In a blueprint for topological electronics, edge state transport in a topological insulator material can be controlled by employing a gate-induced topological quantum phase transition. Here, by studying the width dependence of electronic properties, it is inferred that zigzag-Xene nanoribbons are promising materials for topological electronics with a display of unique physical characteristics associated with the intrinsic band topology and the finite-size effects on gate-induced topological switching. First, due to intertwining with intrinsic band topology-driven energy-zero modes in the pristine case, spin-filtered chiral edge states in zigzag-Xene nanoribbons remain gapless and protected against backward scattering even with finite inter-edge overlapping in ultra-narrow ribbons, i.e., a 2D quantum spin Hall material turns into a 1D topological metal. Second, mainly due to width- and momentum-dependent tunability of the gate-induced inter-edge coupling, the threshold-voltage required for switching between gapless and gapped edge states reduces as the width decreases, without any fundamental lower bound. Third, when the width of zigzag-Xene nanoribbons is smaller than a critical limit, topological switching between edge states can be attained without bulk bandgap closing and reopening. This is primarily due to the quantum confinement effect on the bulk band spectrum, which increases the nontrivial bulk bandgap with decrease in width. The existence of such protected gapless edge states and reduction in threshold-voltage accompanied by enhancement in the bulk bandgap overturns the general wisdom of utilizing narrow-gap and wide channel materials for reducing the threshold-voltage in a standard field effect transistor analysis and paves the way toward low-voltage topological devices.

1.
L. A.
Wray
, “
Topological transistor
,”
Nat. Phys.
8
,
705
706
(
2012
).
2.
J.
Seidel
, “
Nanoelectronics based on topological structures
,”
Nat. Mater.
18
,
188
190
(
2019
).
3.
M.
Ezawa
, “
Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons
,”
Appl. Phys. Lett.
102
,
172103
(
2013
).
4.
J.
Liu
,
T. H.
Hsieh
,
P.
Wei
,
W.
Duan
,
J.
Moodera
, and
L.
Fu
, “
Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator
,”
Nat. Mater.
13
,
178
183
(
2014
).
5.
Q.
Liu
,
X.
Zhang
,
L. B.
Abdalla
,
A.
Fazzio
, and
A.
Zunger
, “
Switching a normal insulator into a topological insulator via electric field with application to phosphorene
,”
Nano Lett.
15
,
1222
1228
(
2015
).
6.
H.
Pan
,
M.
Wu
,
Y.
Liu
, and
S. A.
Yang
, “
Electric control of topological phase transitions in Dirac semimetal thin films
,”
Sci. Rep.
5
,
14639
(
2015
).
7.
X.
Qian
,
J.
Liu
,
L.
Fu
, and
J.
Li
, “
Quantum spin hall effect in two-dimensional transition metal dichalcogenides
,”
Science
346
,
1344
1347
(
2014
).
8.
Z.
Zhang
,
X.
Feng
,
J.
Wang
,
B.
Lian
,
J.
Zhang
,
C.
Chang
,
M.
Guo
,
Y.
Ou
,
Y.
Feng
,
S.-C.
Zhang
,
K.
He
,
X.
Ma
,
Q.-K.
Xue
, and
Y.
Wang
, “
Magnetic quantum phase transition in Cr-doped Bi2(SexTe1x)3 driven by the stark effect
,”
Nat. Nanotechnol.
12
(10),
953
957
(
2017
).
9.
A.
Molle
,
J.
Goldberger
,
M.
Houssa
,
Y.
Xu
,
S.-C.
Zhang
, and
D.
Akinwande
, “
Buckled two-dimensional Xene sheets
,”
Nat. Mater.
16
,
163
169
(
2017
).
10.
J. L.
Collins
,
A.
Tadich
,
W.
Wu
,
L. C.
Gomes
,
J. N. B.
Rodrigues
,
C.
Liu
,
J.
Hellerstedt
,
H.
Ryu
,
S.
Tang
,
S.-K.
Mo
,
S.
Adam
,
S. A.
Yang
,
M. S.
Fuhrer
, and
M. T.
Edmonds
, “
Electric-field-tuned topological phase transition in ultrathin
Na3Bi,”
Nature
564
,
390
394
(
2018
).
