Highly performing mixed Sn/Pb-metal halide perovskite solar cells (PSCs) are among the most promising options to reduce Pb content in perovskite devices and enable, owing to their reduced bandgap, the fabrication of all-perovskite tandem solar cells. Whereas pure-Pb perovskite devices exhibit efficiency up to 25.5%, alongside a high open-circuit voltage (≈1.2 V), Sn-Pb PSCs still show lower performances (22.2%) due to higher open-circuit voltage losses. Here, we introduced 2,3,4,5,6-pentafluorophenethylammonium cations in a perovskite active layer of composition (FASnI3)0.5(MAPbI3)0.5 to obtain highly oriented films with improved thermal stability. The treated films exhibit merged grains with no evidence of 2D structures, which could help to reduce the trap state density at the surface and grain boundaries. Solar cells fabricated with the fluorinated cation added to the active layer displayed reduced trap-assisted recombination losses and lower background carrier density, which leads to enhanced open-circuit voltages with respect to the reference samples and the active layers incorporating unfluorinated phenethylammonium cations. The best device reached an efficiency of 19.13%, with an open-circuit voltage of 0.84 V, which is substantially improved with respect to the reference sample showing 17.47% efficiency and 0.77 V open-circuit voltage. More importantly, the fluorinated cations' addition is instrumental to improve the device's thermal stability; 90.3% of the solar cell initial efficiency is maintained after 90 min of thermal stress at 85 °C in a nitrogen atmosphere.

1.
J. M.
Ball
,
S. D.
Stranks
,
M. T.
Hörantner
,
S.
Hüttner
,
W.
Zhang
,
E. J. W.
Crossland
,
I.
Ramirez
,
M.
Riede
,
M. B.
Johnston
,
R. H.
Friend
, and
H. J.
Snaith
, “
Optical properties and limiting photocurrent of thin-film perovskite solar cells
,”
Energy Environ. Sci.
8
,
602
(
2015
).
2.
F.
Zhang
,
B.
Yang
,
Y.
Li
,
W.
Deng
, and
R.
He
, “
Extra long electron–hole diffusion lengths in CH3NH3PbI3−xClx perovskite single crystals
,”
J. Mater. Chem. C
5
,
8431
(
2017
).
3.
M.
Baranowski
and
P.
Plochocka
, “
Excitons in metal-halide perovskites
,”
Adv. Energy Mater.
10
,
1903659
(
2020
).
4.
L. M.
Herz
, “
Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits
,”
ACS Energy Lett.
2
,
1539
(
2017
).
5.
H.
Min
,
D. Y.
Lee
,
J.
Kim
,
G.
Kim
,
K. S.
Lee
,
J.
Kim
,
M. J.
Paik
,
Y. K.
Kim
,
K. S.
Kim
,
M. G.
Kim
,
T. J.
Shin
, and
S.
Il Seok
, “
Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes
,”
Nature
598
,
444
(
2021
).
6.
K.
Yoshikawa
,
H.
Kawasaki
,
W.
Yoshida
,
T.
Irie
,
K.
Konishi
,
K.
Nakano
,
T.
Uto
,
D.
Adachi
,
M.
Kanematsu
,
H.
Uzu
, and
K.
Yamamoto
, “
Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
,”
Nat. Energy
2
,
17032
(
2017
).
7.
A.
Babayigit
,
A.
Ethirajan
,
M.
Muller
, and
B.
Conings
, “
Toxicity of organometal halide perovskite solar cells
,”
Nat. Mater.
15
,
247
(
2016
).
8.
X.
Jiang
,
Z.
Zang
,
Y.
Zhou
,
H.
Li
,
Q.
Wei
, and
Z.
Ning
, “
Tin halide perovskite solar cells: An emerging thin-film photovoltaic technology
,”
Acc. Mater. Res.
2
,
210
(
2021
).
9.
D.
Meggiolaro
,
D.
Ricciarelli
,
A. A.
Alasmari
,
F. A. S.
Alasmary
, and
F.
