This Review highlights basic and transition metal conducting and semiconducting oxides. We discuss their material and electronic properties with an emphasis on the crystal, electronic, and band structures. The goal of this Review is to present a current compilation of material properties and to summarize possible uses and advantages in device applications. We discuss Ga2O3, Al2O3, In2O3, SnO2, ZnO, CdO, NiO, CuO, and Sc2O3. We outline the crystal structure of the oxides, and we present lattice parameters of the stable phases and a discussion of the metastable polymorphs. We highlight electrical properties such as bandgap energy, carrier mobility, effective carrier masses, dielectric constants, and electrical breakdown field. Based on literature availability, we review the temperature dependence of properties such as bandgap energy and carrier mobility among the oxides. Infrared and Raman modes are presented and discussed for each oxide providing insight into the phonon properties. The phonon properties also provide an explanation as to why some of the oxide parameters experience limitations due to phonon scattering such as carrier mobility. Thermal properties of interest include the coefficient of thermal expansion, Debye temperature, thermal diffusivity, specific heat, and thermal conductivity. Anisotropy is evident in the non-cubic oxides, and its impact on bandgap energy, carrier mobility, thermal conductivity, coefficient of thermal expansion, phonon modes, and carrier effective mass is discussed. Alloys, such as AlGaO, InGaO, (AlxInyGa1−xy)2O3, ZnGa2O4, ITO, and ScGaO, were included where relevant as they have the potential to allow for the improvement and alteration of certain properties. This Review provides a fundamental material perspective on the application space of semiconducting oxide-based devices in a variety of electronic and optoelectronic applications.

1.
R. E.
Newnham
,
Properties of Materials: Anisotropy, Symmetry, Structure
(
Oxford University Press
,
2005
).
2.
K.
Momma
and
F.
Izumi
, “
Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
3.
H.
Jones
and
N.
Chako
, “
The theory of Brillouin zones and electronic states in crystals
,”
Phys. Today
15
(
1
),
66
(
1962
).
4.
F.
Bassani
,
G. P.
Parravicini
,
R. A.
Ballinger
, and
J. L.
Birman
, “
Electronic states and optical transitions in solids
,”
Phys. Today
29
(
3
),
58
(
1976
).
5.
M.
Cardona
and
Y. Y.
Peter
,
Fundamentals of Semiconductors
(
Springer
,
2005
).
6.
D.
Smith
and
C.
Mailhiot
, “
Theory of semiconductor superlattice electronic structure
,”
Rev. Mod. Phys.
62
,
173
(
1990
).
7.
M.
Burt
, “
An exact formulation of the envelope function method for the determination of electronic states in semiconductor microstructures
,”
Semicond. Sci. Technol.
3
,
739
(
1988
).
8.
H.
Dong
,
S.
Long
,
H.
Sun
,
X.
Zhao
,
Q.
He
,
Y.
Qin
,
G.
Jian
,
X.
Zhou
,
Y.
Yu
,
W.
Guo
,
W.
Xiong
,
W.
Hao
,
Y.
Zhang
,
H.
Xue
,
X.
Xiang
,
Z.
Yu
,
H.
Lv
,
Q.
Liu
, and
M.
Liu
, “
Fast switching β-Ga2O3 power MOSFET with a trench-gate structure
,”
IEEE Electron Device Lett.
40
,
1385
1388
(
2019
).
9.
P.
Mukhopadhyay
and
W. V.
Schoenfeld
, “
High responsivity tin gallium oxide schottky ultraviolet photodetectors
,”
J. Vac. Sci. Technol. A
38
,
013403
(
2020
).
10.
X.
Chen
,
F.
Ren
,
S.
Gu
, and
J.
Ye
, “
Review of gallium-oxide-based solar-blind ultraviolet photodetectors
,”
Photonics Res.
7
,
381
415
(
2019
).
11.
D.
Zhang
,
Z.
Du
,
M.
Ma
,
W.
Zheng
,
S.
Liu
, and
F.
Huang
, “
Enhanced performance of solar-blind ultraviolet photodetector based on Mg-doped amorphous gallium oxide film
,”
Vacuum
159
,
204
208
(
2019
).
12.
A. J.
Green
,
K. D.
Chabak
,
M.
Baldini
,
N.
Moser
,
R.
Gilbert
,
R. C.
Fitch
,
G.
Wagner
,
Z.
Galazka
,
J.
Mccandless
,
A.
Crespo
,
K.
