Composite lithium metal anodes with three-dimensional (3D) conductive fabric present great potential to be used in high-energy-density flexible batteries for next-generation wearable electronics. However, lithium dendrites at the top of the fabric anode increase the risk of separator piercing and, therefore, cause a high possibility of short circuits, especially when undergoing large mechanical deformation. To ensure the safe application of the flexible lithium metal batteries, we herein propose a 3D Janus current collector by a simple modification of the bottom side of carbon fabric (CF) with a lithiophilic Au layer to construct highly flexible, stable, and safe Li metal anodes. The Janus Au layer can guide an orientated deposition of Li to the bottom of the CF. The lithium dendrite problem can be largely alleviated due to the lithium-free interface between the anode and separator, and meanwhile, the porous upper skeleton of the CF also provides large space to buffer the volume expansion of lithium metal. The resulting composite lithium metal anode exhibits a significant improvement in the life cycle (∼two fold) compared to the traditional top deposition of lithium metal. More importantly, assembled full batteries using the Janus anode structure exhibit high stability and safety during severe mechanical deformation, indicating the opportunity of the orientated deposition strategy to be used in future flexible and wearable electronics.

1.
X.
Chi
,
M.
Li
,
J.
Di
,
P.
Bai
,
L.
Song
,
X.
Wang
,
F.
Li
,
S.
Liang
,
J.
Xu
, and
J.
Yu
, “
A highly stable and flexible zeolite electrolyte solid-state Li-air battery
,”
Nature
592
(
7855
),
551
557
(
2021
).
2.
J.
Chang
,
Q.
Huang
,
Y.
Gao
, and
Z.
Zheng
, “
Pathways of developing high-energy-density flexible lithium batteries
,”
Adv. Mater.
33
(
46
),
2004419
(
2021
).
3.
S. H.
Kim
,
N. Y.
Kim
,
U. J.
Choe
,
J. M.
Kim
,
Y. G.
Lee
, and
S. Y.
Lee
, “
Ultrahigh energy density flexible lithium metal full cells based on conductive fibrous skeletons
,”
Adv. Energy Mater.
11
(
24
),
2100531
(
2021
).
4.
B.
Yang
,
Y.
Xiong
,
K.
Ma
,
S.
Liu
, and
X.
Tao
, “
Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion
,”
EcoMat
2
(
4
),
e12054
(
2020
).
5.
Z.
Wang
,
X.
Li
,
Z.
Yang
,
H.
Guo
,
Y. J.
Tan
,
G. J.
Susanto
,
W.
Cheng
,
W.
Yang
, and
B. C. K.
Tee
, “
Fully transient stretchable fruit-based battery as safe and environmentally friendly power source for wearable electronics
,”
EcoMat
3
(
1
),
e12073
(
2021
).
6.
J.
Chang
,
H.
Hu
,
J.
Shang
,
R.
Fang
,
D.
Shou
,
C.
Xie
,
Y.
Gao
,
Y.
Yang
,
Q. N.
Zhuang
,
X.
Lu
,
Y. K.
Zhang
,
F.
Li
, and
Z.
Zheng
, “
Rational design of Li-wicking hosts for ultrafast fabrication of flexible and stable lithium metal anodes
,”
Small
18
,
2105308
(
2022
).
7.
Y.
Zhu
,
M.
Yang
,
Q.
Huang
,
D.
Wang
,
R.
Yu
,
J.
Wang
,
Z.
Zheng
, and
D.
Wang
, “
V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries
,”
Adv. Mater.
32
(
7
),
1906205
(
2020
).
8.
C.
Jiang
,
L.
Xiang
,
S.
Miao
,
L.
Shi
,
D.
Xie
,
J.
Yan
,
Z.
Zheng
,
X.
Zhang
, and
Y.
Tang
, “
Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries
,”
Adv. Mater.
32
(
17
),
1908470
(
2020
).
9.
C.
Niu
,
H.
Pan
,
W.
Xu
,
J.
Xiao
,
J. G.
Zhang
,
L.
Luo
,
C.
Wang
,
D.
Mei
,
J.
Meng
,
X.
Wang
,
Z.
Liu
,
L. Q.
Mai
, and
J.
Liu
, “
Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
,”
Nat. Nanotechnol.
14
(
6
),
594
601
(
2019
).
10.
L.
Fan
,
S.
Li
,
L.
Liu
,
W.
Zhang
,
L.
Gao
,
Y.
Fu
,
F.
Chen
,
J.
Li
,
H. L.
Zhuang
, and
Y.
Lu
, “
Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase
,”
Adv. Energy Mater.
8
(
33
),
1802350
(
2018
).
11.
B.