11.
M.
Nadeem
,
I. D.
Bernardo
,
X.
Wang
,
M. S.
Fuhrer
, and
D.
Culcer
, “
Overcoming Boltzmann's tyranny in a transistor via the topological quantum field effect
,”
Nano Lett.
21
,
3155
3161
(
2021
).
12.
Y.
Xu
,
Y.-R.
Chen
,
J.
Wang
,
J.-F.
Liu
, and
Z.
Ma
, “
Quantized field-effect tunneling between topological edge or interface states
,”
Phys. Rev. Lett.
123
,
206801
(
2019
).
13.
C. L.
Kane
and
E. J.
Mele
, “
Z2 topological order and the quantum spin hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
14.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
(
2005
).
15.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Quantum spin hall effect and topological phase transition in HGTE quantum wells
,”
Science
314
,
1757
1761
(
2006
).
16.
M.
König
,
H.
Buhmann
,
L. W.
Molenkamp
,
T.
Hughes
,
C.-X.
Liu
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
The quantum spin hall effect: Theory and experiment
,”
J. Phys. Soc. Jpn.
77
,
031007
(
2008
).
17.
W. G.
Vandenberghe
and
M. V.
Fischetti
, “
Imperfect two-dimensional topological insulator field-effect transistors
,”
Nat. Commun.
8
,
14184
(
2017
).
18.
F.
Reis
,
G.
Li
,
L.
Dudy
,
M.
Bauernfeind
,
S.
Glass
,
W.
Hanke
,
R.
Thomale
,
J.
Schäfer
, and
R.
Claessen
, “
Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin hall material
,”
Science
357
,
287
290
(
2017
).
19.
W.-Y.
Shan
,
H.-Z.
Lu
, and
S.-Q.
Shen
, “
Effective continuous model for surface states and thin films of three-dimensional topological insulators
,”
New J. Phys.
12
,
043048
(
2010
).
20.
C.-X.
Liu
,
H.
Zhang
,
B.
Yan
,
X.-L.
Qi
,
T.
Frauenheim
,
X.
Dai
,
Z.
Fang
, and
S.-C.
Zhang
, “
Oscillatory crossover from two-dimensional to three-dimensional topological insulators
,”
Phys. Rev. B
81
,
041307
(
2010
).
21.
H.-Z.
Lu
,
W.-Y.
Shan
,
W.
Yao
,
Q.
Niu
, and
S.-Q.
Shen
, “
Massive Dirac fermions and spin physics in an ultrathin film of topological insulator
,”
Phys. Rev. B
81
,
115407
(
2010
).
22.
B.
Zhou
,
H.-Z.
Lu
,
R.-L.
Chu
,
S.-Q.
Shen
, and
Q.
Niu
, “
Finite size effects on helical edge states in a quantum spin-hall system
,”
Phys. Rev. Lett.
101
,
246807
(
2008
).
23.
B.
Das
,
D.
Sen
, and
S.
Mahapatra
, “
Tuneable quantum spin hall states in confined 1t' transition metal dichalcogenides
,”
Sci. Rep.
10
,
6670
(
2020
).
24.
M.
Ezawa
, “
Peculiar width dependence of the electronic properties of carbon nanoribbons
,”
Phys. Rev. B
73
,
045432
(
2006
).
25.
M. Y.
Han
,
B.
Özyilmaz
,
Y.
Zhang
, and
P.
Kim
, “
Energy band-gap engineering of graphene nanoribbons
,”
Phys. Rev. Lett.
98
,
206805
(
2007
).
26.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Energy gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
97
,
216803
(
2006
).
27.
L.
Brey
and
H. A.
Fertig
, “
Electronic states of graphene nanoribbons studied with the Dirac equation
,”
Phys. Rev. B
73
,
235411
(
2006
).
28.
M.
Ezawa
and
N.
Nagaosa
, “
Interference of topologically protected edge states in silicene nanoribbons
,”
Phys. Rev. B
88
,
121401
(
2013
).
29.
L.
Cano-Cortés
,
C.
Ortix
, and
J.
van den Brink
, “
Fundamental differences between quantum spin hall edge states at zigzag and armchair terminations of honeycomb and ruby nets
,”
Phys. Rev. Lett.