De Angelis
, “
Tin versus lead redox chemistry modulates charge trapping and self-doping in tin/lead iodide perovskites
,”
J. Phys. Chem. Lett.
11
,
3546
(
2020
).
10.
S.
Shao
,
J.
Liu
,
G.
Portale
,
H. H.
Fang
,
G. R.
Blake
,
G. H.
ten Brink
,
L. J. A.
Koster
, and
M. A.
Loi
, “
Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency
,”
Adv. Energy Mater.
8
,
1702019
(
2018
).
11.
B.
Bin Yu
,
Z.
Chen
,
Y.
Zhu
,
Y.
Wang
,
B.
Han
,
G.
Chen
,
X.
Zhang
,
Z.
Du
, and
Z.
He
, “
Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%
,”
Adv. Mater.
33
,
2102055
(
2021
).
12.
A.
Amat
,
E.
Mosconi
,
E.
Ronca
,
C.
Quarti
,
P.
Umari
,
K.
Nazeeruddin
,
M.
Gra
, and
F.
De Angelis
, “
Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting
,”
Nano Lett.
14
,
3608
(
2014
).
13.
Y.
Ogomi
,
A.
Morita
,
S.
Tsukamoto
,
T.
Saitho
,
N.
Fujikawa
,
Q.
Shen
,
T.
Toyoda
,
K.
Yoshino
,
S. S.
Pandey
, and
S.
Hayase
, “
CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm
,”
J. Phys. Chem. Lett.
5
,
1004
(
2014
).
14.
R.
Lin
,
K.
Xiao
,
Z.
Qin
,
Q.
Han
,
C.
Zhang
,
M.
Wei
,
M. I.
Saidaminov
,
Y.
Gao
,
J.
Xu
,
M.
Xiao
,
A.
Li
,
J.
Zhu
,
E. H.
Sargent
, and
H.
Tan
, “
Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink
,”
Nat. Energy
4
,
864
(
2019
).
15.
T.
Supasai
,
N.
Rujisamphan
,
K.
Ullrich
,
A.
Chemseddine
, and
T.
Dittrich
, “
Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers
,”
Appl. Phys. Lett.
103
,
183906
(
2013
).
16.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
, “
Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties
,”
Inorg. Chem.
52
,
9019
(
2013
).
17.
N. K.
Noel
,
S. D.
Stranks
,
A.
Abate
,
C.
Wehrenfennig
,
S.
Guarnera
,
A. A.
Haghighirad
,
A.
Sadhanala
,
G. E.
Eperon
,
S. K.
Pathak
,
M. B.
Johnston
,
A.
Petrozza
,
L. M.
Herz
, and
H. J.
Snaith
, “
Lead-free organic–inorganic tin halide perovskites for photovoltaic applications
,”
Energy Environ. Sci.
7
,
3061
(
2014
).
18.
G.
Kapil
,
T.
Bessho
,
T.
Maekawa
,
A. K.
Baranwal
,
Y.
Zhang
,
M. A.
Kamarudin
,
D.
Hirotani
,
Q.
Shen
,
H.
Segawa
, and
S.
Hayase
, “
Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%
,”
Adv. Energy Mater.
11
,
2101069
(
2021
).
19.
M.
Jeong
,
I. W.
Choi
,
E. M.
Go
,
Y.
Cho
,
M.
Kim
,
B.
Lee
,
S.
Jeong
,
Y.
Jo
,
H. W.
Choi
,
J.
Lee
,
J. H.
Bae
,
S. K.
Kwak
,
D. S.
Kim
, and
C.
Yang
, “
Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss
,”
Science
369
,
1615
(
2020
).
20.
J.
Tong
,
Z.
Song
,
D. H.
Kim
,
X.
Chen
,
C.
Chen
,
A. F.
Palmstrom
,
P. F.
Ndione
,
M. O.
Reese
,
S. P.
Dunfield
,
O. G.
Reid
,
J.
Liu
,
F.
Zhang
,
S. P.
Harvey
,
Z.
Li
,
S. T.
Christensen
,
G.
Teeter
,
D.
Zhao
,
M. M.
Al-Jassim
,
M.