Thirumalraj
,
T. T.
Hagos
,
C. J.
Huang
,
M. A.
Teshager
,
J. H.
Cheng
,
W. N.
Su
, and
B. J.
Hwang
, “
Nucleation and growth mechanism of lithium metal electroplating
,”
J. Am. Chem. Soc.
141
(
46
),
18612
18623
(
2019
).
12.
Y.
Deng
,
M.
Wang
,
C.
Fan
,
C.
Luo
,
Y.
Gao
,
C.
Zhou
, and
J.
Gao
, “
Strategy to enhance the cycling stability of the metallic lithium anode in Li-metal batteries
,”
Nano Lett.
21
(
4
),
1896
1901
(
2021
).
13.
D.
Lin
,
Y.
Liu
,
Z.
Liang
,
H. W.
Lee
,
J.
Sun
,
H.
Wang
,
K.
Yan
,
J.
Xie
, and
Y.
Cui
, “
Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
,”
Nat. Nanotechnol.
11
(
7
),
626
632
(
2016
).
14.
J.
Liu
,
H.
Yuan
,
X.
Tao
,
Y.
Liang
,
S. J.
Yang
,
J. Q.
Huang
,
T. Q.
Yuan
,
M. M.
Titirici
, and
Q.
Zhang
, “
Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries
,”
EcoMat
2
(
1
),
e12019
(
2020
).
15.
S.
Park
,
H. J.
Jin
, and
Y. S.
Yun
, “
Advances in the design of 3D-structured electrode materials for lithium-metal anodes
,”
Adv. Mater.
32
(
51
),
2002193
(
2020
).
16.
C.
Zhang
,
W.
Lv
,
G.
Zhou
,
Z.
Huang
,
Y.
Zhang
,
R.
Lyu
,
H.
Wu
,
Q.
Yun
,
F.
Kang
, and
Q. H.
Yang
, “
Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries
,”
Adv. Energy Mater.
8
(
21
),
1703404
(
2018
).
17.
C.
Yan
,
X. B.
Cheng
,
Y.
Tian
,
X.
Chen
,
X. Q.
Zhang
,
W. J.
Li
,
J. Q.
Huang
, and
Q.
Zhang
, “
Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition
,”
Adv. Mater.
30
(
25
),
1707629
(
2018
).
18.
S.
Li
,
M.
Jiang
,
Y.
Xie
,
H.
Xu
,
J.
Jia
, and
J.
Li
, “
Developing high-performance lithium metal anode in liquid electrolytes: Challenges and progress
,”
Adv. Mater.
30
(
17
),
1706375
(
2018
).
19.
H. J.
Peng
,
J. Q.
Huang
, and
Q.
Zhang
, “
A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries
,”
Chem. Soc. Rev.
46
(
17
),
5237
5288
(
2017
).
20.
K. K.
Fu
,
J.
Cheng
,
T.
Li
, and
L.
Hu
, “
Flexible batteries: From mechanics to devices
,”
ACS Energy Lett.
1
(
5
),
1065
1079
(
2016
).
21.
A.
Wang
,
S.
Tang
,
D.
Kong
,
S.
Liu
,
K.
Chiou
,
L.
Zhi
,
J.
Huang
,
Y. Y.
Xia
, and
J.
Luo
, “
Bending-tolerant anodes for lithium-metal batteries
,”
Adv. Mater.
30
(
1
),
1703891
(
2018
).
22.
Y.
Gao
,
Q.
Guo
,
Q.
Zhang
,
Y.
Cui
, and
Z.
Zheng
, “
Fibrous materials for flexible Li-S battery
,”
Adv. Energy Mater.
11
(
15
),
2002580
(
2021
).
23.
J.
Chang
,
J.
Shang
,
Y.
Sun
,
L. K.
Ono
,
D.
Wang
,
Z.
Ma
,
Q.
Huang
,
D.
Chen
,
G.
Liu
,
Y.
Cui
,
Y.
Qi
, and
Z.
Zheng
, “
Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium
,”
Nat. Commun.
9
(
1
),
4480
(
2018
).
24.
J.
Chang
,
Q.
Huang
, and
Z.
Zheng
, “
A figure of merit for flexible batteries
,”
Joule
4
(
7
),
1346
1349
(
2020
).
25.
Y.
Gao
,
C.
Xie
, and
Z.
Zheng
, “
Textile composite electrodes for flexible batteries and supercapacitors: Opportunities and challenges
,”
Adv. Energy Mater.
11
(
3
),
2002838
(
2020
).
26.
Y.
An
,
C.
Luo
,
D.
Yao
,
S.
Wen
,
P.
Zheng
,
S.
Chi
,
Y.