Leedy
, and
G. H.
Jessen
, “
β-Ga2O3 MOSFETs for radio frequency operation
,”
IEEE Electron Device Lett.
38
,
790
793
(
2017
).
13.
A. V.
Almaev
,
E. V.
Chernikov
,
N. A.
Davletkildeev
, and
D. V.
Sokolov
, “
Oxygen sensors based on gallium oxide thin films with addition of chromium
,”
Superlattices Microstruct.
139
,
106392
(
2020
).
14.
S.
Pearton
,
J.
Yang
,
P. H.
Cary
,
I. V. F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
, 0
11301
(
2018
).
15.
R.
Roy
,
V.
Hill
, and
E.
Osborn
, “
Polymorphism of Ga2O3 and the system Ga2O3-H2O
,”
J. Am. Chem. Soc.
74
,
719
722
(
1952
).
16.
I.
Cora
,
F.
Mezzadri
,
F.
Boschi
,
M.
Bosi
,
M.
Čaplovičová
,
G.
Calestani
,
I.
Dódony
,
B.
Pécz
, and
R.
Fornari
, “
The real structure of ε-Ga2O3 and its relation to κ-phase
,”
CrystEngComm
19
,
1509
1516
(
2017
).
17.
M.
Kneiß
,
A.
Hassa
,
D.
Splith
,
C.
Sturm
,
H.
Von Wenckstern
,
T.
Schultz
,
N.
Koch
,
M.
Lorenz
, and
M.
Grundmann
, “
Tin-assisted heteroepitaxial PLD-growth of κ-Ga2O3 thin films with high crystalline quality
,”
APL Mater.
7
,
022516
(
2019
).
18.
S.
Stepanov
,
V.
Nikolaev
,
V.
Bougrov
, and
A.
Romanov
, “
Gallium oxide: Properties and applications—A review
,”
Rev. Adv. Mater. Sci
44
,
63
86
(
2016
).
19.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
, “
First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases
,”
Phys. Rev. B
74
,
195123
(
2006
).
20.
S.
Yoshioka
,
H.
Hayashi
,
A.
Kuwabara
,
F.
Oba
,
K.
Matsunaga
, and
I.
Tanaka
, “
Structures and energetics of Ga2O3 polymorphs
,”
J. Phys.: Condens. Matter
19
,
346211
(
2007
).
21.
M.
Marezio
and
J.
Remeika
, “
Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2−xFexO3
,”
J. Chem. Phys.
46
,
1862
1865
(
1967
).
22.
M.
Zinkevich
,
F. M.
Morales
,
H.
Nitsche
,
M.
Ahrens
,
M.
Rühle
, and
F.
Aldinger
, “
Microstructural and thermodynamic study of γ-Ga2O3
,”
Z. Metallkunde
95
,
756
762
(
2004
).
23.
K.
Pohl
, “
Hydrothermale bildung von γ-Ga2O3
,”
Naturwissenschaften
55
,
82
82
(
1968
).
24.
C. O.
Areán
,
A. L.
Bellan
,
M. P.
Mentruit
,
M. R.
Delgado
, and
G. T.
Palomino
, “
Preparation and characterization of mesoporous γ-Ga2O3
,”
Microporous Mesoporous Mater.
40
,
35
42
(
2000
).
25.
T.
Oshima
,
T.
Nakazono
,
A.
Mukai
, and
A.
Ohtomo
, “
Epitaxial growth of γ-Ga2O3 films by MIST chemical vapor deposition
,”
J. Cryst. Growth
359
,
60
63
(
2012
).
26.
H. Y.
Playford
,
A. C.
Hannon
,
E. R.
Barney
, and
R. I.
Walton
, “
Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction
,”
Chemistry
19
,
2803
2813
(
2013
).
27.
M.
Zinkevich
and
F.
Aldinger
, “
Thermodynamic assessment of the gallium-oxygen system
,”
J. Am. Ceram. Soc.
87
,
683
691
(
2004
).
28.
S.-D.
Guo
and
H.-M.
Du
, “
Piezoelectric properties of Ga2O3: A first-principle study
,”
Eur. Phys. J. B
93
,
7
(
2020
).
29.
C. T.
Prewitt
,
R. D.
Shannon
,
D. B.
Rogers
, and
A. W.
Sleight
, “
C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure
,”
Inorg. Chem.
8
,
1985
1993
(
1969
).
30.
M.
Feneberg
,
J.
Bläsing
,
T.
Sekiyama
,
K.
Ota
,
K.
