Artificial intelligent skins hold the potential to revolutionize artificial intelligence, health monitoring, soft robotics, biomedicine, flexible, and wearable electronics. Present artificial skins can be characterized into electronic skins (e-skins) that convert external stimuli into electrical signals and photonic skins (p-skins) that convert deformations into intuitive optical feedback. Merging both electronic and photonic functions in a single skin is highly desirable, but challenging and remains yet unexplored. We report herein a brand-new type of artificial intelligent skin, an optoelectronic skin (o-skin), which combines the advantages of both e-skins and p-skins in a single skin device based on one-dimensional photonic crystal-based hydrogels. Taking advantage of its anisotropic characteristics, the resulting o-skin can easily distinguish vector stimuli such as stress type and movement direction to meet the needs of multi-dimensional perception. Furthermore, the o-skin also demonstrates advanced functions such as full-color displays and intelligent response to the environment in the form of self-adaptive camouflage. This work represents a substantial advance in using the molecular engineering strategy to achieve artificial intelligent skins with multiple anisotropic responses that can be integrated on the skin of a soft body to endow superior functions, just like the natural organisms that inspire us.

1.
T.
Cheng
,
Y. Z.
Zhang
,
W.-Y.
Lai
, and
W.
Huang
, “
Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability
,”
Adv. Mater.
27
(
22
),
3349
3376
(
2015
).
2.
D. D.
Li
,
W.-Y.
Lai
,
Y.-Z.
Zhang
, and
W.
Huang
, “
Printable transparent conductive films for flexible electronics
,”
Adv. Mater.
30
(
10
),
1704738
(
2018
).
3.
L.
Gu
,
H. F.
Shi
,
L. F.
Bian
,
M. X.
Gu
,
K.
Ling
,
X.
Wang
,
H. L.
Ma
,
S. Z.
Cai
,
W. H.
Ning
,
L. S.
Fu
,
H.
Wang
,
S.
Wang
,
Y. R.
Gao
,
W.
Yao
,
F. W.
Huo
,
Y. T.
Tao
,
Z. F.
An
,
X. G.
Liu
, and
W.
Huang
, “
Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal
,”
Nat. Photonics
13
(
6
),
406
411
(
2019
).
4.
C. X.
Bao
,
W. D.
Xu
,
J.
Yang
,
S.
Bai
,
P. P.
Teng
,
Y.
Yang
,
J. P.
Wang
,
N.
Zhao
,
W. J.
Zhang
,
W.
Huang
, and
F.
Gao
, “
Bidirectional optical signal transmission between two identical devices using perovskite diodes
,”
Nat. Electron.
3
(
3
),
156
164
(
2020
).
5.
W.
Hui
,
L. F.
Chao
,
H.
Lu
,
F.
Xia
,
Q.
Wei
,
Z. H.
Su
,
T. T.
Niu
,
L.
Tao
,
B.
Du
,
D. L.
Li
,
Y.
Wang
,
H.
Dong
,
S. W.
Zuo
,
B.
Li
,
W.
Shi
,
X. Q.
Ran
,
P.
Li
,
H.
Zhang
,
Z. B.
Wu
,
C. X.
Ran
,
L.
Song
,
G. C.
Xing
,
X. Y.
Gao
,
J.
Zhang
,
Y. D.
Xia
,
Y. H.
Chen
, and
W.
Huang
, “
Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity
,”
Science
371
(
6536
),
1359
1364
(
2021
).
6.
Y.
Cao
,
N. N.
Wang
,
H.
Tian
,
J. S.
Guo
,
Y. Q.
Wei
,
H.
Chen
,
Y. F.
Miao
,
W.
Zou
,
K.
Pan
,
Y. R.
He
,
H.
Cao
,
Y.
Ke
,
M. M.
Xu
,
Y.
Wang
,
M.
Yang
,
K.
Du
,
Z. W.
Fu
,
D. C.
Kong
,
D. X.
Dai
,
Y. Z.
Jin
,
G. Q.
Li
,
H.
Li
,
Q. M.
Peng
,
J. P.
Wang
, and
W.
Huang
, “
Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures
,”
Nature
562
(
7726
),
249
253
(
2018
).
7.
M.
Zhu
,
Z.
Zhang
,
Q. F.
Shi
,
T.
He
,
H.
Liu
,
T.
Chen
, and
C. K.
Lee
, “
Haptic-feedback smart glove as a creative human–machine interface (HMI) for virtual/augmented reality applications
,”
Sci. Adv.
6
(
19
),
eaaz8693
(
2020
).
8.
Z. Y.
Lei
and
P. Y.
Wu
, “
A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities
,”
Nat. Commun.
9
,
1134
(
2018
).
9.
M.
Khatib
,
O.
Zohar
,
W.
Saliba
, and
H.
Haick
, “
Multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self‐healing in designated locations
,”
Adv. Mater.
32
(
17
),
2000246
(
2020
).
