Deterministic solid state quantum light sources are considered key building blocks for future communication networks. While several proof-of-principle experiments of quantum communication using such sources have been realized, most of them required large setups—often involving liquid helium infrastructure or bulky closed-cycle cryotechnology. In this work, we report on the first quantum key distribution (QKD) testbed using a compact benchtop quantum dot single-photon source operating at telecom wavelengths. The plug&play device emits single-photon pulses at O-band wavelengths (1321 nm) and is based on a directly fiber-pigtailed deterministically fabricated quantum dot device integrated into a compact Stirling cryocooler. The Stirling is housed in a 19 in. rack module including all accessories required for stand-alone operation. Implemented in a simple QKD testbed emulating the BB84 protocol with polarization coding, we achieve an multiphoton suppression of g(2)(0)=0.10±0.01 and a raw key rate of up to (4.72±0.13) kHz using an external pump laser. In this setting, we further evaluate the performance of our source in terms of the quantum bit error ratios, secure key rates, and tolerable losses expected in full implementations of QKD while accounting for finite key size effects. Furthermore, we investigate the optimal settings for a two-dimensional temporal acceptance window applied on the receiver side, resulting in predicted tolerable losses up to 23.19 dB. Not least, we compare our results with previous proof-of-concept QKD experiments using quantum dot single-photon sources. Our study represents an important step forward in the development of fiber-based quantum-secured communication networks exploiting sub-Poissonian quantum light sources.

1.
E.
Waks
,
C.
Santori
, and
Y.
Yamamoto
, “
Security aspects of quantum key distribution with sub-Poisson light
,”
Phys. Rev. A
66
,
042315
(
2002
).
2.
H.-J.
Briegel
,
W.
Dür
,
J. I.
Cirac
, and
P.
Zoller
, “
Quantum repeaters: The role of imperfect local operations in quantum communication
,”
Phys. Rev. Lett.
81
,
5932
5935
(
1998
).
3.
I.
Aharonovich
,
D.
Englund
, and
M.
Toth
, “
Solid-state single-photon emitters
,”
Nat. Photonics
10
,
631
641
(
2016
).
4.
Y.
Arakawa
and
M. J.
Holmes
, “
Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview
,”
Appl. Phys. Rev.
7
,
021309
(
2020
).
5.
G.
Zhang
,
Y.
Cheng
,
J.-P.
Chou
, and
A.
Gali
, “
Material platforms for defect qubits and single-photon emitters
,”
Appl. Phys. Rev.
7
,
031308
(
2020
).
6.
T.
Miyazawa
,
K.
Takemoto
,
Y.
Nambu
,
S.
Miki
,
T.
Yamashita
,
H.
Terai
,
M.
Fujiwara
,
M.
Sasaki
,
Y.
Sakuma
,
M.
Takatsu
,
T.
Yamamoto
, and
Y.
Arakawa
, “
Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities
,”
Appl. Phys. Lett.
109
,
132106
(
2016
).
7.
L.
Schweickert
,
K. D.
Jöns
,
K. D.
Zeuner
,
S. F. C.
da Silva
,
H.
Huang
,
T.
Lettner
,
M.
Reindl
,
J.
Zichi
,
R.
Trotta
,
A.
Rastelli
, and
V.
Zwiller
, “
On-demand generation of background-free single photons from a solid-state source
,”
Appl. Phys. Lett.
112
,
093106
(
2018
).
8.
J.
Liu
,
R.
Su
,
Y.
Wei
,
B.
Yao
,
S. F. C.
da Silva
,
Y.
Yu
,
J.
Iles-Smith
,
K.
Srinivasan
,
A.
Rastelli
,
J.
Li
, and
X.
Wang
, “
A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability
,”
Nat. Nanotechnol.
14
,
586
593
(
2019
).
9.
H.
Wang
,
H.
Hu
,
T.-H.
Chung
,
J.
Qin
,
X.
Yang
,
J.-P.
Li
,
R.-Z.
Liu
,
H.-S.
Zhong
,
Y.-M.
He
,
X.
Ding
,
Y.-H.
Deng
,
Q.
Dai
,
Y.-H.
Huo
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability
,”
Phys. Rev. Lett.
