The modus operandi in materials research and development is combining existing data with an understanding of the underlying physics to create and test new hypotheses via experiments or simulations. This process is traditionally driven by subject expertise and the creativity of individual researchers, who “close the loop” by updating their hypotheses and models in light of new data or knowledge acquired from the community. Since the early 2000s, there has been notable progress in the automation of each step of the scientific process. With recent advances in using machine learning for hypothesis generation and artificial intelligence for decision-making, the opportunity to automate the entire closed-loop process has emerged as an exciting research frontier. The future of fully autonomous research systems for materials science no longer feels far-fetched. Autonomous systems are poised to make the search for new materials, properties, or parameters more efficient under budget and time constraints, and in effect accelerate materials innovation. This paper provides a brief overview of closed-loop research systems of today, and our related work at the Toyota Research Institute applied across different materials challenges and identifies both limitations and future opportunities.

1.
J. N.
Cawse
, “
Experimental strategies for combinatorial and high-throughput materials development
,”
Acc. Chem. Res.
34
(
3
),
213
221
(
2001
).
2.
R.
Potyrailo
,
K.
Rajan
,
K.
Stoewe
,
I.
Takeuchi
,
B.
Chisholm
, and
H.
Lam
, “
Combinatorial and high-throughput screening of materials libraries: Review of state of the art
,”
ACS Comb. Sci
13
(
6
),
579
633
(
2011
).
3.
H.
Koinuma
and
I.
Takeuchi
, “
Combinatorial solid-state chemistry of inorganic materials
,”
Nat. Mater.
3
(
7
),
429
438
(
2004
).
4.
H. S.
Stein
,
E.
Soedarmadji
,
P. F.
Newhouse
,
D.
Guevarra
, and
J. M.
Gregoire
, “
Synthesis, optical imaging, and absorption spectroscopy data for 179072 metal oxides
,”
Sci. Data
6
(
1
),
9
(
2019
).
5.
J.
Yuan
,
V.
Stanev
,
C.
Gao
,
I.
Takeuchi
, and
K.
Jin
, “
Recent advances in high-throughput superconductivity research
,”
Supercond. Sci. Technol.
32
(
12
),
123001
(
2019
).
6.
Y.
Yao
,
Z.
Huang
,
T.
Li
,
H.
Wang
,
Y.
Liu
,
H. S.
Stein
,
Y.
Mao
,
J.
Gao
,
M.
Jiao
,
Q.
Dong
,
J.
Dai
,
P.
Xie
,
H.
Xie
,
S. D.
Lacey
,
I.
Takeuchi
,
J. M.
Gregoire
,
R.
Jiang
,
C.
Wang
,
A. D.
Taylor
,
R.
Shahbazian-Yassar
, and
L.
Hu
, “
High-throughput, combinatorial synthesis of multimetallic nanoclusters
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
12
),
6316
6322
(
2020
).
7.
E. J.
Kluender
,
J. L.
Hedrick
,
K. A.
Brown
,
R.
Rao
,
B.
Meckes
,
J. S.
Du
,
L. M.
Moreau
,
B.
Maruyama
, and
C. A.
Mirkin
, “
Catalyst discovery through megalibraries of nanomaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
1
),
40
45
(
2019
).
8.
M.
Trobe
and
M. D.
Burke
, “
The molecular industrial revolution: Automated synthesis of small molecules
,”
Angew. Chem. Int. Ed. Engl.
57
(
16
),
4192
4214
(
2018
).
9.
Z.
Li
,
M. A.
Najeeb
,
L.
Alves
,
A. Z.
Sherman
,
V.
Shekar
,
P.
Cruz Parrilla
,
I. M.
Pendleton
,
W.
Wang
,
P. W.
Nega
,
M.
Zeller
,
J.
Schrier
,
A. J.
Norquist
, and
E. M.
Chan
, “
Robot-accelerated perovskite investigation and discovery
,”
Chem. Mater.
32
(
13
),
5650
5663
(
2020
).
10.
P. S.
Gromski
,
J. M.
Granda
, and
L.
Cronin
, “
Universal chemical synthesis and discovery with ‘The Chemputer’
,”
Trends Chem.
2
(
1
),
4
12
(
2020
).
11.
B.
Burger
,
P. M.
Maffettone
,
V. V.
Gusev
,
C. M.
Aitchison
,
Y.
Bai
,
X.
Wang
,
X.
Li
,
B. M.
Alston
,
B.
Li
,
R.
Clowes
,
N.