Van Hest
,
M. C.
Beard
,
S. E.
Shaheen
,
J. J.
Berry
,
Y.
Yan
, and
K.
Zhu
, “
Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells
,”
Science
364
,
475
(
2019
).
21.
K.
Xiao
,
R.
Lin
,
Q.
Han
,
Y.
Hou
,
Z.
Qin
,
H. T.
Nguyen
,
J.
Wen
,
M.
Wei
,
V.
Yeddu
,
M. I.
Saidaminov
,
Y.
Gao
,
X.
Luo
,
Y.
Wang
,
H.
Gao
,
C.
Zhang
,
J.
Xu
,
J.
Zhu
,
E. H.
Sargent
, and
H.
Tan
, “
All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant
,”
Nat. Energy
5
,
870
(
2020
).
22.
M.
Wei
,
K.
Xiao
,
G.
Walters
,
R.
Lin
,
Y.
Zhao
,
M. I.
Saidaminov
,
P.
Todorović
,
A.
Johnston
,
Z.
Huang
,
H.
Chen
,
A.
Li
,
J.
Zhu
,
Z.
Yang
,
Y. K.
Wang
,
A. H.
Proppe
,
S. O.
Kelley
,
Y.
Hou
,
O.
Voznyy
,
H.
Tan
, and
E. H.
Sargent
, “
Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer
,”
Adv. Mater.
32
,
1907058
(
2020
).
23.
W.
Ke
,
C.
Chen
,
I.
Spanopoulos
,
L.
Mao
,
I.
Hadar
,
X.
Li
,
J. M.
Hoffman
,
Z.
Song
,
Y.
Yan
, and
M. G.
Kanatzidis
, “
Narrow-bandgap mixed lead/tin-based 2D Dion-Jacobson perovskites boost the performance of solar cells
,”
J. Am. Chem. Soc.
142
,
15049
(
2020
).
24.
R.
Lin
,
J.
Xu
,
M.
Wei
,
Y.
Wang
,
Z.
Qin
,
Z.
Liu
,
J.
Wu
,
K.
Xiao
,
B.
Chen
,
S. M.
Park
,
G.
Chen
,
H. R.
Atapattu
,
K. R.
Graham
,
J.
Xu
,
J.
Zhu
,
L.
Li
,
C.
Zhang
,
E. H.
Sargent
, and
H.
Tan
, “
All-perovskite tandem solar cells with improved grain surface passivation
,”
Nature
603
,
73
78
(
2022
).
25.
H. B.
Lee
,
N.
Kumar
,
B.
Tyagi
,
K. J.
Ko
, and
J. W.
Kang
, “
Dimensionality and defect engineering using fluoroaromatic cations for efficiency and stability enhancement in 3D/2D perovskite photovoltaics
,”
Sol. RRL
5
,
2000589
(
2021
).
26.
P. P.
Shi
,
S. Q.
Lu
,
X. J.
Song
,
X. G.
Chen
,
W. Q.
Liao
,
P. F.
Li
,
Y. Y.
Tang
, and
R. G.
Xiong
, “
Two-dimensional organic-inorganic perovskite ferroelectric semiconductors with fluorinated aromatic spacers
,”
J. Am. Chem. Soc.
141
,
18334
(
2019
).
27.
R.
Guo
,
A.
Buyruk
,
X.
Jiang
,
W.
Chen
,
L. K.
Reb
,
M. A.
Scheel
,
T.
Ameri
, and
P.
Müller-Buschbaum
, “
Tailoring the orientation of perovskite crystals via adding two-dimensional polymorphs for perovskite solar cells
,”
J. Phys. Energy
2
,
034005
(
2020
).
28.
E.
Jokar
,
P. Y.
Cheng
,
C. Y.
Lin
,
S.
Narra
,
S.
Shahbazi
, and
E.
Wei-Guang Diau
, “
Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition
,”
ACS Energy Lett.
6
,
485
(
2021
).
29.
C.
Li
,
Y.
Pan
,
J.
Hu
,
S.
Qiu
,
C.
Zhang
,
Y.
Yang
,
S.
Chen
,
X.