122
,
113602
(
2019
).
10.
N.
Tomm
,
A.
Javadi
,
N. O.
Antoniadis
,
D.
Najer
,
M. C.
Löbl
,
A. R.
Korsch
,
R.
Schott
,
S. R.
Valentin
,
A. D.
Wieck
,
A.
Ludwig
, and
R. J.
Warburton
, “
A bright and fast source of coherent single photons
,”
Nat. Nanotechnol.
16
,
399
403
(
2021
).
11.
A.
Schlehahn
,
A.
Thoma
,
P.
Munnelly
,
M.
Kamp
,
S.
Höfling
,
T.
Heindel
,
C.
Schneider
, and
S.
Reitzenstein
, “
An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency
,”
APL Photonics
1
,
011301
(
2016
).
12.
G.
Shooter
,
Z.-H.
Xiang
,
J. R. A.
Müller
,
J.
Skiba-Szymanska
,
J.
Huwer
,
J.
Griffiths
,
T.
Mitchell
,
M.
Anderson
,
T.
Müller
,
A. B.
Krysa
,
R. M.
Stevenson
,
J.
Heffernan
,
D. A.
Ritchie
, and
A. J.
Shields
, “
1 GHz clocked distribution of electrically generated entangled photon pairs
,”
Opt. Express
28
,
36838
36848
(
2020
).
13.
C. H.
Bennett
,
F.
Bessette
,
G.
Brassard
,
L.
Salvail
, and
J.
Smolin
, “
Experimental quantum cryptography
,”
J. Cryptol.
5
,
3
28
(
1992
).
14.
X.-B.
Wang
, “
Beating the photon-number-splitting attack in practical quantum cryptography
,”
Phys. Rev. Lett.
94
,
230503
(
2005
).
15.
H.-K.
Lo
,
X.
Ma
, and
K.
Chen
, “
Decoy state quantum key distribution
,”
Phys. Rev. Lett.
94
,
230504
(
2005
).
16.
A.
Boaron
,
G.
Boso
,
D.
Rusca
,
C.
Vulliez
,
C.
Autebert
,
M.
Caloz
,
M.
Perrenoud
,
G.
Gras
,
F.
Bussières
,
M.-J.
Li
,
D.
Nolan
,
A.
Martin
, and
H.
Zbinden
, “
Secure quantum key distribution over 421 km of optical fiber
,”
Phys. Rev. Lett.
121
,
190502
(
2018
).
17.
A.
Badolato
,
K.
Hennessy
,
M.
Atatüre
,
J.
Dreiser
,
E.
Hu
,
P. M.
Petroff
, and
A.
Imamoğlu
, “
Deterministic coupling of single quantum dots to single nanocavity modes
,”
Science
308
,
1158
1161
(
2005
).
18.
A.
Dousse
,
L.
Lanco
,
J.
Suffczyński
,
E.
Semenova
,
A.
Miard
,
A.
Lemaître
,
I.
Sagnes
,
C.
Roblin
,
J.
Bloch
, and
P.
Senellart
, “
Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography
,”
Phys. Rev. Lett.
101
,
267404
(
2008
).
19.
M.
Gschrey
,
F.
Gericke
,
A.
Schüßler
,
R.
Schmidt
,
J.-H.
Schulze
,
T.
Heindel
,
S.
Rodt
,
A.
Strittmatter
, and
S.
Reitzenstein
, “
In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy
,”
Appl. Phys. Lett.
102
,
251113
(
2013
).
20.
M.
Gschrey
,
A.
Thoma
,
P.
Schnauber
,
M.
Seifried
,
R.
Schmidt
,
B.
Wohlfeil
,
L.
Krüger
,
J. H.
Schulze
,
T.
Heindel
,
S.
Burger
,
F.
Schmidt
,
A.
Strittmatter
,
S.
Rodt
, and
S.
Reitzenstein
, “
Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography
,”
Nat. Commun.
6
,
7662
(
2015
).
21.
N.
Somaschi
,
V.
Giesz
,
L.
De Santis
,
J. C.
Loredo
,
M. P.
Almeida
,
G.
Hornecker
,
S. L.
Portalupi
,
T.
Grange
,
C.
Antón
,
J.
