Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions (CUbi/eV), which amounts to roughly 1016 cm−3. This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold (∼1012 cm−3, which means ≪ CUbi/eV) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift–diffusion simulations, which confirm that the device performance is not affected by such low doping densities.

1.
C. R.
Abernathy
,
S. J.
Pearton
,
R.
Caruso
,
F.
Ren
, and
J.
Kovalchik
, “
Ultrahigh doping of GaAs by carbon during metalorganic molecular beam epitaxy
,”
Appl. Phys. Lett.
55
,
1750
1752
(
1989
).
2.
H. J.
Queisser
and
E. E.
Haller
, “
Defects in semiconductors: Some fatal, some vital
,”
Science
281
,
945
950
(
1998
).
3.
R. A.
Street
, “
Doping and the Fermi energy in amorphous silicon
,”
Phys. Rev.
49
,
1187
1190
(
1982
).
4.
C. K.
Chiang
 et al, “
Electrical conductivity in doped polyacetylene
,”
Phys. Rev. Lett.
39
,
1098
1101
(
1977
).
5.
I. E.
Jacobs
and
A. J.
Moulé
, “
Controlling molecular doping in organic semiconductors
,”
Adv. Mater.
29
,
1703063
(
2017
).
6.
P.
Pingel
,
R.
Schwarzl
, and
D.
Neher
, “
Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene)
,”
Appl. Phys. Lett.
100
,
143303
(
2012
).
7.
P.
Pingel
and
D.
Neher
, “
Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ
,”
Phys. Rev. B
87
,
115209
(
2013
).
8.
I. E.
Jacobs
 et al, “
Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: Effect of doping-induced aggregation on film morphology
,”
J. Mater. Chem. C
4
,
3454
3466
(
2016
).
9.
A.
Musiienko
 et al, “
Photo-Hall-effect spectroscopy with enhanced illumination in p-Cd1−xMnxTe showing negative differential photoconductivity
,”
Phys. Rev. Appl.
10
,
014019
(
2018
).
10.
R.
Sandheep
,
U.
Thomas
, and
K.
Thomas
, “
Comment on ‘Resolving spatial energetic distributions trap states metal halide perovskite solar cells
,’”
Science
371
,
eabd8014
(
2021
).
11.
J.
Siekmann
,
S.
Ravishankar
, and
T.
Kirchartz
, “
Apparent defect densities in halide perovskite thin films and single crystals
,”
ACS Energy Lett.
6
,
3244
3251
(
2021
).
12.
J.
Euvrard
,
Y.
Yan
, and
D. B.
Mitzi
, “
Electrical doping in halide perovskites
,”
Nat. Rev. Mater.
6
,
531
549
(
2021
).
13.
L.
Huang
 et al, “
Schottky/p-n cascade heterojunction constructed by intentional n-type doping perovskite toward efficient electron layer-free perovskite solar cells
,”
Sol. RRL
3
,
1800274
(
2019
).
14.
L.
Huang
and
Y.
Zhu
, “
p-n heterojunction perovskite solar cell with bilateral Ohmic contacts
,”
Appl. Phys. Lett.
118
,
052105
(
2021
).
15.
W.-J.
Yin
,
T.
Shi
, and
Y.
Yan
, “
Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber
,”
Appl. Phys. Lett.
104
,
063903
(
2014
).
16.
J. M.
Ball
and
A.
Petrozza
, “
Defects in perovskite-halides and their effects in solar cells
,”
Nat. Energy
1
,
16149
(
2016
).
17.
Q.
Wang
 et al, “
Qualifying composition dependent p and n self-doping in CH3NH3PbI3
,”
Appl. Phys. Lett.
105
,
163508
(
2014
).
18.
P.
Cui
 et al, “
Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3
%,”
Nat. Energy
4
,
150
159
(
2019
).
19.
A.
Musiienko
 et al, “
Defects in hybrid perovskites: The secret of efficient charge transport
,”
Adv. Funct. Mater.
31
,
2104467
(
2021
).
20.
J.
Kim
,
S.-H.
Lee
,
J. H.
Lee
, and
K.-H.
Hong
, “
The role of intrinsic defects in methylammonium lead iodide perovskite
,”
J. Phys. Chem. Lett.
5
,
1312
1317
(
2014
).
21.
J.
Euvrard
,
O.
Gunawan
, and
D. B.
Mitzi
, “
Impact of PbI2 passivation and grain size engineering in CH3NH3PbI3 solar absorbers as revealed by carrier-resolved photo-Hall technique
,”
Adv. Energy Mater.
9
,
1902706
(
2019
).
22.
A.
Zohar
 et al, “
What is the mechanism of MAPbI3 p-doping by I2? Insights from optoelectronic properties
,”
ACS Energy Lett.
2
,
2408
2414
(
2017
).
23.
P.
Schulz
 et al, “
Electronic level alignment in inverted organometal perovskite solar cells
,”
Adv. Mater. Interfaces
2
,
1400532
(
2015
).
24.
D.
Shin
 et al, “
Mechanism and timescales of reversible p-doping of methylammonium lead triiodide by oxygen
,”
Adv. Mater.