Rankin
,
B.
Harris
,
R. S.
Sprick
, and
A. I.
Cooper
, “
A mobile robotic chemist
,”
Nature
583
(
7815
),
237
241
(
2020
).
12.
P. M.
Attia
,
A.
Grover
,
N.
Jin
,
K. A.
Severson
,
T. M.
Markov
,
Y.-H.
Liao
,
M. H.
Chen
,
B.
Cheong
,
N.
Perkins
,
Z.
Yang
,
P. K.
Herring
,
M.
Aykol
,
S. J.
Harris
,
R. D.
Braatz
,
S.
Ermon
, and
W. C.
Chueh
, “
Closed-loop optimization of fast-charging protocols for batteries with machine learning
,”
Nature
578
(
7795
),
397
402
(
2020
).
13.
K. A.
Severson
,
P. M.
Attia
,
N.
Jin
,
N.
Perkins
,
B.
Jiang
,
Z.
Yang
,
M. H.
Chen
,
M.
Aykol
,
P. K.
Herring
,
D.
Fraggedakis
,
M. Z.
Bazant
,
S. J.
Harris
,
W. C.
Chueh
, and
R. D.
Braatz
, “
Data-driven prediction of battery cycle life before capacity degradation
,”
Nat. Energy
4
(
5
),
383
391
(
2019
).
14.
J.
Hachmann
,
R.
Olivares-Amaya
,
S.
Atahan-Evrenk
,
C.
Amador-Bedolla
,
R. S.
Sánchez-Carrera
,
A.
Gold-Parker
,
L.
Vogt
,
A. M.
Brockway
, and
A.
Aspuru-Guzik
, “
The Harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid
,”
J. Phys. Chem. Lett.
2
(
17
),
2241
2251
(
2011
).
15.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
(
1
),
011002
(
2013
).
16.
S.
Kirklin
,
J. E.
Saal
,
B.
Meredig
,
A.
Thompson
,
J. W.
Doak
,
M.
Aykol
,
S.
Rühl
, and
C.
Wolverton
, “
The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies
,”
npj Comput. Mater.
1
,
15010
(
2015
).
17.
S.
Curtarolo
,
W.
Setyawan
,
G. L. W.
Hart
,
M.
Jahnatek
,
R. V.
Chepulskii
,
R. H.
Taylor
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
O.
Levy
,
M. J.
Mehl
,
H. T.
Stokes
,
D. O.
Demchenko
, and
D.
Morgan
, “
AFLOW: An automatic framework for high-throughput materials discovery
,”
Comput. Mater. Sci.
58
,
218
226
(
2012
).
18.
K.
Choudhary
,
K. F.
Garrity
,
A. C. E.
Reid
,
B.
DeCost
,
A. J.
Biacchi
,
A. R.
Hight Walker
,
Z.
Trautt
,
J.
Hattrick-Simpers
,
A.
Gilad Kusne
,
A.
Centrone
,
A.
Davydov
,
J.
Jiang
,
R.
Pachter
,
G.
Cheon
,
E.
Reed
,
A.
Agrawal
,
X.
Qian
,
V.
Sharma
,
H.
Zhuang
,
S. V.
Kalinin
,
B. G.
Sumpter
,
G.
Pilania
,
P.
Acar
,
S.
Mandal
,
K.
Haule
,
D.
Vanderbilt
,
K.
Rabe
, and
F.
Tavazza
, “
JARVIS: An integrated infrastructure for data-driven materials design
,” arXiv:2007.01831 (
2020
).
19.
A. S.
Rosen
,
S. M.
Iyer
,
D.
Ray
,
Z.
Yao
,
A.
Aspuru-Guzik
,
L.
Gagliardi
,
J. M.
Notestein
, and
R. Q.
Snurr
, “
Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery
,”
Matter
4
(
5
),
1578
1597
(
2021
).
20.
C.
Kim
,
A.
Chandrasekaran
,
T. D.
Huan
,
D.
Das
, and
R.
Ramprasad
, “
Polymer genome: A data-powered polymer informatics platform for property predictions
,”
J. Phys. Chem. C
122
(
31
),
17575
17585
(
2018
).
21.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
(
7715
),
547
555
(
2018
).
22.
L.
Ward
,
A.
Agrawal
,
A.
Choudhary
, and
C.
Wolverton
, “
A general-purpose machine learning framework for predicting properties of inorganic materials
,”
npj Comput. Mater.
2
(
1
),
16028
(
2016
).
23.
B.