Liu
,
C. J.
Brabec
,
M. K.
Nazeeruddin
,
Y.
Mai
, and
F.
Guo
, “
Vertically aligned 2D/3D Pb–Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells
,”
ACS Energy Lett.
5
,
1386
(
2020
).
30.
S. G.
Kim
,
J. H.
Kim
,
P.
Ramming
,
Y.
Zhong
,
K.
Schötz
,
S. J.
Kwon
,
S.
Huettner
,
F.
Panzer
, and
N. G.
Park
, “
How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties
,”
Nat. Commun.
12
,
1554
(
2021
).
31.
S.
Shao
,
M.
Abdu-Aguye
,
L.
Qiu
,
L. H.
Lai
,
J.
Liu
,
S.
Adjokatse
,
F.
Jahani
,
M. E.
Kamminga
,
G. H.
Ten Brink
,
T.
Palstra
,
B. J.
Kooi
,
J. C.
Hummelen
, and
M.
Antonietta Loi
, “
Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative
,”
Energy Environ. Sci.
9
,
2444
(
2016
).
32.
Q.
Chen
,
J.
Luo
,
R.
He
,
H.
Lai
,
S.
Ren
,
Y.
Jiang
,
Z.
Wan
,
W.
Wang
,
X.
Hao
,
Y.
Wang
,
J.
Zhang
,
I.
Constantinou
,
C.
Wang
,
L.
Wu
,
F.
Fu
, and
D.
Zhao
, “
Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells
,”
Adv. Energy Mater.
11
,
2101045
(
2021
).
33.
K. D. G. I.
Jayawardena
,
R. M. I.
Bandara
,
M.
Monti
,
E.
Butler-caddle
,
T.
Pichler
,
H.
Shiozawa
,
Z.
Wang
,
S.
Jenatsch
,
S. J.
Hinder
,
M. G.
Masteghin
,
M.
Patel
,
H. M.
Thirimanne
,
W.
Zhang
,
R. A.
Sporea
,
J.
Lloyd-Hughesb
, and
S. R. P.
Silva
, “
Approaching the Shockley–Queisser limit for fill factors in lead–tin mixed perovskite photovoltaics
,”
J. Mater. Chem. A
8
,
693
(
2020
).
34.
Q.
Shang
,
Y.
Wang
,
Y.
Zhong
,
Y.
Mi
,
L.
Qin
,
Y.
Zhao
,
X.
Qiu
,
X.
Liu
, and
Q.
Zhang
, “
Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission
,”
J. Phys. Chem. Lett.
8
,
4431
(
2017
).
35.
J.
Liu
,
J.
Leng
,
K.
Wu
,
J.
Zhang
, and
S.
Jin
, “
Observation of internal photoinduced electron and hole separation in hybrid two-dimensional perovskite films
,”
J. Am. Chem. Soc.
139
,
1432
(
2017
).
36.
D. S.
Lee
,
J. S.
Yun
,
J.
Kim
,
A. M.
Soufiani
,
S.
Chen
,
Y.
Cho
,
X.
Deng
,
J.
Seidel
,
S.
Lim
,
S.
Huang
, and
A. W. Y.
Ho-Baillie
, “
Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells
,”
ACS Energy Lett.
3
,
647
(
2018
).
37.
J.
Dong
,
S.
Shao
,
S.
Kahmann
,
A. J.
Rommens
,
D.
Hermida-Merino
,
G. H.
ten Brink
,
M. A.
Loi
, and
G.
Portale
, “
Mechanism of crystal formation in Ruddlesden–Popper Sn-based perovskites
,”
Adv. Funct. Mater.
30
,
2001294
(
2020
).
38.
C. C.
Boyd
,
R. C.
Shallcross
,
T.
Moot
,
R.
Kerner
,
L.
Bertoluzzi
,
A.
Onno
,
S.
Kavadiya
,
C.
Chosy
,
E. J.
Wolf
,
J.