10.
R.
Dahiya
, “
E-skin: From humanoids to humans
,”
Proc. IEEE
107
(
2
),
247
252
(
2019
).
11.
I.
You
,
B.
Kim
,
J.
Park
,
K.
Koh
,
S.
Shin
,
S.
Jung
, and
U.
Jeong
, “
Stretchable e-skin apexcardiogram sensor
,”
Adv. Mater.
28
(
30
),
6359
6364
(
2016
).
12.
X.
Peng
,
K.
Dong
,
C. Y.
Ye
,
Y.
Jiang
,
S. Y.
Zhai
,
R. W.
Cheng
,
D.
Liu
,
X. P.
Gao
,
J.
Wang
, and
Z. L.
Wang
, “
A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators
,”
Sci. Adv.
6
(
26
),
eaba9624
(
2020
).
13.
B.
Shih
,
D.
Shah
,
J.
Li
,
T. G.
Thuruthel
,
Y.-L.
Park
,
F.
Iida
,
Z.
Bao
,
R.
Kramer-Bottiglio
, and
M. T.
Tolley
, “
Electronic skins and machine learning for intelligent soft robots
,”
Sci. Robot.
5
(
41
),
eaaz9239
(
2020
).
14.
H. R.
Lee
,
C. C.
Kim
, and
J.-Y.
Sun
, “
Stretchable ionics—A promising candidate for upcoming wearable devices
,”
Adv. Mater.
30
(
42
),
1704403
(
2018
).
15.
C.
Yang
and
Z. G.
Suo
, “
Hydrogel ionotronics
,”
Nat. Rev. Mater.
3
(
6
),
125
142
(
2018
).
16.
M. A.
Darabi
,
A.
Khosrozadeh
,
R.
Mbeleck
,
Y. Q.
Liu
,
Q.
Chang
,
J. Z.
Jiang
,
J.
Cai
,
Q.
Wang
,
G. X.
Luo
, and
M.
Xing
, “
Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability
,”
Adv. Mater.
29
(
31
),
1700533
(
2017
).
17.
Y.
Jin
,
Y. L.
Lin
,
A. D.
Kiani
,
I.
Joshipura
,
M. Q. D.
Ge
, and
M.
Dickeye
, “
Materials tactile logic via innervated soft thermochromic elastomers
,”
Nat. Commun.
10
,
4187
(
2019
).
18.
B.
Zuo
,
M.
Wang
,
B. P.
Lin
, and
H.
Yang
, “
Visible and infrared three-wavelength modulated multi-directional actuators
,”
Nat. Commun.
10
,
4539
(
2019
).
19.
H. S.
Kang
,
S. W.
Han
,
C.
Park
,
S. W.
Lee
,
H.
Eoh
,
J.
Baek
,
D.-G.
Shin
,
T. H.
Park
,
J.
Huh
,
H.
Lee
,
D-. E.
Kim
,
D. Y.
Ryu
,
E. L.
Thomas
,
W.-G.
Koh
, and
C.
Park
, “
3D touchless multiorder reflection structural color sensing display
,”
Sci. Adv.
6
(
30
),
eabb5769
(
2020
).
20.
M. L.
Hammock
,
A.
Chortos
,
B. C.
Tee
,
J. B.
Tok
, and
Z. N.
Bao
, “
25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress
,”
Adv. Mater.
25
(
2
),
5997
6038
(
2013
).
21.
C.
Wong
,
B.
Lo
, and
G.-Z.
Yang
, “
Wearable sensing for solid biomechanics: A review
,”
IEEE Sens. J.
15
(
5
),
2747
2760
(
2015
).
22.
M.
Clementine
,
M. N.
Boutry
,
J.
Mikael
,
V.
Orestis
,
C.
Alex
,
K.
Oussama
, and
Z. N.
Bao
, “
A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics
,”
Sci. Robot.
3
(
24
),
eaau6914
(
2018
).
23.
J.
Ramon-Azcon
,
S.
Ahadian
,
M.
Estili
,
X. B.
Liang
,
S.
Ostrovidov
,
H.
Kaji
,
H.
Shiku
,
M.
Ramalingam
,
K.
Nakajima
,
Y.
Sakka
,
A.
Khademhosseini
, and
T.
Matsue
, “
Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers
,”
Adv. Mater.
25
(
29
),
4028
4034
(
2013
).
24.
M. J.
Liu
,
Y.
Ishida
,
Y.
Ebina
,
T.
Sasaki
,
T.
Hikima
,
M.
Takata
, and
T.
Aida
, “
An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets
,”
Nature
517
(
7532
),
68
72
(
2015
).
25.
W.
Kong
,
C.
Wang
,
C.
Jia
,
Y.
Kuang
,
G.
Pastel
,
C.
Chen
,
G. G.
Chen
,
S. M.
He
,
H.
Huang
,
J. H.
Zhang
,
S.