Meredig
,
A.
Agrawal
,
S.
Kirklin
,
J. E.
Saal
,
J. W.
Doak
,
A.
Thompson
,
K.
Zhang
,
A.
Choudhary
, and
C.
Wolverton
, “
Combinatorial screening for new materials in unconstrained composition space with machine learning
,”
Phys. Rev. B: Condens. Matter
89
(
9
),
094104
(
2014
).
24.
M.
Rupp
,
R.
Ramakrishnan
, and
O. A.
von Lilienfeld
, “
Machine learning for quantum mechanical properties of atoms in molecules
,”
J. Phys. Chem. Lett.
6
(
16
),
3309
3313
(
2015
).
25.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
(
9
),
095003
(
2013
).
26.
C. W.
Coley
,
W. H.
Green
, and
K. F.
Jensen
, “
Machine learning in computer-aided synthesis planning
,”
Acc. Chem. Res.
51
(
5
),
1281
1289
(
2018
).
27.
M.
Aykol
,
V. I.
Hegde
,
L.
Hung
,
S.
Suram
,
P.
Herring
,
C.
Wolverton
, and
J. S.
Hummelshøj
, “
Network analysis of synthesizable materials discovery
,”
Nat. Commun.
10
(
1
),
2018
(
2019
).
28.
A. P.
Sheppard
,
R. M.
Sok
, and
H.
Averdunk
, “
Techniques for image enhancement and segmentation of tomographic images of porous materials
,”
Phys. A
339
(
1
),
145
151
(
2004
).
29.
M.
Ziatdinov
,
O.
Dyck
,
A.
Maksov
,
X.
Li
,
X.
Sang
,
K.
Xiao
,
R. R.
Unocic
,
R.
Vasudevan
,
S.
Jesse
, and
S. V.
Kalinin
, “
Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations
,”
ACS Nano
11
(
12
),
12742
12752
(
2017
).
30.
H.
Chan
,
M.
Cherukara
,
T. D.
Loeffler
,
B.
Narayanan
, and
S. K. R.
Sankaranarayanan
, “
Machine learning enabled autonomous microstructural characterization in 3D samples
,”
npj Comput. Mater.
6
(
1
),
1
9
(
2020
).
31.
F.
Oviedo
,
Z.
Ren
,
S.
Sun
,
C.
Settens
,
Z.
Liu
,
N. T. P.
Hartono
,
S.
Ramasamy
,
B. L.
DeCost
,
S. I. P.
Tian
,
G.
Romano
,
A. G.
Kusne
, and
T.
Buonassisi
, “
Fast and interpretable classification of small x-ray diffraction datasets using data augmentation and deep neural networks
,”
npj Comput. Mater.
5
(
1
),
60
(
2019
).
32.
S.
Torrisi
,
M.
Carbone
,
B.
Rohr
,
J. H.
Montoya
,
Y.
Ha
,
J.
Yano
,
S.
Suram
, and
L.
Hung
, “
Random forest machine learning models for interpretable x-ray absorption near-edge structure spectrum-property relationships
,”
npj Comput. Mater.
6
,
109
(
2020
).
33.
X.
Ma
,
Z.
Li
,
L. E. K.
Achenie
, and
H.
Xin
, “
Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening
,”
J. Phys. Chem. Lett.
6
(
18
),
3528
3533
(
2015
).
34.
J.
Carrasquilla
and
R. G.
Melko
, “
Machine learning phases of matter
,”
Nat. Phys.
13
(
5
),
431
434
(
2017
).
35.
N.
Artrith
and
A.
Urban
, “
An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2
,”
Comput. Mater. Sci.
114
,
135
(
2016
).
36.
V.
Tshitoyan
,
J.
Dagdelen
,
L.
Weston
,
A.
Dunn
,
Z.
Rong
,
O.
Kononova
,
K. A.
Persson
,
G.
Ceder
, and
A.
Jain
, “
Unsupervised word embeddings capture latent knowledge from materials science literature
,”
Nature
571
(
7763
),
95
98
(
2019
).
37.
L. M.
Roch
,
F.
Häse
,
C.
Kreisbeck
,
T.
Tamayo-Mendoza
,
L. P. E.
Yunker
,
J. E.
Hein
, and
A.
Aspuru-Guzik
, “
ChemOS: An orchestration software to democratize autonomous discovery
,”
PLoS One
15
(
4
),
e0229862
(
2020
).
38.
R.
Dehghannasiri
,
D.