Akaiwa
,
K.
Ichino
, and
R.
Goldhahn
, “
Anisotropic phonon properties and effective electron mass in α-Ga2O3
,”
Appl. Phys. Lett.
114
,
142102
(
2019
).
31.
Z.
Cheng
,
M.
Hanke
,
P.
Vogt
,
O.
Bierwagen
, and
A.
Trampert
, “
Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based x-ray diffraction
,”
Appl. Phys. Lett.
111
,
162104
(
2017
).
32.
J.
Åhman
,
G.
Svensson
, and
J.
Albertsson
, “
A reinvestigation of β-gallium oxide
,”
Acta Crystallogr. Sect. C
52
,
1336
1338
(
1996
).
33.
H.
He
,
M. A.
Blanco
, and
R.
Pandey
, “
Electronic and thermodynamic properties of β-Ga2O3
,”
Appl. Phys. Lett.
88
,
261904
(
2006
).
34.
J.
Böhm
, “
Über galliumoxyd und-hydroxyd
,”
Angew. Chem.
53
,
131
(
1940
).
35.
J.
Kohn
,
G.
Katz
, and
J.
Broder
, “
Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3
,”
Am. Miner.
42
,
398
407
(
1957
).
36.
S.
Geller
, “
Crystal structure of β-Ga2O3
,”
J. Chem. Phys.
33
,
676
684
(
1960
).
37.
G.
Wolten
and
A.
Chase
, “
Determination of the point group of β-Ga2O3 from morphology and physical properties
,”
J. Solid State Chem.
16
,
377
383
(
1976
).
38.
S.
Geller
, “
On the structure of β-Ga2O3
,”
J. Solid State Chem.
20
,
209
210
(
1977
).
39.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
, “
Anisotropic thermal conductivity in single crystal β-gallium oxide
,”
Appl. Phys. Lett.
106
,
111909
(
2015
).
40.
S.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
, “
Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETs
,”
J. Appl. Phys.
124
,
220901
(
2018
).
41.
W.
Mu
,
Z.
Jia
,
Y.
Yin
,
Q.
Hu
,
Y.
Li
,
B.
Wu
,
J.
Zhang
, and
X.
Tao
, “
High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method
,”
J. Alloys Compd.
714
,
453
458
(
2017
).
42.
S.
Knight
,
A.
Mock
,
R.
Korlacki
,
V.
Darakchieva
,
B.
Monemar
,
Y.
Kumagai
,
K.
Goto
,
M.
Higashiwaki
, and
M.
Schubert
, “
Electron effective mass in Sn-doped monoclinic single crystal β-gallium oxide determined by mid-infrared optical hall effect
,”
Appl. Phys. Lett.
112
, 0
12103
(
2018
).
43.
A.
Fiedler
,
R.
Schewski
,
Z.
Galazka
, and
K.
Irmscher
, “
Static dielectric constant of β-Ga2O3 perpendicular to the principal planes (100), (010), and (001)
,”
ECS J. Solid State Sci. Technol.
8
,
Q3083
(
2019
).
44.
M.
Schubert
,
R.
Korlacki
,
S.
Knight
,
T.
Hofmann
,
S.
Schöche
,
V.
Darakchieva
,
E.
Janzén
,
B.
Monemar
,
D.
Gogova
,
Q.-T.
Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
,
K.
Goto
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals
,”
Phys. Rev. B
93
,
125209
(
2016
).
45.
F.
Orlandi
,
F.
Mezzadri
,
G.
Calestani
,
F.
Boschi
, and
R.
Fornari
, “
Thermal expansion coefficients of β-Ga2O3 single crystals
,”
Appl. Phys. Express
8
,
111101
(
2015
).
46.
J.
Remeika
, U.S. patent 3075831 (January 29,
1963
).
47.
A.
Chase
, “
Growth of β-Ga2O3 by the Verneuil technique
,”
J. Am. Ceram. Soc.
47
,
470
(
1964
).
48.
M.
Lorenz
,
J.
Woods
, and
R.
Gambino
, “
Some electrical properties of the semiconductor β-Ga2O3
,”
J. Phys. Chem. Solids
28
,
403
404
(
1967
).
49.
T.
Matsumoto
,
M.
Aoki
,
A.
Kinoshita
, and
T.
Aono
, “
Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3
,”
Jpn. J. Appl. Phys., Part 1
13
,
1578
(
1974
).
50.
H.
Juskowiak
and
A.