33
,
2100211
(
2021
).
25.
M.
Stolterfoht
 et al, “
The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells
,”
Energy Environ. Sci.
12
,
2778
2788
(
2019
).
26.
P.
Caprioglio
 et al, “
High open circuit voltages in pin-type perovskite solar cells through strontium addition
,”
Sustainable Energy Fuels
3
,
550
563
(
2019
).
27.
F.
Zu
 et al, “
Unraveling the electronic properties of lead halide perovskites with surface photovoltage in photoemission studies
,”
ACS Appl. Mater. Interfaces
11
,
21578
21583
(
2019
).
28.
T.
Hellmann
 et al, “
The electronic structure of MAPI-based perovskite solar cells: Detailed band diagram determination by photoemission spectroscopy comparing classical and inverted device stacks
,”
Adv. Energy Mater.
10
,
2002129
(
2020
).
29.
A.
Walsh
,
D. O.
Scanlon
,
S.
Chen
,
X. G.
Gong
, and
S. H.
Wei
, “
Self-regulation mechanism for charged point defects in hybrid halide perovskites
,”
Angew. Chem., Int. Ed.
54
,
1791
1794
(
2015
).
30.
S.
Reichert
 et al, “
Ionic-defect distribution revealed by improved evaluation of deep-level transient spectroscopy on perovskite solar cells
,”
Phys. Rev. Appl.
13
,
034018
(
2020
).
31.
Y.
Cheng
 et al, “
The detrimental effect of excess mobile ions in planar CH3NH3PbI3 perovskite solar cells
,”
J. Mater. Chem. A
4
,
12748
12755
(
2016
).
32.
L.
Bertoluzzi
 et al, “
Mobile ion concentration measurement and open-access band diagram simulation platform for halide perovskite solar cells
,”
Joule
4
,
109
127
(
2020
).
33.
M. H.
Futscher
 et al, “
Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements
,”
Mater. Horiz.
6
,
1497
1503
(
2019
).
34.
T.
Kirchartz
 et al, “
Sensitivity of the Mott–Schottky analysis in organic solar cells
,”
J. Phys. Chem. C
116
,
7672
7680
(
2012
).
35.
O. J.
Sandberg
,
M.
Nyman
, and
R.
Österbacka
, “
Direct determination of doping concentration and built-in voltage from extraction current transients
,”
Org. Electron.
15
,
3413
3420
(
2014
).
36.
O.
Almora
,
C.
Aranda
,
E.
Mas-Marzá
, and
G.
Garcia-Belmonte
, “
On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells
,”
Appl. Phys. Lett.
109
,
173903
(
2016
).
37.
J.
Diekmann
 et al, “
Pathways toward 30% efficient single-junction perovskite solar cells and the role of mobile ions
,”
Sol. RRL
5
,
2100219
(
2021
).
38.
L. B.
Valdes
, “
Resistivity measurements on germanium for transistors
,”
Proc. IRE
42
,
420
427
(
1954
).
39.
G. K.
Reeves
and
H. B.
Harrison
, “
Obtaining the specific contact resistance from transmission line model measurements
,”
IEEE Electron Device Lett.
3
,
111
113
(
1982
).
40.
L. J.
van der Pauw
, “
A method of measuring specific resistivity and Hall effect of discs of arbitrary shape
,”
Philips Res. Rep.
13
,
1
9
(
1958
).
41.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
John Wiley & Sons
,
2006
).
42.
S.
Ravishankar
,
Z.
Liu
, and
T.
Kirchartz
, “
Multilayer capacitances: How selective contacts affect capacitance measurements of perovskite solar cells
,” (
2021
).
43.
O.
Gunawan
 et al, “
Carrier-resolved photo-Hall effect
,”
Nature
575
,
151
155
(
2019
).
44.
S.
Feldmann
 et al, “
Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence
,”
Nat. Photonics
14
,
123
128
(
2020
).
45.
F.
Staub
 et al, “
Beyond bulk lifetimes: Insights into lead halide perovskite films from time-resolved photoluminescence
,”
Phys. Rev. Appl.
6
,
044017
(
2016
).
46.
T. J.
Savenije
,
D.
Guo
,
V. M.
Caselli
, and
E. M.
Hutter
, “
Quantifying charge-carrier mobilities and recombination rates in metal halide perovskites from time-resolved microwave photoconductivity measurements
,”
Adv. Energy Mater.
10
,
1903788
(
2020
).
47.
J.
Kniepert
,
I.
Lange
,
N. J.
van der Kaap
,
L. J. A.
Koster
, and
D.
Neher
, “
A conclusive view on charge generation, recombination, and extraction in as-prepared and annealed P3HT:PCBM blends: Combined experimental and simulation work
,”
Adv. Energy Mater.
4
,
1301401
(
2014
).
48.
V. M.
Le Corre
 et al, “
Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements
,”
ACS Energy Lett.
6
,
1087
1094
(
2021
).
49.
G.
Juška
,
K.
Arlauskas
,
M.
Viliūnas
, and
J.
Kočka
, “
Extraction current transients: New method of study of charge transport in microcrystalline silicon
,”
Phys. Rev. Lett.