Xue
,
P. V.
Balachandran
,
M. R.
Yousefi
,
L. A.
Dalton
,
T.
Lookman
, and
E. R.
Dougherty
, “
Optimal experimental design for materials discovery
,”
Comput. Mater. Sci.
129
,
311
322
(
2017
).
39.
M.
Aldeghi
,
F.
Häse
,
R. J.
Hickman
,
I.
Tamblyn
, and
A.
Aspuru-Guzik
, “
Golem: An algorithm for robust experiment and process optimization
,”
Chem. Sci.
12
(
44
),
14792
14807
(
2021
).
40.
J.
Bai
,
S.
Ament
,
G.
Perez
,
J.
Gregoire
, and
C.
Gomes
, “
An efficient relaxed projection method for constrained non-negative matrix factorization with application to the phase-mapping problem in materials science
,” in
Integration of Constraint Programming, Artificial Intelligence, and Operations Research
(
Springer International Publishing
,
2018
), pp.
52
62
.
41.
C. P.
Gomes
,
J.
Bai
,
Y.
Xue
,
J.
Björck
,
B.
Rappazzo
,
S.
Ament
,
R.
Bernstein
,
S.
Kong
,
S. K.
Suram
,
R. B.
van Dover
, and
J. M.
Gregoire
, “
CRYSTAL: A multi-agent AI system for automated mapping of materials' crystal structures
,”
MRS Commun.
9
(
2
),
600
608
(
2019
).
42.
D.
Chen
,
Y.
Bai
,
S.
Ament
,
W.
Zhao
,
D.
Guevarra
,
L.
Zhou
,
B.
Selman
,
R. B.
van Dover
,
J. M.
Gregoire
, and
C. P.
Gomes
, “
Automating crystal-structure phase mapping by combining deep learning with constraint reasoning
,”
Nat. Mach. Intell.
3
(
9
),
812
822
(
2021
).
43.
A.
Vasylenko
,
J.
Gamon
,
B. B.
Duff
,
V. V.
Gusev
,
L. M.
Daniels
,
M.
Zanella
,
J. F.
Shin
,
P. M.
Sharp
,
A.
Morscher
,
R.
Chen
,
A. R.
Neale
,
L. J.
Hardwick
,
J. B.
Claridge
,
F.
Blanc
,
M. W.
Gaultois
,
M. S.
Dyer
, and
M. J.
Rosseinsky
, “
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
,”
Nat. Commun.
12
(
1
),
5561
(
2021
).
44.
B.
Rohr
,
H. S.
Stein
,
D.
Guevarra
,
Y.
Wang
,
J. A.
Haber
,
M.
Aykol
,
S. K.
Suram
, and
J. M.
Gregoire
, “
Benchmarking the acceleration of materials discovery by sequential learning
,”
Chem. Sci.
11
(
10
),
2696
2706
(
2020
).
45.
J. H.
Montoya
,
K. T.
Winther
,
R. A.
Flores
,
T.
Bligaard
,
J. S.
Hummelshøj
, and
M.
Aykol
, “
Autonomous intelligent agents for accelerated materials discovery
,”
Chem. Sci.
11
(
32
),
8517
8532
(
2020
).
46.
T.
Lookman
,
P. V.
Balachandran
,
D.
Xue
, and
R.
Yuan
, “
Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design
,”
npj Comput. Mater.
5
(
1
),
21
(
2019
).
47.
M.
Christensen
,
L. P. E.
Yunker
,
P.
Shiri
,
T.
Zepel
,
P. L.
Prieto
,
S.
Grunert
,
F.
Bork
, and
J. E.
Hein
, “
Automation isn't automatic
,”
Chem. Sci.
12
(
47
),
15473
15490
(
2021
).
48.
C. W.
Coley
,
N. S.
Eyke
, and
K. F.
Jensen
, “
Autonomous discovery in the chemical sciences part I: Progress
,”
Angew. Chem. Int. Ed. Engl.
59
(
51
),
22858
22893
(
2020
).
49.
E.
Stach
,
B.
DeCost
,
A. G.
Kusne
,
J.
Hattrick-Simpers
,
K. A.
Brown
,
K. G.
Reyes
,
J.
Schrier
,
S.
Billinge
,
T.
Buonassisi
,
I.
Foster
,
C. P.
Gomes
,
J. M.
Gregoire
,
A.
Mehta
,
J.
Montoya
,
E.
Olivetti
,
C.
Park
,
E.
Rotenberg
,
S. K.
Saikin
,
S.
Smullin
,
V.
