Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions (), which amounts to roughly 1016 cm−3. This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold (∼1012 cm−3, which means ≪ ) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift–diffusion simulations, which confirm that the device performance is not affected by such low doping densities.
Skip Nav Destination
Article navigation
June 2022
Research Article|
April 29 2022
Revealing the doping density in perovskite solar cells and its impact on device performance
Special Collection:
Energy Storage and Conversion
Francisco Peña-Camargo
;
Francisco Peña-Camargo
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
Search for other works by this author on:
Jarla Thiesbrummel
;
Jarla Thiesbrummel
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
2
Clarendon Laboratory, University of Oxford
, Parks Road, Oxford OX1 3PU, United Kingdom
Search for other works by this author on:
Hannes Hempel
;
Hannes Hempel
3
Department of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie
, D-14109 Berlin, Germany
Search for other works by this author on:
Artem Musiienko
;
Artem Musiienko
4
Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie
, Kekuléstrasse 5, 12489 Berlin, Germany
Search for other works by this author on:
Vincent M. Le Corre;
Vincent M. Le Corre
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
5
Institute of Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg
, 91058 Erlangen, Germany
Search for other works by this author on:
Jonas Diekmann
;
Jonas Diekmann
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
Search for other works by this author on:
Jonathan Warby;
Jonathan Warby
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
Search for other works by this author on:
Thomas Unold
;
Thomas Unold
3
Department of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie
, D-14109 Berlin, Germany
Search for other works by this author on:
Felix Lang
;
Felix Lang
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
Search for other works by this author on:
Dieter Neher
;
Dieter Neher
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
Search for other works by this author on:
Martin Stolterfoht
Martin Stolterfoht
a)
1
Physik weicher Materie, Institut für Physik und Astronomie, Universität Potsdam
, Karl-Liebknecht-Str. 24–25, 14776 Potsdam, Germany
a)Author to whom correspondence should be addressed: stolterf@uni-potsdam.de
Search for other works by this author on:
a)Author to whom correspondence should be addressed: stolterf@uni-potsdam.de
Note: This paper is part of the special collection on Energy Storage and Conversion.
Appl. Phys. Rev. 9, 021409 (2022)
Article history
Received:
January 14 2022
Accepted:
March 30 2022
Citation
Francisco Peña-Camargo, Jarla Thiesbrummel, Hannes Hempel, Artem Musiienko, Vincent M. Le Corre, Jonas Diekmann, Jonathan Warby, Thomas Unold, Felix Lang, Dieter Neher, Martin Stolterfoht; Revealing the doping density in perovskite solar cells and its impact on device performance. Appl. Phys. Rev. 1 June 2022; 9 (2): 021409. https://doi.org/10.1063/5.0085286
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
Continuous-variable quantum key distribution system: Past, present, and future
Yichen Zhang, Yiming Bian, et al.
Roadmap for focused ion beam technologies
Katja Höflich, Gerhard Hobler, et al.