111
,
146801
(
2013
).
30.
Y.
Zhang
,
K.
He
,
C.-Z.
Chang
,
C.-L.
Song
,
L.-L.
Wang
,
X.
Chen
,
J.-F.
Jia
,
Z.
Fang
,
X.
Dai
,
W.-Y.
Shan
,
S.-Q.
Shen
,
Q.
Niu
,
X.-L.
Qi
,
S.-C.
Zhang
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit
,”
Nat. Phys.
6
,
584
588
(
2010
).
31.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin hall insulator state in HGTE quantum wells
,”
Science
318
,
766
770
(
2007
).
32.
C.
Liu
,
T. L.
Hughes
,
X.-L.
Qi
,
K.
Wang
, and
S.-C.
Zhang
, “
Quantum spin hall effect in inverted type-II semiconductors
,”
Phys. Rev. Lett.
100
,
236601
(
2008
).
33.
I.
Knez
,
R.-R.
Du
, and
G.
Sullivan
, “
Evidence for helical edge modes in inverted InAs/GaSb quantum wells
,”
Phys. Rev. Lett.
107
,
136603
(
2011
).
34.
L.
Du
,
I.
Knez
,
G.
Sullivan
, and
R.-R.
Du
, “
Robust helical edge transport in gated InAs/GaSb bilayers
,”
Phys. Rev. Lett.
114
,
096802
(
2015
).
35.
S.
Wu
,
V.
Fatemi
,
Q. D.
Gibson
,
K.
Watanabe
,
T.
Taniguchi
,
R. J.
Cava
, and
P.
Jarillo-Herrero
, “
Observation of the quantum spin hall effect up to 100 kelvin in a monolayer crystal
,”
Science
359
,
76
79
(
2018
).
36.
S.
Salahuddin
and
S.
Datta
, “
Use of negative capacitance to provide voltage amplification for low power nanoscale devices
,”
Nano Lett.
8
,
405
410
(
2008
).
37.
H.
Min
,
J. E.
Hill
,
N. A.
Sinitsyn
,
B. R.
Sahu
,
L.
Kleinman
, and
A. H.
MacDonald
, “
Intrinsic and Rashba spin-orbit interactions in graphene sheets
,”
Phys. Rev. B
74
,
165310
(
2006
).
38.
C.-C.
Liu
,
W.
Feng
, and
Y.
Yao
, “
Quantum spin hall effect in silicene and two-dimensional germanium
,”
Phys. Rev. Lett.
107
,
076802
(
2011
).
39.
C.-C.
Liu
,
H.
Jiang
, and
Y.
Yao
, “
Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin
,”
Phys. Rev. B
84
,
195430
(
2011
).
40.
Y.
Xu
,
B.
Yan
,
H.-J.
Zhang
,
J.
Wang
,
G.
Xu
,
P.
Tang
,
W.
Duan
, and
S.-C.
Zhang
, “
Large-gap quantum spin hall insulators in tin films
,”
Phys. Rev. Lett.
111
,
136804
(
2013
).
41.
C.-H.
Hsu
,
Z.-Q.
Huang
,
F.-C.
Chuang
,
C.-C.
Kuo
,
Y.-T.
Liu
,
H.
Lin
, and
A.
Bansil
, “
The nontrivial electronic structure of Bi/Sb honeycombs on SiC(0001)
,”
New J. Phys.
17
,
025005
(
2015
).
42.
G.
Li
,
W.
Hanke
,
E. M.
Hankiewicz
,
F.
Reis
,
J.
Schäfer
,
R.
Claessen
,
C.
Wu
, and
R.
Thomale
, “
Theoretical paradigm for the quantum spin hall effect at high temperatures
,”
Phys. Rev. B
98
,
165146
(
2018
).
43.
E. I.
Rashba
, “
Graphene with structure-induced spin-orbit coupling: Spin-polarized states, spin zero modes, and quantum hall effect
,”
Phys. Rev. B
79
,
161409
(
2009
).
44.
M.
Ezawa
,
Y.
Tanaka
, and
N.
Nagaosa
, “
Topological phase transition without gap closing
,”
Sci. Rep.
3
,
2790
(
2013
).
45.
Y.
Yang
,
H.