Stanev
, and
B.
Maruyama
, “
Autonomous experimentation systems for materials development: A community perspective
,”
Matter
4
(
9
),
2702
2726
(
2021
).
50.
D. P.
Tabor
,
L. M.
Roch
,
S. K.
Saikin
,
C.
Kreisbeck
,
D.
Sheberla
,
J. H.
Montoya
,
S.
Dwaraknath
,
M.
Aykol
,
C.
Ortiz
,
H.
Tribukait
,
C.
Amador-Bedolla
,
C. J.
Brabec
,
B.
Maruyama
,
K. A.
Persson
, and
A.
Aspuru-Guzik
, “
Accelerating the discovery of materials for clean energy in the era of smart automation
,”
Nat. Rev. Mater.
3
(
5
),
5
20
(
2018
).
51.
A.
van de Walle
and
G.
Ceder
, “
Automating first-principles phase diagram calculations
,”
J. Phase Equilib. Diffus.
23
(
4
),
348
(
2002
).
52.
A. R.
Oganov
,
C. J.
Pickard
,
Q.
Zhu
, and
R. J.
Needs
, “
Structure prediction drives materials discovery
,”
Nat. Rev. Mater.
4
(
5
),
331
348
(
2019
).
53.
P.
Nikolaev
,
D.
Hooper
,
F.
Webber
,
R.
Rao
,
K.
Decker
,
M.
Krein
,
J.
Poleski
,
R.
Barto
, and
B.
Maruyama
, “
Autonomy in materials research: A case study in carbon nanotube growth
,”
npj Comput. Mater.
2
(
1
),
16031
(
2016
).
54.
C. W.
Coley
,
D. A.
Thomas
 III
,
J. A. M.
Lummiss
,
J. N.
Jaworski
,
C. P.
Breen
,
V.
Schultz
,
T.
Hart
,
J. S.
Fishman
,
L.
Rogers
,
H.
Gao
,
R. W.
Hicklin
,
P. P.
Plehiers
,
J.
Byington
,
J. S.
Piotti
,
W. H.
Green
,
A. J.
Hart
,
T. F.
Jamison
, and
K. F.
Jensen
, “
A robotic platform for flow synthesis of organic compounds informed by AI planning
,”
Science
365
(
6453
),
557
(
2019
).
55.
R. W.
Epps
,
M. S.
Bowen
,
A. A.
Volk
,
K.
Abdel-Latif
,
S.
Han
,
K. G.
Reyes
,
A.
Amassian
, and
M.
Abolhasani
, “
Artificial chemist: An autonomous quantum dot synthesis bot
,”
Adv. Mater.
32
(
30
),
e2001626
(
2020
).
56.
N. J.
Szymanski
,
Y.
Zeng
,
H.
Huo
,
C. J.
Bartel
,
H.
Kim
, and
G.
Ceder
, “
Toward autonomous design and synthesis of novel inorganic materials
,”
Mater. Horiz.
8
,
2169
(
2021
).
57.
C.
Houben
,
N.
Peremezhney
,
A.
Zubov
,
J.
Kosek
, and
A. A.
Lapkin
, “
Closed-loop multitarget optimization for discovery of new emulsion polymerization recipes
,”
Org. Process Res. Dev.
19
(
8
),
1049
1053
(
2015
).
58.
E. V.
Podryabinkin
,
E. V.
Tikhonov
,
A. V.
Shapeev
, and
A. R.
Oganov
, “
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
,”
Phys. Rev. B: Condens. Matter
99
(
6
),
064114
(
2019
).
59.
T.
Yamashita
,
N.
Sato
,
H.
Kino
,
T.
Miyake
,
K.
Tsuda
, and
T.
Oguchi
, “
Crystal structure prediction accelerated by Bayesian optimization
,”
Phys. Rev. Mater.
2
(
1
),
013803
(
2018
).
60.
A. G.
Kusne
,
H.
Yu
,
C.
Wu
,
H.
Zhang
,
J.
Hattrick-Simpers
,
B.
DeCost
,
S.
Sarker
,
C.
Oses
,
C.
Toher
,
S.
Curtarolo
,
A. V.
Davydov
,
R.
Agarwal
,
L. A.
Bendersky
,
M.
Li
,
A.
Mehta
, and
I.
Takeuchi
, “
On-the-fly closed-loop materials discovery via Bayesian active learning
,”
Nat. Commun.
11
(
1
),
5966
(
2020
).
61.
C.
Kim
,
A.
