Mater.
12
(
2
),
540
(
2000
).
51.
D. A.
Buttry
,
Advanced in Electroanalytical Chemistry: Applications of the QCM to Electrochemistry
(
Marcel Dekker Inc.
,
New York
,
1991
).
52.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
John Wiley & Sons
,
New York
,
2001
).

Supplementary Material

You do not currently have access to this content.