Demory
,
C.
Gómez
,
I.
Sagnes
,
N. D.
Lanzillotti-Kimura
,
A.
Lemaítre
,
A.
Auffeves
,
A. G.
White
,
L.
Lanco
, and
P.
Senellart
, “
Near-optimal single-photon sources in the solid state
,”
Nat. Photonics
10
,
340
345
(
2016
).
22.
T.
Heindel
,
A.
Thoma
,
M.
von Helversen
,
M.
Schmidt
,
A.
Schlehahn
,
M.
Gschrey
,
P.
Schnauber
,
J. H.
Schulze
,
A.
Strittmatter
,
J.
Beyer
,
S.
Rodt
,
A.
Carmele
,
A.
Knorr
, and
S.
Reitzenstein
, “
A bright triggered twin-photon source in the solid state
,”
Nat. Commun.
8
,
14870
(
2017
).
23.
S.
Rodt
,
S.
Reitzenstein
, and
T.
Heindel
, “
Deterministically fabricated solid-state quantum-light sources
,”
J. Phys. Condens. Matter
32
,
153003
(
2020
).
24.
E.
Waks
,
K.
Inoue
,
C.
Santori
,
D.
Fattal
,
J.
Vuckovic
,
G. S.
Solomon
, and
Y.
Yamamoto
, “
Quantum cryptography with a photon turnstile
,”
Nature
420
,
762
(
2002
).
25.
P. M.
Intallura
,
M. B.
Ward
,
O. Z.
Karimov
,
Z. L.
Yuan
,
P.
See
,
P.
Atkinson
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Quantum communication using single photons from a semiconductor quantum dot emitting at a telecommunication wavelength
,”
J. Opt. A
11
,
054005
(
2009
).
26.
R. J.
Collins
,
P. J.
Clarke
,
V.
Fernández
,
K. J.
Gordon
,
M. N.
Makhonin
,
J. A.
Timpson
,
A.
Tahraoui
,
M.
Hopkinson
,
A. M.
Fox
,
M. S.
Skolnick
, and
G. S.
Buller
, “
Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source
,”
J. Appl. Phys.
107
,
073102
(
2010
).
27.
T.
Heindel
,
C. A.
Kessler
,
M.
Rau
,
C.
Schneider
,
M.
Fürst
,
F.
Hargart
,
W.-M.
Schulz
,
M.
Eichfelder
,
R.
Roßbach
,
S.
Nauerth
,
M.
Lermer
,
H.
Weier
,
M.
Jetter
,
M.
Kamp
,
S.
Reitzenstein
,
S.
Höfling
,
P.
Michler
,
H.
Weinfurter
, and
A.
Forchel
, “
Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range
,”
New J. Phys.
14
,
083001
(
2012
).
28.
M.
Rau
,
T.
Heindel
,
S.
Unsleber
,
T.
Braun
,
J.
Fischer
,
S.
Frick
,
S.
Nauerth
,
C.
Schneider
,
G.
Vest
,
S.
Reitzenstein
,
M.
Kamp
,
A.
Forchel
,
S.
Höfling
, and
H.
Weinfurter
, “
Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—A proof of principle experiment
,”
New J. Phys.
16
,
043003
(
2014
).
29.
K.
Takemoto
,
Y.
Nambu
,
T.
Miyazawa
,
Y.
Sakuma
,
T.
Yamamoto
,
S.
Yorozu
, and
Y.
Arakawa
, “
Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors
,”
Sci. Rep.
5
,
14383
(
2015
).
30.
B.
Dzurnak
,
R. M.
Stevenson
,
J.
Nilsson
,
J. F.
Dynes
,
Z. L.
Yuan
,
J.
Skiba-Szymanska
,
I.
Farrer
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Quantum key distribution with an entangled light emitting diode
,”
Appl. Phys. Lett.
107
,
261101
(
2015
).
31.
F. B.
Basset
,
M.
Valeri
,
E.
Roccia
,
V.
Muredda
,
D.
Poderini
,
J.
Neuwirth
,
N.
Spagnolo
,
M. B.
Rota
,
G.
Carvacho
,
F.
Sciarrino
, and
R.