Chandrasekaran
,
A.
Jha
, and
R.
Ramprasad
, “
Active-learning and materials design: The example of high glass transition temperature polymers
,”
MRS Commun.
9
(
3
),
860
866
(
2019
).
62.
L.
Bassman
,
P.
Rajak
,
R. K.
Kalia
,
A.
Nakano
,
F.
Sha
,
J.
Sun
,
D. J.
Singh
,
M.
Aykol
,
P.
Huck
,
K.
Persson
, and
P.
Vashishta
, “
Active learning for accelerated design of layered materials
,”
npj Comput. Mater.
4
,
74
(
2018
).
63.
F.
Ren
,
L.
Ward
,
T.
Williams
,
K. J.
Laws
,
C.
Wolverton
,
J.
Hattrick-Simpers
, and
A.
Mehta
, “
Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments
,”
Sci. Adv.
4
(
4
),
eaaq1566
(
2018
).
64.
F.
Häse
,
L. M.
Roch
, and
A.
Aspuru-Guzik
, “
Next-generation experimentation with self-driving laboratories
,”
Trends Chem.
1
(
3
),
282
291
(
2019
).
65.
J.
Wagner
,
C. G.
Berger
,
X.
Du
,
T.
Stubhan
,
J. A.
Hauch
, and
C. J.
Brabec
, “
The evolution of materials acceleration platforms: Toward the laboratory of the future with AMANDA
,”
J. Mater. Sci.
56
(
29
),
16422
16446
(
2021
).
66.
J. M.
Cole
, “
A design-to-device pipeline for data-driven materials discovery
,”
Acc. Chem. Res.
53
(
3
),
599
610
(
2020
).
67.
B. P.
MacLeod
,
F. G. L.
Parlane
,
T. D.
Morrissey
,
F.
Häse
,
L. M.
Roch
,
K. E.
Dettelbach
,
R.
Moreira
,
L. P. E.
Yunker
,
M. B.
Rooney
,
J. R.
Deeth
,
V.
Lai
,
G. J.
Ng
,
H.
Situ
,
R. H.
Zhang
,
M. S.
Elliott
,
T. H.
Haley
,
D. J.
Dvorak
,
A.
Aspuru-Guzik
,
J. E.
Hein
, and
C. P.
Berlinguette
, “
Self-driving laboratory for accelerated discovery of thin-film materials
,”
Sci. Adv.
6
(
20
),
eaaz8867
(
2020
).
68.
X.
Du
,
L.
Lüer
,
T.
Heumueller
,
J.
Wagner
,
C.
Berger
,
T.
Osterrieder
,
J.
Wortmann
,
S.
Langner
,
U.
Vongsaysy
,
M.
Bertrand
,
N.
Li
,
T.
Stubhan
,
J.
Hauch
, and
C. J.
Brabec
, “
Elucidating the full potential of OPV materials utilizing a high-throughput robot-based platform and machine learning
,”
Joule
5
(
2
),
495
506
(
2021
).
69.
A. E.
Gongora
,
B.
Xu
,
W.
Perry
,
C.
Okoye
,
P.
Riley
,
K. G.
Reyes
,
E. F.
Morgan
, and
K. A.
Brown
, “
A Bayesian experimental autonomous researcher for mechanical design
,”
Sci. Adv.
6
(15
),
eaaz1708
(
2020
).
70.
K.
Mathew
,
J. H.
Montoya
,
A.
Faghaninia
,
S.
Dwarakanath
,
M.
Aykol
,
H.
Tang
,
I.-H.
Chu
,
T.
Smidt
,
B.
Bocklund
,
M.
Horton
,
J.
Dagdelen
,
B.
Wood
,
Z.-K.
Liu
,
J.
Neaton
,
S. P.
Ong
,
K.
Persson
, and
A.
Jain
, “
Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows
,”
Comput. Mater. Sci.
139
,
140
152
(
2017
).
71.
G.
Pizzi
,
A.
Cepellotti
,
R.
Sabatini
,
N.
Marzari
, and
B.
Kozinsky
, “
AiiDA: Automated interactive infrastructure and database for computational science
,”
Comput. Mater. Sci.
111
,
218
230
(
2016
).
72.
M.
Birdeanu
,
M.
Vaida
,
D.
Ursu
, and
E.
Fagadar-Cosma
, “
Obtaining and characterization of Zn3V2O8 and Mg3V2O8 pseudo binary oxide nanomaterials by hydrothermal method
,”
AIP Conf. Proc.