Li
,
L.
Sheng
,
R.
Shen
,
D. N.
Sheng
, and
D. Y.
Xing
, “
Topological phase transitions with and without energy gap closing
,”
New J. Phys.
15
,
083042
(
2013
).
46.
S.
Rachel
, “
Quantum phase transitions of topological insulators without gap closing
,”
J. Phys.: Condens. Matter
28
,
405502
(
2016
).
47.
N.
Matsumoto
,
K.
Kawabata
,
Y.
Ashida
,
S.
Furukawa
, and
M.
Ueda
, “
Continuous phase transition without gap closing in non-Hermitian quantum many-body systems
,”
Phys. Rev. Lett.
125
,
260601
(
2020
).
48.
F.
Schindler
, “
Dirac equation perspective on higher-order topological insulators
,”
J. Appl. Phys.
128
,
221102
(
2020
).
49.
M.
Zarea
,
C.
Büsser
, and
N.
Sandler
, “
Unscreened Coulomb interactions and the quantum spin hall phase in neutral zigzag graphene ribbons
,”
Phys. Rev. Lett.
101
,
196804
(
2008
).
50.
B. I.
Halperin
, “
Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential
,”
Phys. Rev. B
25
,
2185
2190
(
1982
).
51.
A. H.
MacDonald
and
P.
Středa
, “
Quantized hall effect and edge currents
,”
Phys. Rev. B
29
,
1616
1619
(
1984
).
52.
M.
Zarea
and
N.
Sandler
, “
Electron-electron and spin-orbit interactions in armchair graphene ribbons
,”
Phys. Rev. Lett.
99
,
256804
(
2007
).
53.
T.
Hikihara
,
X.
Hu
,
H.-H.
Lin
, and
C.-Y.
Mou
, “
Ground-state properties of nanographite systems with zigzag edges
,”
Phys. Rev. B
68
,
035432
(
2003
).
54.
M.
Fujita
,
K.
Wakabayashi
,
K.
Nakada
, and
K.
Kusakabe
, “
Peculiar localized state at zigzag graphite edge
,”
J. Phys. Soc. Jap.
65
,
1920–1923
(
1996
).
55.
L.
Yang
,
C.-H.
Park
,
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
, “
Quasiparticle energies and band gaps in graphene nanoribbons
,”
Phys. Rev. Lett.
99
,
186801
(
2007
).
56.
C.
Xu
and
J. E.
Moore
, “
Stability of the quantum spin hall effect: Effects of interactions, disorder, and z2 topology
,”
Phys. Rev. B
73
,
045322
(
2006
).
57.
Y.
Tsividis
and
C.
McAndrew
,
Operation and Modeling of the MOS Transistor
, The Oxford Series in Electrical and Computer Engineering Series (
Oxford University Press
,
2011
).
58.
A. M.
Ionescu
and
H.
Riel
, “
Tunnel field-effect transistors as energy-efficient electronic switches
,”
Nature
479
,
329
337
(
2011
).
59.
K.
Khan
,
A. K.
Tareen
,
Q. U.
Khan
,
M.
Iqbal
,
H.
Zhang
, and
Z.
Guo
, “
Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2d-Xenes)
,”
Mater. Chem. Front.
5
,
6333
6391
(
2021
).
60.
B.
Lalmi
,
H.
Oughaddou
,
H.
Enriquez
,
A.
Kara
,
S.
Vizzini
,
B.
Ealet
, and
B.
Aufray
, “
Epitaxial growth of a silicene sheet
,”
Appl. Phys. Lett.
97
,
223109
(
2010
).
61.
P.
Vogt
,
P.
De Padova
,
C.
Quaresima
,
J.
Avila
,
E.
Frantzeskakis
,
M. C.
Asensio
,
A.
Resta
,
B.
Ealet
, and
G. L.
Lay
, “
Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon
,”
Phys. Rev. Lett.
108
,
155501
(
2012
).
62.
C.-L.
Lin
,
R.
Arafune
,
K.
Kawahara
,
N.
Tsukahara
,
E.
Minamitani
,
Y.
Kim
,
N.
Takagi
, and
M.
Kawai
, “
Structure of silicene grown on Ag(111)
,”
Appl. Phys. Express
5
,
045802
(
2012
).