Trotta
, “
Quantum key distribution with entangled photons generated on demand by a quantum dot
,”
Sci. Adv.
7
,
eabe6379
(
2021
).
32.
C.
Schimpf
,
M.
Reindl
,
D.
Huber
,
B.
Lehner
,
S. F. C. D.
Silva
,
S.
Manna
,
M.
Vyvlecka
,
P.
Walther
, and
A.
Rastelli
, “
Quantum cryptography with highly entangled photons from semiconductor quantum dots
,”
Sci. Adv.
7
,
eabe8905
(
2021
).
33.
D. A.
Vajner
,
L.
Rickert
,
T.
Gao
,
K.
Kaymazlar
, and
T.
Heindel
, “
Quantum communication using semiconductor quantum dot
s,” arXiv:2108.13877 (
2021
).
34.
C. H.
Bennett
and
G.
Brassard
, “
Quantum cryptography: Public key distribution and coin tossing
,” in
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing
, Bangalore, India (
IEEE
,
1984
), pp.
175
179
.
35.
V.
Scarani
,
H.
Bechmann-Pasquinucci
,
N. J.
Cerf
,
M.
Dušek
,
N.
Lütkenhaus
, and
M.
Peev
, “
The security of practical quantum key distribution
,”
Rev. Mod. Phys.
81
,
1301
1350
(
2009
).
36.
X.
Xu
,
I.
Toft
,
R. T.
Phillips
,
J.
Mar
,
K.
Hammura
, and
D. A.
Williams
, “‘
Plug and play’ single-photon sources
,”
Appl. Phys. Lett.
90
,
061103
(
2007
).
37.
D.
Cadeddu
,
J.
Teissier
,
F. R.
Braakman
,
N.
Gregersen
,
P.
Stepanov
,
J.-M.
Gérard
,
J.
Claudon
,
R. J.
Warburton
,
M.
Poggio
, and
M.
Munsch
, “
A fiber-coupled quantum-dot on a photonic tip
,”
Appl. Phys. Lett.
108
,
011112
(
2016
).
38.
H.
Snijders
,
J.
Frey
,
J.
Norman
,
V.
Post
,
A.
Gossard
,
J.
Bowers
,
M.
van Exter
,
W.
Löffler
, and
D.
Bouwmeester
, “
Fiber-coupled cavity-QED source of identical single photons
,”
Phys. Rev. Appl.
9
,
031002
(
2018
).
39.
L.
Rickert
,
F.
Schröder
,
T.
Gao
,
C.
Schneider
,
S.
Höfling
, and
T.
Heindel
, “
Fiber-pigtailing quantum-dot cavity-enhanced light emitting diodes
,”
Appl. Phys. Lett.
119
,
131104
(
2021
).
40.
A.
Schlehahn
,
L.
Krüger
,
M.
Gschrey
,
J.-H.
Schulze
,
S.
Rodt
,
A.
Strittmatter
,
T.
Heindel
, and
S.
Reitzenstein
, “
Operating single quantum emitters with a compact stirling cryocooler
,”
Rev. Sci. Instrum.
86
,
013113
(
2015
).
41.
A.
Schlehahn
,
S.
Fischbach
,
R.
Schmidt
,
A.
Kaganskiy
,
A.
Strittmatter
,
S.
Rodt
,
T.
Heindel
, and
S.
Reitzenstein
, “
A stand-alone fiber-coupled single-photon source
,”
Sci. Rep.
8
,
1340
(
2018
).
42.
A.
Musiał
,
K.
Żołnacz
,
N.
Srocka
,
O.
Kravets
,
J.
Große
,
J.
Olszewski
,
K.
Poturaj
,
G.
Wójcik
,
P.
Mergo
,
K.
Dybka
,
M.
Dyrkacz
,
M.
Dłubek
,
K.
Lauritsen
,
A.
Bülter
,
P.-I.
Schneider
,
L.
Zschiedrich
,
S.
Burger
,
S.
Rodt
,
W.
Urbańczyk
,
G.
Sȩk
, and
S.
Reitzenstein
, “
Plug&play fiber-coupled 73 kHz single-photon source operating in the telecom O-band
,”
Adv. Quantum Technol.
3
,
2000018
(
2020
).
43.
F.