1796
(
1
),
030006
(
2017
).
73.
V.
Soenen
,
J. M.
Herrmann
, and
J. C.
Volta
, “
In situ electrical characterization of magnesium vanadate reference phases (meta-MgV2O6, pyro-Mg2V2O7, and ortho-Mg3V2O8) used in oxidative dehydrogenation of propane to propene
,”
J. Catal.
159
(
2
),
410
417
(
1996
).
74.
G.
Bergerhoff
,
I. D.
Brown
,
F.
Allen
 et al,“
Crystallographic databases
,”
Int. Union Crystallogr. Chester
360
,
77
95
(
1987
).
75.
M.
Aykol
,
J. H.
Montoya
, and
J.
Hummelshøj
, “
Rational solid-state synthesis routes for inorganic materials
,”
J. Am. Chem. Soc.
143
(
24
),
9244
9259
(
2021
).
76.
E.
Soedarmadji
,
H. S.
Stein
,
S. K.
Suram
,
D.
Guevarra
, and
J. M.
Gregoire
, “
Tracking materials science data lineage to manage millions of materials experiments and analyses
,”
npj Comput. Mater.
5
(
1
),
79
(
2019
).
77.
Q.
Yan
,
J.
Yu
,
S. K.
Suram
,
L.
Zhou
,
A.
Shinde
,
P. F.
Newhouse
,
W.
Chen
,
G.
Li
,
K. A.
Persson
,
J. M.
Gregoire
, and
J. B.
Neaton
, “
Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
12
),
3040
3043
(
2017
).
78.
J. M.
Gregoire
,
C.
Xiang
,
X.
Liu
,
M.
Marcin
, and
J.
Jin
, “
Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements
,”
Rev. Sci. Instrum.
84
(
2
),
024102
(
2013
).
79.
M. D.
Wilkinson
,
M.
Dumontier
,
I. J. J.
Aalbersberg
,
G.
Appleton
,
M.
Axton
,
A.
Baak
,
N.
Blomberg
,
J.-W.
Boiten
,
L. B.
da Silva Santos
,
P. E.
Bourne
,
J.
Bouwman
,
A. J.
Brookes
,
T.
Clark
,
M.
Crosas
,
I.
Dillo
,
O.
Dumon
,
S.
Edmunds
,
C. T.
Evelo
,
R.
Finkers
,
A.
Gonzalez-Beltran
,
A. J. G.
Gray
,
P.
Groth
,
C.
Goble
,
J. S.
Grethe
,
J.
Heringa
,
P. A. C.
't Hoen
,
R.
Hooft
,
T.
Kuhn
,
R.
Kok
,
J.
Kok
,
S. J.
Lusher
,
M. E.
Martone
,
A.
Mons
,
A. L.
Packer
,
B.
Persson
,
P.
Rocca-Serra
,
M.
Roos
,
R.
van Schaik
,
S.-A.
Sansone
,
E.
Schultes
,
T.
Sengstag
,
T.
Slater
,
G.
Strawn
,
M. A.
Swertz
,
M.
Thompson
,
J.
van der Lei
,
E.
van Mulligen
,
J.
Velterop
,
A.
Waagmeester
,
P.
Wittenburg
,
K.
Wolstencroft
,
J.
Zhao
, and
B.
Mons
, “
The FAIR guiding principles for scientific data management and stewardship
,”
Sci. Data
3
,
160018
(
2016
).
80.
M.
Statt
,
K.
Brown
,
S.
Suram
,
L.
Hung
,
D.
Schweigert
,
J.
Gregoire
, and
B.
Rohr
, “
DBgen: A python library for defining scalable, maintainable, accessible, reconfigurable, transparent (SMART) data pipelines
,” chemRxiv.
81.
M.
Statt
,
B. A.
Rohr
,
K. S.
Brown
,
D.
Guevarra
,
J. S.
Hummelshøj
,
L.
Hung
,
A.
Anapolsky
,
J.
Gregoire
, and
S.
Suram
, “
ESAMP: Event-sourced architecture for materials provenance management and application to accelerated materials discovery
,” chemRxiv.
82.
C. P.
Gomes
,
B.
Selman
, and
J. M.
Gregoire
, “
Artificial intelligence for materials discovery
,”
MRS Bull.
44
(
7
),
538
544
(
2019
).
83.
S.
Ament
,
J.
Gregoire
, and
C.
Gomes
, “
Exponentially-modified Gaussian mixture model: Applications in spectroscopy
,” arXiv:1902.05601 (
2019
).