Werner
,
J. A.
Raiford
,
C.
de Paula
,
A. F.
Palmstrom
,
Z. J.
Yu
,
J. J.
Berry
,
S. F.
Bent
,
Z. C.
Holman
,
J. M.
Luther
,
E. L.
Ratcliff
,
N. R.
Armstrong
, and
M. D.
McGehee
, “
Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells
,”
Joule
4
,
1759
(
2020
).
39.
M.
Jung
,
T. J.
Shin
,
J.
Seo
,
G.
Kim
, and
S.
Il Seok
, “
Structural features and their functions in surfactantarmoured methylammonium lead iodide perovskites for highly efficient and stable solar cells
,”
Energy Environ. Sci.
11
,
2188
(
2018
).
40.
X.
Jia
,
L.
Zhang
,
Q.
Luo
,
H.
Lu
,
X.
Li
,
Z.
Xie
,
Y.
Yang
,
Y. Q.
Li
,
X.
Liu
, and
C. Q.
Ma
, “
Power conversion efficiency and device stability improvement of inverted perovskite solar cells by using a ZnO:PFN composite cathode buffer layer
,”
ACS Appl. Mater. Interfaces
8
,
18410
(
2016
).
41.
A. F.
Castro-Méndez
,
J.
Hidalgo
, and
J. P.
Correa-Baena
, “
The role of grain boundaries in perovskite solar cells
,”
Adv. Energy Mater.
9
,
1901489
(
2019
).
42.
Z.
Chu
,
M.
Yang
,
P.
Schulz
,
D.
Wu
,
X.
Ma
,
E.
Seifert
,
L.
Sun
,
X.
Li
,
K.
Zhu
, and
K.
Lai
, “
Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites
,”
Nat. Commun.
8
,
2230
(
2017
).
43.
J. W.
Lee
,
S. H.
Bae
,
N.
De Marco
,
Y. T.
Hsieh
,
Z.
Dai
, and
Y.
Yang
, “
The role of grain boundaries in perovskite solar cells
,”
Mater. Today Energy
7
,
149
(
2018
).
44.
Y.
Zhou
,
Y.
Yin
,
X.
Zuo
,
L.
Wang
,
T.
Li
,
Y.
Xue
,
A.
Subramanian
,
Y.
Fang
,
Y.
Guo
,
Z.
Yang
,
M.
Cotlet
,
C.
Nam
, and
M. H.
Rafailovich
, “
Improving thermal stability of perovskite solar cells by suppressing ion migration using copolymer grain encapsulation
,”
Chem. Mater.
33
,
6120
(
2021
).
45.
I.
van de Riet
,
H. H.
Fang
,
S.
Adjokatse
,
S.
Kahmann
, and
M. A.
Loi
, “
Influence of morphology on photoluminescence properties of methylammonium lead tribromide films
,”
J. Lumin.
220
,
117033
(
2020
).
46.
H. H.
Fang
,
F.
Wang
,
S.
Adjokatse
,
N.
Zhao
, and
M. A.
Loi
, “
Photoluminescence enhancement in formamidinium lead iodide thin films
,”
Adv. Funct. Mater.
26
,
4653
(
2016
).
47.
S.
Shao
,
M.
Abdu-Aguye
,
T. S.
Sherkar
,
H. H.
Fang
,
S.
Adjokatse
,
G.
ten Brink
,
B. J.
Kooi
,
L. J. A.
Koster
, and
M. A.
Loi
, “
The effect of the microstructure on trap-assisted recombination and light soaking phenomenon in hybrid perovskite solar cells
,”
Adv. Funct. Mater.
26
,
8094
(
2016
).
48.
W.
Ke
,
I.
Spanopoulos
,
Q.
Tu
,
I.
Hadar
,
X.
Li
,
G. S.
Shekhawat
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
Ethylenediammonium-based ‘Hollow’ Pb/Sn perovskites with ideal band gap yield solar cells with higher efficiency and stability
,”
J. Am. Chem. Soc.
141
,
8627
(
2019
).
49.
Z.
Jiang
, “
GIXSGUI: A MATLAB toolbox for grazing-incidence x-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films
,”
J. Appl. Crystallogr.
48
,
917
(
2015
).

Supplementary Material

You do not currently have access to this content.