63.
B.
Feng
,
Z.
Ding
,
S.
Meng
,
Y.
Yao
,
X.
He
,
P.
Cheng
,
L.
Chen
, and
K.
Wu
, “
Evidence of silicene in honeycomb structures of silicon on Ag(111)
,”
Nano Lett.
12
,
3507
3511
(
2012
).
64.
D.
Chiappe
,
C.
Grazianetti
,
G.
Tallarida
,
M.
Fanciulli
, and
A.
Molle
, “
Local electronic properties of corrugated silicene phases
,”
Adv. Mater.
24
,
5088
5093
(
2012
).
65.
A.
Fleurence
,
R.
Friedlein
,
T.
Ozaki
,
H.
Kawai
,
Y.
Wang
, and
Y.
Yamada-Takamura
, “
Experimental evidence for epitaxial silicene on diboride thin films
,”
Phys. Rev. Lett.
108
,
245501
(
2012
).
66.
L.
Meng
,
Y.
Wang
,
L.
Zhang
,
S.
Du
,
R.
Wu
,
L.
Li
,
Y.
Zhang
,
G.
Li
,
H.
Zhou
,
W. A.
Hofer
, and
H.-J.
Gao
, “
Buckled silicene formation on Ir(111)
,”
Nano Lett.
13
,
685
690
(
2013
).
67.
D.
Chiappe
,
E.
Scalise
,
E.
Cinquanta
,
C.
Grazianetti
,
B.
van den Broek
,
M.
Fanciulli
,
M.
Houssa
, and
A.
Molle
, “
Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface
,”
Adv. Mater.
26
,
2096
2101
(
2014
).
68.
M. E.
Dávila
,
L.
Xian
,
S.
Cahangirov
,
A.
Rubio
, and
G. L.
Lay
, “
Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene
,”
New J. Phys.
16
,
095002
(
2014
).
69.
L.
Li
,
S.-Z.
Lu
,
J.
Pan
,
Z.
Qin
,
Y.-Q.
Wang
,
Y.
Wang
,
G.-Y.
Cao
,
S.
Du
, and
H.-J.
Gao
, “
Buckled germanene formation on Pt(111)
,”
Adv. Mater.
26
,
4820
4824
(
2014
).
70.
P.
Bampoulis
,
L.
Zhang
,
A.
Safaei
,
R.
Gastel
,
B.
Poelsema
, and
H.
Zandvliet
, “
Germanene termination of Ge2Pt crystals on Ge(110)
,”
J. Phys. Condens. Matter
26
,
442001
(
2014
).
71.
M.
Derivaz
,
D.
Dentel
,
R.
Stephan
,
M.-C.
Hanf
,
A.
Mehdaoui
,
P.
Sonnet
, and
C.
Pirri
, “
Continuous germanene layer on Al(111)
,”
Nano Lett.
15
,
2510
2516
(
2015
).
72.
F.
D'Acapito
,
S.
Torrengo
,
E.
Xenogiannopoulou
,
P.
Tsipas
,
J.
Marquez Velasco
,
D.
Tsoutsou
, and
A.
Dimoula
, “
Evidence for germanene growth on epitaxial hexagonal (h)-AlN on Ag(1 1 1)
,”
J. Phys. Condens. Matter
28
,
045002
(
2016
).
73.
L.
Zhang
,
P.
Bampoulis
,
A. N.
Rudenko
,
Q.
Yao
,
A.
van Houselt
,
B.
Poelsema
,
M. I.
Katsnelson
, and
H. J. W.
Zandvliet
, “
Structural and electronic properties of germanene on
MoS2,”
Phys. Rev. Lett.
116
,
256804
(
2016
).
74.
F.
Zhu
,
W.
Chen
,
Y.
Xu
,
C.-L.
Gao
,
D.
Guan
,
C.
Liu
,
D.
Qian
,
S.-C.
Zhang
, and
J.-F.
Jia
, “
Epitaxial growth of two-dimensional stanene
,”
Nat. Mater.
14
,
1020
(
2015
).
75.
J.
Zhang
,
S.
Zhao
,
C.
Han
,
Z.
Wang
,
S.
Zhong
,
S.
Sun
,
R.