84
,
4946
4949
(
2000
).
50.
J.
Thiesbrummel
 et al, “
Universal current losses in perovskite solar cells due to mobile ions
,”
Adv. Energy Mater.
11
,
2101447
(
2021
).
51.
T.
Kirchartz
and
D.
Cahen
, “
Minimum doping densities for p-n junctions
,”
Nat. Energy
5
,
973
975
(
2020
).
52.
J.
Hüpkes
,
U.
Rau
, and
T.
Kirchartz
, “
Dielectric junction: Electrostatic design for charge carrier collection in solar cells
,”
Sol. RRL
6
,
2100720
(
2021
).
53.
B.
Das
,
I.
Aguilera
,
U.
Rau
, and
T.
Kirchartz
, “
Effect of doping, photodoping and bandgap variation on the performance of perovskite solar cells
,” arXiv:2112.03445 (
2021
).
54.
M.
Burgelman
,
J.
Verschraegen
,
S.
Degrave
, and
P.
Nollet
, “
Modeling thin-film PV devices
,”
Prog. Photovoltaics
12
,
143
153
(
2004
).
55.
M.
Burgelman
,
P.
Nollet
, and
S.
Degrave
, “
Modelling polycrystalline semiconductor solar cells
,”
Thin Solid Films
361–362
,
527
532
(
2000
).
56.
A.
Musiienko
 et al, “
Deep levels, charge transport and mixed conductivity in organometallic halide perovskites
,”
Energy Environ. Sci.
12
,
1413
1425
(
2019
).
57.
E. A.
Duijnstee
 et al, “
Toward understanding space-charge limited current measurements on metal halide perovskites
,”
ACS Energy Lett.
5
,
376
384
(
2020
).
58.
W.
Peng
 et al, “
Quantification of ionic diffusion in lead halide perovskite single crystals
,”
ACS Energy Lett.
3
,
1477
1481
(
2018
).
59.
J. W.
Orton
and
M. J.
Powell
, “
The Hall effect in polycrystalline and powdered semiconductors
,”
Rep. Prog. Phys.
43
,
1263
1307
(
1980
).
60.
T.
Kirchartz
,
J. A.
Márquez
,
M.
Stolterfoht
, and
T.
Unold
, “
Photoluminescence-based characterization of halide perovskites for photovoltaics
,”
Adv. Energy Mater.
10
,
1904134
(
2020
).
61.
S.
Feldmann
 et al, “
Tailored local bandgap modulation as a strategy to maximize luminescence yields in mixed-halide perovskites
,”
Adv. Opt. Mater.
9
,
2100635
(
2021
).
62.
C. M.
Wolff
 et al, “
Orders of recombination in complete perovskite solar cells: Linking time-resolved and steady-state measurements
,”
Adv. Energy Mater.
11
,
2101823
(
2021
).
63.
T.
Kirchartz
,
L.
Krückemeier
, and
E. L.
Unger
, “
Research update: Recombination and open-circuit voltage in lead-halide perovskites
,”
APL Mater.
6
,
100702
(
2018
).
64.
J. M.
Richter
 et al, “
Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling
,”
Nat. Commun.
7
,
13941
(
2016
).
65.
E.
Gutierrez-Partida
 et al, “
Large-grain double cation perovskites with 18
μs
lifetime and high luminescence yield for efficient inverted perovskite solar cells
,”
ACS Energy Lett.
6
,
1045
1054
(
2021
).
66.
G.
Juška
,
N.
Nekrašas
,
V.
Valentinavičius
,
P.
Meredith
, and
A.
Pivrikas
, “
Extraction of photogenerated charge carriers by linearly increasing voltage in the case of Langevin recombination
,”
Phys. Rev. B
84
,
155202
(
2011
).
67.
G.
Juška
 et al, “
Charge transport in pi-conjugated polymers from extraction current transients
,”
Phys. Rev. B
62
,
R16235
R16238
(
2000
).
68.
M.
Stolterfoht
 et al, “
Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells
,”
Energy Environ. Sci.
10
,
1530
1539
(
2017
).
69.
D.
Kiermasch
 et al, “
Unravelling steady-state bulk recombination dynamics in thick efficient vacuum-deposited perovskite solar cells by transient methods
,”
J. Mater. Chem. A
7
,
14712
14722
(
2019
).
70.
M.
Fischer
,
K.
Tvingstedt
,
A.
Baumann
, and
V.
Dyakonov
, “
Doping profile in planar hybrid perovskite solar cells identifying mobile ions
,”
ACS Appl. Energy Mater.
1
,
5129
5134
(
2018
).
71.
N.
Wu
,
D.
Walter
,
A.
Fell
,
Y.
Wu
, and
K.
Weber
, “
The impact of mobile ions on the steady-state performance of perovskite solar cells
,”
J. Phys. Chem. C
124
,
219
229
(
2020
).
72.
O.
Almora
 et al, “
Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells
,”
J. Phys. Chem. Lett.
6
,
1645
1652
(
2015
).

Supplementary Material

You do not currently have access to this content.