84.
S. E.
Ament
,
H. S.
Stein
,
D.
Guevarra
,
L.
Zhou
,
J. A.
Haber
,
D. A.
Boyd
,
M.
Umehara
,
J. M.
Gregoire
, and
C. P.
Gomes
, “
Multi-component background learning automates signal detection for spectroscopic data
,”
npj Comput. Mater.
5
,
77
(
2019
).
85.
J.
Bai
,
Z.
Lai
,
R.
Yang
,
Y.
Xue
,
J.
Gregoire
, and
C.
Gomes
, “
Imitation refinement for x-ray diffraction signal processing
,” in
ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
2019
), pp.
3337
3341
.
86.
A. K.
Singh
,
L.
Zhou
,
A.
Shinde
,
S. K.
Suram
,
J. H.
Montoya
,
D.
Winston
,
J. M.
Gregoire
, and
K. A.
Persson
, “
Electrochemical stability of metastable materials
,”
Chem. Mater.
29
,
10159
10167
(
2017
).
87.
A. M.
Patel
,
J. K.
Nørskov
,
K. A.
Persson
, and
J. H.
Montoya
, “
Efficient pourbaix diagrams of many-element compounds
,”
Phys. Chem. Chem. Phys.
21
(
45
),
25323
25327
(
2019
).
88.
B.
Jiang
,
W. E.
Gent
,
F.
Mohr
,
S.
Das
,
M. D.
Berliner
,
M.
Forsuelo
,
H.
Zhao
,
P. M.
Attia
,
A.
Grover
,
P. K.
Herring
,
M. Z.
Bazant
,
S. J.
Harris
,
S.
Ermon
,
W. C.
Chueh
, and
R. D.
Braatz
, “
Bayesian learning for rapid prediction of lithium–ion battery-cycling protocols
,”
Joule
5
,
3187
(
2021
).
89.
P.
Herring
,
C.
Balaji Gopal
,
M.
Aykol
,
J. H.
Montoya
,
A.
Anapolsky
,
P. M.
Attia
,
W.
Gent
,
J. S.
Hummelshøj
,
L.
Hung
,
H.-K.
Kwon
,
P.
Moore
,
D.
Schweigert
,
K. A.
Severson
,
S.
Suram
,
Z.
Yang
,
R. D.
Braatz
, and
B. D.
Storey
, “
BEEP: A python library for battery evaluation and early prediction
,”
SoftwareX
11
,
100506
(
2020
).
90.
M.
Aykol
,
J. S.
Hummelshøj
,
A.
Anapolsky
,
K.
Aoyagi
,
M. Z.
Bazant
,
T.
Bligaard
,
R. D.
Braatz
,
S.
Broderick
,
D.
Cogswell
,
J.
Dagdelen
,
W.
Drisdell
,
E.
Garcia
,
K.
Garikipati
,
V.
Gavini
,
W. E.
Gent
,
L.
Giordano
,
C. P.
Gomes
,
R.
Gomez-Bombarelli
,
C.
Balaji Gopal
,
J. M.
Gregoire
,
J. C.
Grossman
,
P.
Herring
,
L.
Hung
,
T. F.
Jaramillo
,
L.
King
,
H.-K.
Kwon
,
R.
Maekawa
,
A. M.
Minor
,
J. H.
Montoya
,
T.
Mueller
,
C.
Ophus
,
K.
Rajan
,
R.
Ramprasad
,
B.
Rohr
,
D.
Schweigert
,
Y.
Shao-Horn
,
Y.
Suga
,
S. K.
Suram
,
V.
Viswanathan
,
J. F.
Whitacre
,
A. P.
Willard
,
O.
Wodo
,
C.
Wolverton
, and
B. D.
Storey
, “
The materials research platform: Defining the requirements from user stories
,”
Matter
1
(
6
),
1433
1438
(
2019
).
91.
H.-K.
Kwon
,
C. B.
Gopal
,
J.
Kirschner
,
S.
Caicedo
, and
B. D.
Storey
, “
A user-centered approach to designing an experimental laboratory data platform
,” arXiv:2007.14443 (
2020
).
92.
C. B.
Wahl
,
M.
Aykol
,
J. H.
Swisher
,
J. H.
Montoya
,
S. K.
Suram
, and
C. A.
Mirkin
, “
Machine learning-accelerated design and synthesis of polyelemental heterostructure
,”
Sci. Adv.
7
(
52
),
eabj5505
(
2021
).
You do not currently have access to this content.