Guo
,
X.
Zhou
,
C.
Gu
,
Y.
Kaidi
,
Z.
Li
, and
W.
Chen
, “
Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus
,”
Nano Lett.
16
,
4903
4908
(
2016
).
76.
Z.
Song
,
C.-C.
Liu
,
J.
Yang
,
J.
Han
,
M.
Ye
,
B.
Fu
,
Y.
Yang
,
Q.
Niu
,
J.
Lu
, and
Y.
Yao
, “
Quantum spin hall insulators and quantum valley hall insulators of BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap
,”
NPG Asia Mater.
06
,
e147
e147
(
2014
).
77.
T.
Zhou
,
J.
Zhang
,
H.
Jiang
,
I.
Žutić
, and
Z.
Yang
, “
Giant spin-valley polarization and multiple hall effect in functionalized bismuth monolayers
,”
NPJ Quantum Mater.
3
,
39
(
2018
).
78.
T.
Zhou
,
S.
Cheng
,
M.
Schleenvoigt
,
P.
Schüffelgen
,
H.
Jiang
,
Z.
Yang
, and
I.
Žutić
, “
Quantum spin-valley hall kink states: From concept to materials design
,”
Phys. Rev. Lett.
127
,
116402
(
2021
).
79.
M.
Ezawa
, “
Spin valleytronics in silicene: Quantum spin hall–quantum anomalous hall insulators and single-valley semimetals
,”
Phys. Rev. B
87
,
155415
(
2013
).
80.
M.
Ezawa
, “
Topological Kirchhoff law and bulk-edge correspondence for valley Chern and spin-valley Chern numbers
,”
Phys. Rev. B
88
,
161406
(
2013
).
81.
M.
Ezawa
, “
Monolayer topological insulators: Silicene, germanene, and stanene
,”
J. Phys. Soc. Jpn.
84
,
121003
(
2015
).
82.
P.
Högl
,
T.
Frank
,
K.
Zollner
,
D.
Kochan
,
M.
Gmitra
, and
J.
Fabian
, “
Quantum anomalous hall effects in graphene from proximity-induced uniform and staggered spin-orbit and exchange coupling
,”
Phys. Rev. Lett.
124
,
136403
(
2020
).
83.
X.
Li
,
T.
Cao
,
Q.
Niu
,
J.
Shi
, and
J.
Feng
, “
Coupling the valley degree of freedom to antiferromagnetic order
,”
Proc. Natl. Acad. Sci.
110
,
3738
3742
(
2013
).
84.
Q.-F.
Liang
,
L.-H.
Wu
, and
X.
Hu
, “
Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field
,”
New J. Phys.
15
,
063031
(
2013
).
85.
B.
Shabbir
,
M.
Nadeem
,
Z.
Dai
,
M. S.
Fuhrer
,
Q.-K.
Xue
,
X.
Wang
, and
Q.
Bao
, “
Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies
,”
Appl. Phys. Rev.
5
,
041105
(
2018
).
86.
M.
Nadeem
,
A. R.
Hamilton
,
M. S.
Fuhrer
, and
X.
Wang
, “
Quantum anomalous hall effect in magnetic doped topological insulators and ferromagnetic spin-gapless semiconductors—A perspective review
,”
Small
16
,
1904322
(
2020
).
87.
G.
Xu
,
T.
Zhou
,
B.
Scharf
, and
I.
Žutić
, “
Optically probing tunable band topology in atomic monolayers
,”
Phys. Rev. Lett.
125
,
157402
(
2020
).
88.
P.
San-Jose
,
J. L.
Lado
,
R.
Aguado
,
F.
Guinea
, and
J.
Fernández-Rossier
, “
Majorana zero modes in graphene
,”
Phys. Rev. X
5
,
041042
(
2015
).
89.
M.
Ezawa
, “
Antiferromagnetic topological superconductor and electrically controllable Majorana fermions
,”
Phys. Rev. Lett.
114
,
056403
(
2015
).
90.
A. C.
Potter
and
P. A.
Lee
, “
Multichannel generalization of Kitaev's Majorana end states and a practical route to realize them in thin films
,”
Phys. Rev. Lett.
105
,
227003
(
2010
).
You do not currently have access to this content.