Wang
, and
L. B.
Hu
, “
Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels
,”
Adv. Mater.
30
(
39
),
1801934
(
2018
).
26.
H.
Arslan
,
A.
Nojoomi
,
J.
Jeon
, and
K.
Yum
, “
3D printing of anisotropic hydrogels with bioinspired motion
,”
Adv. Sci.
6
(
2
),
1800703
(
2019
).
27.
O.
Kose
,
A.
Tran
,
L.
Lewis
,
W. Y.
Hamad
, and
M. J.
MacLachlan
, “
Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics
,”
Nat. Commun.
10
,
510
(
2019
).
28.
M.
Qin
,
M.
Sun
,
R.
Bai
,
Y.
Mao
,
X.
Qian
,
D.
Sikka
, and
X.
He
, “
Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing
,”
Adv. Mater.
30
(
21
),
1800468
(
2018
).
29.
J.
Niu
,
D.
Wang
,
H. L.
Qin
,
X.
Xiong
,
P. L.
Tan
,
Y. Y.
Li
,
R.
Liu
,
X. X.
Lu
,
J.
Wu
,
T.
Zhang
,
W. H.
Ni
, and
J.
Jin
, “
Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes
,”
Nat. Commun.
5
,
3313
(
2014
).
30.
K.
Sano
,
Y.
Ishida
, and
T.
Aida
, “
Synthesis of anisotropic hydrogels and their applications
,”
Angew. Chem. Int. Ed.
57
(
10
),
2532
2543
(
2018
).
31.
C. H.
Zhang
,
H. Y.
Dong
,
C.
Zhang
,
Y. Q.
Fan
,
J. N.
Yao
, and
Y. S.
Zhao
, “
Photonic skins based on flexible organic microlaser arrays
,”
Sci. Adv.
7
(
31
),
eabh3530
(
2021
).
32.
F. F.
Fu
,
L. R.
Shang
,
Z. Y.
Chen
,
Y. R.
Yu
, and
Y. J.
Zhao
, “
Bioinspired living structural color hydrogels
,”
Sci. Robot.
3
(
16
),
eaar8580
(
2018
).
33.
Y.
Wang
,
Y. R.
Yu
,
J. H.
Guo
,
Z. H.
Zhang
,
X. X.
Zhang
, and
Y. J.
Zhao
, “
Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics
,”
Adv. Funct. Mater.
30
(
32
),
2000151
(
2020
).
34.
Y.
Wang
,
L. R.
Shang
,
G. P.
Chen
,
L. Y.
Sun
,
X. X.
Zhang
, and
Y. J.
Zhao
, “
Bioinspired structural color patch with anisotropic surface adhesion
,”
Sci. Adv.
6
(
4
),
eaax8258
(
2020
).
35.
K.
Zhong
,
J. Q.
Li
,
L. W.
Liu
,
S. V.
Cleuvenbergen
,
K.
Song
, and
K.
Clays
, “
Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals
,”
Adv. Mater.
30
(
25
),
1707246
(
2018
).
36.
M. A.
Haque
,
G.
Kamita
,
T.
Kurokawa
,
K.
Tsujii
, and
J. P.
Gong
, “
Unidirectional alignment of lamellar bilayer in hydrogel: One-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color
,”
Adv. Mater.
22
(
45
),
5110
5114
(
2010
).
37.
Y. F.
Yue
,
M. A.
Haque
,
T.
Kurokawa
,
T.
Nakajima
, and
J. P.
Gong
, “
Lamellar hydrogels with high toughness and ternary tunable photonic stop-band
,”
Adv. Mater.
25
(
22
),
3106
3110
(
2013
).
38.
Y. F.
Yue
,
T.
Kurokawa
,
M. A.
Haque
,
T.
Nakajima
,
T.
Nonoyama
,
X. F.
Li
,
I.
Kajuwara
, and
J. P.
Gong
, “
Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels
,”
Nat. Commun.
5
,
4659
(
2014
).
39.
A.
Cirillo
,
P.
Cirillo
,
G.
De Maria
,
C.
Natale
, and
S.
Pirozzi
, “
An artificial skin based on optoelectronic technology
,”
Sens. Actuators A: Phys.
212
,
110
122
(
2014
).
40.
H.-J.
Kim
,
Y. X.
Jin
,
S.
Achavananthadith
,
R. Z.
Lin
, and
J. S.
Ho
, “
A wireless optoelectronic skin patch for light delivery and thermal monitoring
,”
iScience
24
(
11
),
103284
(
2021
).
41.
G.
Gang
,
L.
Yao
,
X. Y.
Qu
,
W.
Zhao
,
Y. F.
Ren
,
W. J.
Wang
,
W.
Huang
, and
X. C.
Dong
, “
Muscle-inspired self-healing hydrogels for strain and temperature sensor
,”
ACS Nano
14
,
218
228
(
2020
).

Supplementary Material

You do not currently have access to this content.