Guffarth
,
R.
Heitz
,
A.
Schliwa
,
O.
Stier
,
N. N.
Ledentsov
,
A. R.
Kovsh
,
V. M.
Ustinov
, and
D.
Bimberg
, “
Strain engineering of self-organized InAs quantum dots
,”
Phys. Rev. B
64
,
085305
(
2001
).
44.
K.
Żołnacz
,
A.
Musiał
,
N.
Srocka
,
J.
Große
,
M. J.
Schlösinger
,
P.-I.
Schneider
,
O.
Kravets
,
M.
Mikulicz
,
J.
Olszewski
,
K.
Poturaj
,
G.
Wójcik
,
P.
Mergo
,
K.
Dybka
,
M.
Dyrkacz
,
M.
Dłubek
,
S.
Rodt
,
S.
Burger
,
L.
Zschiedrich
,
G.
Sȩk
,
S.
Reitzenstein
, and
W.
Urbańczyk
, “
Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications
,”
Opt. Express
27
,
26772
26785
(
2019
).
45.
P.-I.
Schneider
,
N.
Srocka
,
S.
Rodt
,
L.
Zschiedrich
,
S.
Reitzenstein
, and
S.
Burger
, “
Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber
,”
Opt. Express
26
,
8479
8492
(
2018
).
46.
P.-I.
Schneider
,
X. G.
Santiago
,
V.
Soltwisch
,
M.
Hammerschmidt
,
S.
Burger
, and
C.
Rockstuhl
, “
Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction
,”
ACS Photonics
6
,
2726
2733
(
2019
).
47.
T.
Aichele
,
V.
Zwiller
, and
O.
Benson
, “
Visible single-photon generation from semiconductor quantum dots
,”
New J. Phys.
6
,
90
(
2004
).
48.
P. A.
Dalgarno
,
J.
McFarlane
,
D.
Brunner
,
R. W.
Lambert
,
B. D.
Gerardot
,
R. J.
Warburton
,
K.
Karrai
,
A.
Badolato
, and
P. M.
Petroff
, “
Hole recapture limited single photon generation from a single n-type charge-tunable quantum dot
,”
Appl. Phys. Lett.
92
,
193103
(
2008
).
49.
D.
Stucki
,
N.
Gisin
,
O.
Guinnard
,
G.
Ribordy
, and
H.
Zbinden
, “
Quantum key distribution over 67 km with a plug&play system
,”
New J. Phys.
4
,
41
(
2002
).
50.
For companies see, e.g., ID Quantique SA, Toshiba Europe Limited, MagiQ Technologies.
51.
T.
Kupko
,
M.
von Helversen
,
L.
Rickert
,
J.-H.
Schulze
,
A.
Strittmatter
,
M.
Gschrey
,
S.
Rodt
,
S.
Reitzenstein
, and
T.
Heindel
, “
Tools for the performance optimization of single-photon quantum key distribution
,”
npj Quantum Inf.
6
,
29
(
2020
).
52.
D.
Gottesman
,
H.-K.
Lo
,
N.
Lütkenhaus
, and
J.
Preskill
, “
Security of quantum key distribution with imperfect devices
,”
Quantum Inf. Comput.
4
,
325
360
(
2004
).
53.
P.
Chaiwongkhot
,
S.
Sajeed
,
L.
Lydersen
, and
V.
Makarov
, “
Finite-key-size effect in a commercial plug-and-play QKD system
,”
Quantum Sci. Technol.
2
,
044003
(
2017
).
54.
Note, that a more widely used term in the literature is quantum bit error rate (QBER) in units of s1. As the QBER entering the binary Shannon entropy in Eq. (1) (denoted as e) must be a probability (cf. Subsection III A), we consistently use the quantum bit error ratio, defined as the ratio of erroneous bits to all detected bits in our work.
55.
L.
Lydersen
and
J.
Skaar
, “
Security of quantum key distribution with bit and basis dependent detector flaws
,”
Quantum Inf. Comput.
10
,
60
76
(
2010
).
56.
P.
Grünwald
, “
Effective second-order correlation function and single-photon detection
,”
New J. Phys.
21
,
093003
(
2019
).
57.
J. R.
Chavez-Mackay
,
P.