Yang
,
J.
Chang
,
Y.
Deng
, and
C.
Wang
, “
Natural cocoons enabling flexible and stable fabric lithium-sulfur full batteries
,”
Nano-Micro Lett.
13
,
84
(
2021
).
27.
T.
Zhou
,
J.
Shen
,
Z.
Wang
,
J.
Liu
,
R.
Hu
,
L.
Ouyang
,
Y.
Feng
,
H.
Liu
,
Y.
Yu
, and
M.
Zhu
, “
Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode
,”
Adv. Funct. Mater.
30
(
14
),
1909159
(
2020
).
28.
T. S.
Wang
,
X.
Liu
,
Y.
Wang
, and
L. Z.
Fan
, “
High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries
,”
Adv. Funct. Mater.
31
(
2
),
2001973
(
2020
).
29.
Y.
Gao
,
H.
Hu
,
J.
Chang
,
Q.
Huang
,
Q.
Zhuang
,
P.
Li
, and
Z.
Zheng
, “
Realizing high-energy and stable wire-type batteries with flexible lithium-metal composite yarns
,”
Adv. Energy Mater.
11
(
40
),
2101809
(
2021
).
30.
J.
Pu
,
J.
Li
,
K.
Zhang
,
T.
Zhang
,
C.
Li
,
H.
Ma
,
J.
Zhu
,
P. V.
Braun
,
J.
Lu
, and
H.
Zhang
, “
Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits
,”
Nat. Commun.
10
(
1
),
1896
(
2019
).
31.
L. L.
Lu
,
J.
Ge
,
J. N.
Yang
,
S. M.
Chen
,
H. B.
Yao
,
F.
Zhou
, and
S. H.
Yu
, “
Free-standing copper nanowire network current collector for improving lithium anode performance
,”
Nano Lett.
16
(
7
),
4431
4437
(
2016
).
32.
K.
Yan
,
Z.
Lu
,
H. W.
Lee
,
F.
Xiong
,
P. C.
Hsu
,
Y.
Li
,
J.
Zhao
,
S.
Chu
, and
Y.
Cui
, “
Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
,”
Nat. Energy
1
(
3
),
16010
(
2016
).
33.
C.
Yang
,
Y.
Yao
,
S.
He
,
H.
Xie
,
E.
Hitz
, and
L.
Hu
, “
Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode
,”
Adv. Mater.
29
(
38
),
1702714
(
2017
).
34.
M.
Wan
,
S.
Kang
,
L.
Wang
,
H. W.
Lee
,
G. W.
Zheng
,
Y.
Cui
, and
Y.
Sun
, “
Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode
,”
Nat. Commun.
11
(
1
),
829
(
2020
).
35.
B.
Hong
,
H.
Fan
,
X. B.
Cheng
,
X.
Yan
,
S.
Hong
,
Q.
Dong
,
C.
Gao
,
Z.
Zhang
,
Y.
Lai
, and
Q.
Zhang
, “
Spatially uniform deposition of lithium metal in 3D Janus hosts
,”
Energy Stor. Mater.
16
(
1
),
259
266
(
2019
).
36.
H.
Lin
,
Z.
Zhang
,
Y.
Wang
,
X. L.
Zhang
,
Z.
Tie
, and
Z.
Jin
, “
Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes
,”
Adv. Funct. Mater.
31
(
30
),
2102735
(
2021
).
37.
S. S.
Chi
,
Y.
Liu
,
W. L.
Song
,
L. Z.
Fan
, and
Q.
Zhang
, “
Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode
,”
Adv. Funct. Mater.
27
(
24
),
1700348
(
2017
).
38.
L.
Fan
,
H. L.
Zhuang
,
W.
Zhang
,
Y.
Fu
,
Z.
Liao
, and
Y.
Lu
, “
Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode
,”
Adv. Energy Mater.
8
(
15
),
1703360
(
2018
).
39.
F.
Guo
,
C.
Wu
,
H.
Chen
,
F.
Zhong
,
X.
Ai
,
H.
Yang
, and
J.
Qian
, “
Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode
,”
Energy Storage Mater.
24
,
635
643
(
2020
).
40.
Z.
Cao
,
B.
Li
, and
S.
Yang
, “
Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays
,”
Adv. Mater.
31
(
29
),
1901310
(
2019
).
41.
Y.
Lai
,
Y.
Zhao
,
W.
Cai
,
J.
Song
,
Y.
Jia
,
B.
Ding
, and
J.
Yan
, “
Constructing ionic gradient and lithiophilic interphase for high-rate Li-metal anode
,”
Small
15
(
47
),
1905171
(
2019
).

Supplementary Material

You do not currently have access to this content.