Grünwald
, and
B. M.
Rodríguez-Lara
, “
Estimating the single-photon projection of low-intensity light sources
,”
Phys. Rev. A
101
,
053815
(
2020
).
58.
D.
Rusca
,
A.
Boaron
,
F.
Grünenfelder
,
A.
Martin
, and
H.
Zbinden
, “
Finite-key analysis for the 1-decoy state QKD protocol
,”
Appl. Phys. Lett.
112
,
171104
(
2018
).
59.
C.-M.
Lee
,
M. A.
Buyukkaya
,
S.
Aghaeimeibodi
,
A.
Karasahin
,
C. J. K.
Richardson
, and
E.
Waks
, “
A fiber-integrated nanobeam single photon source emitting at telecom wavelengths
,”
Appl. Phys. Lett.
114
,
171101
(
2019
).
60.
N.
Srocka
,
P.
Mrowiński
,
J.
Große
,
M.
von Helversen
,
T.
Heindel
,
S.
Rodt
, and
S.
Reitzenstein
, “
Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom O-band
,”
Appl. Phys. Lett.
116
,
231104
(
2020
).
61.
S.
Kolatschek
,
C.
Nawrath
,
S.
Bauer
,
J.
Huang
,
J.
Fischer
,
R.
Sittig
,
M.
Jetter
,
S. L.
Portalupi
, and
P.
Michler
, “
Bright purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating
,”
Nano Lett.
21
,
7740
7745
(
2021
).
62.
J.-P.
Jahn
,
M.
Munsch
,
L.
Béguin
,
A. V.
Kuhlmann
,
M.
Renggli
,
Y.
Huo
,
F.
Ding
,
R.
Trotta
,
M.
Reindl
,
O. G.
Schmidt
,
A.
Rastelli
,
P.
Treutlein
, and
R. J.
Warburton
, “
An artificial Rb atom in a semiconductor with lifetime-limited linewidth
,”
Phys. Rev. B
92
,
245439
(
2015
).
63.
C.
Santori
,
M.
Pelton
,
G.
Solomon
,
Y.
Dale
, and
Y.
Yamamoto
, “
Triggered single photons from a quantum dot
,”
Phys. Rev. Lett.
86
,
1502
(
2001
).
64.
L.
Zhai
,
M. C.
Löbl
,
G. N.
Nguyen
,
J.
Ritzmann
,
A.
Javadi
,
C.
Spinnler
,
A. D.
Wieck
,
A.
Ludwig
, and
R. J.
Warburton
, “
Low-noise GaAs quantum dots for quantum photonics
,”
Nat. Commun.
11
,
4745
(
2020
).
65.
S.
Nauerth
,
F.
Moll
,
M.
Rau
,
C.
Fuchs
,
J.
Horwath
,
S.
Frick
, and
H.
Weinfurter
, “
Air-to-ground quantum communication
,”
Nat. Photonics
7
,
382
386
(
2013
).
66.
S.-K.
Liao
,
W.-Q.
Cai
,
W.-Y.
Liu
,
L.
Zhang
,
Y.
Li
,
J.-G.
Ren
,
J.
Yin
,
Q.
Shen
,
Y.
Cao
,
Z.-P.
Li
,
F.-Z.
Li
,
X.-W.
Chen
,
L.-H.
Sun
,
J.-J.
Jia
,
J.-C.
Wu
,
X.-J.
Jiang
,
J.-F.
Wang
,
Y.-M.
Huang
,
Q.
Wang
,
Y.-L.
Zhou
,
L.
Deng
,
T.
Xi
,
L.
Ma
,
T.
Hu
,
Q.
Zhang
,
Y.-A.
Chen
,
N.-L.
Liu
,
X.-B.
Wang
,
Z.-C.
Zhu
,
C.-Y.
Lu
,
R.
Shu
,
C.-Z.
Peng
,
J.-Y.
Wang
, and
J.-W.
Pan
, “
Satellite-to-ground quantum key distribution
,”
Nature
549
,
43
47
(
2017
).
67.
J.
Yin
,
Y.
Cao
,
Y.-H.
Li
,
J.-G.
Ren
,
S.-K.
Liao
,
L.
Zhang
,
W.-Q.
Cai
,
W.-Y.
Liu
,
B.
Li
,
H.
Dai
,
M.
Li
,
Y.-M.
Huang
,
L.
Deng
,
L.
Li
,
Q.
Zhang
,
N.-L.
Liu
,
Y.-A.
Chen
,
C.-Y.
Lu
,
R.
Shu
,
C.-Z.
Peng
,
J.-Y.
Wang
, and
J.-W.
Pan
, “
Satellite-to-ground entanglement-based quantum key distribution
,”
Phys. Rev. Lett.
119
,
200501
(
2017
).
68.
J.
Yin
,
Y.-H.
Li
,
S.-K.
Liao
,
M.
Yang
,
Y.
Cao
,
L.
Zhang
,
J.-G.
Ren
,
W.-Q.
Cai
,
W.-Y.
Liu
,
S.-L.
Li
,
R.
Shu
,
Y.-M.
Huang
,
L.
Deng
,
L.
Li
,
Q.
Zhang
,
N.-L.
Liu
,
Y.-A.
Chen
,
C.-Y.
Lu
,
X.-B.
Wang
,
F.
Xu
,
J.-Y.
Wang
,
C.-Z.
Peng
,
A. K.
Ekert
, and
J.-W.
Pan
, “
Entanglement-based secure quantum cryptography over 1,120 kilometres
,”
Nature
582
,
501
505
(
2020
).
69.
R. Y. Q.
Cai
and
V.
Scarani
, “
Finite-key analysis for practical implementations of quantum key distribution
,”
New J. Phys.
11
,
045024
(
2009
).
70.
L.
Rickert
,
T.
Kupko
,
S.
Rodt
,
S.
Reitzenstein
, and
T.
Heindel
, “
Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings
,”
Opt. Express
27
,
36824
36837
(
2019
).
71.
A. C.
Dada
,
T. S.
Santana
,
R. N. E.
Malein
,
A.
Koutroumanis
,
Y.
Ma
,
J. M.
Zajac
,
J. Y.
Lim
,
J. D.
Song
, and
B. D.
Gerardot
, “
Indistinguishable single photons with flexible electronic triggering
,”
Optica
3
,
493
498
(
2016
).
72.
P.
Munnelly
,
T.
Heindel
,
A.
Thoma
,
M.
Kamp
,
S.
Höfling
,
C.
Schneider
, and
S.
Reitzenstein
, “
Electrically tunable single-photon source triggered by a monolithically integrated quantum dot microlaser
,”
ACS Photonics
4
,
790
794
(
2017
).
73.
J. P.
Lee
,
E.
Murray
,
A. J.
Bennett
,
D. J. P.
Ellis
,
C.
Dangel
,
I.
Farrer
,
P.
Spencer
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Electrically driven and electrically tunable quantum light sources
,”
Appl. Phys. Lett.
110
,
071102
(
2017
).
74.
Z.-H.
Xiang
,
J.
Huwer
,
J.
Skiba-Szymanska
,
R. M.
Stevenson
,
D. J. P.
Ellis
,
I.
Farrer
,
M. B.
Ward
,
D. A.
Ritchie
, and
A. J.
Shields
, “
A tuneable telecom wavelength entangled light emitting diode deployed in an installed fibre network
,”
Commun. Phys.
3
,
121
(
2020
).
75.
A.
Thoma
,
P.
Schnauber
,
M.
Gschrey
,
M.
Seifried
,
J.
Wolters
,
J.-H.
Schulze
,
A.
Strittmatter
,
S.
Rodt
,
A.
Carmele
,
A.
Knorr
,
T.
Heindel
, and
S.
Reitzenstein
, “
Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments
,”
Phys. Rev. Lett.
116
,
033601
(
2016
).
76.
S. L.
Braunstein
and
S.
Pirandola
, “
Side-channel-free quantum key distribution
,”
Phys. Rev. Lett.
108
,
130502
(
2012
).
77.
H.-K.
Lo
,
M.
Curty
, and
B.
Qi
, “
Measurement-device-independent quantum key distribution
,”
Phys. Rev. Lett.
108
,
130503
(
2012
).

Supplementary Material

You do not currently have access to this content.