Pajaczkowska
, “
Chemical transport of β-Ga2O3 using chlorine as a transporting agent
,”
J. Mater. Sci.
21
,
3430
3434
(
1986
).
51.
A.
Pajaczkowska
and
H.
Juskowiak
, “
On the chemical transport of gallium oxide in the Ga2O3/H-Cl system
,”
J. Mater. Sci.
21
,
3435
3439
(
1986
).
52.
V.
Vasiltsiv
and
Y.
Zakarko
,
Zh. Prikl. Spektrosk.
39
,
423
428
(
1983
).
53.
Y.
Tomm
,
P.
Reiche
,
D.
Klimm
, and
T.
Fukuda
, “
Czochralski grown Ga2O3 crystals
,”
J. Cryst. Growth
220
,
510
514
(
2000
).
54.
Z.
Galazka
,
R.
Uecker
,
K.
Irmscher
,
M.
Albrecht
,
D.
Klimm
,
M.
Pietsch
,
M.
Brützam
,
R.
Bertram
,
S.
Ganschow
, and
R.
Fornari
, “
Czochralski growth and characterization of β-Ga2O3 single crystals
,”
Cryst. Res. Technol.
45
,
1229
1236
(
2010
).
55.
Z.
Galazka
,
K.
Irmscher
,
R.
Uecker
,
R.
Bertram
,
M.
Pietsch
,
A.
Kwasniewski
,
M.
Naumann
,
T.
Schulz
,
R.
Schewski
,
D.
Klimm
, and
M.
Bickermann
, “
On the bulk β-Ga2O3 single crystals grown by the Czochralski method
,”
J. Cryst. Growth
404
,
184
191
(
2014
).
56.
Z.
Galazka
,
R.
Uecker
,
D.
Klimm
,
K.
Irmscher
,
M.
Naumann
,
M.
Pietsch
,
A.
Kwasniewski
,
R.
Bertram
,
S.
Ganschow
, and
M.
Bickermann
, “
Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method
,”
ECS J. Solid State Sci. Technol.
6
,
Q3007
(
2016
).
57.
K.
Irmscher
,
Z.
Galazka
,
M.
Pietsch
,
R.
Uecker
, and
R.
Fornari
, “
Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method
,”
J. Appl. Phys.
110
,
063720
(
2011
).
58.
V.
Vasyltsiv
,
Y. I.
Rym
, and
Y. M.
Zakharko
, “
Optical absorption and photoconductivity at the band edge of β-Ga2−xInxO3
,”
Phys. Status Solidi (b)
195
,
653
658
(
1996
).
59.
N.
Ueda
,
H.
Hosono
,
R.
Waseda
, and
H.
Kawazoe
, “
Anisotropy of electrical and optical properties in β-Ga2O3 single crystals
,”
Appl. Phys. Lett.
71
,
933
935
(
1997
).
60.
Y.
Tomm
,
J.
Ko
,
A.
Yoshikawa
, and
T.
Fukuda
, “
Floating zone growth of β-Ga2O3: A new window material for optoelectronic device applications
,”
Sol. Energy Mater. Solar cells
66
,
369
374
(
2001
).
61.
E. G.
Víllora
,
K.
Shimamura
,
Y.
Yoshikawa
,
K.
Aoki
, and
N.
Ichinose
, “
Large-size β-Ga2O3 single crystals and wafers
,”
J. Cryst. Growth
270
,
420
426
(
2004
).
62.
H.
Aida
,
K.
Nishiguchi
,
H.
Takeda
,
N.
Aota
,
K.
Sunakawa
, and
Y.
Yaguchi
, “
Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method
,”
Jpn. J. Appl. Phys.
47
,
8506
(
2008
).
63.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
64.
N.
Ueda
,
H.
Hosono
,
R.
Waseda
, and
H.
Kawazoe
, “
Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals
,”
Appl. Phys. Lett.
70
,
3561
3563
(
1997
).
65.
Z.
Galazka
,
S.
Ganschow
,
A.
Fiedler
,
R.
Bertram
,
D.
Klimm
,
K.
Irmscher
,
R.
Schewski
,
M.
Pietsch
,
M.
Albrecht
, and
M.
Bickermann
, “
Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al
,”
J. Cryst. Growth
486
,
82
90
(
2018
).
66.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
,
142106
(
2010
).
67.
Z.
Galazka
,
K.
Irmscher
,
R.
Schewski
,
I. M.
Hanke
,
M.
Pietsch
,
S.
Ganschow
,
D.
Klimm
,
A.
Dittmar
,
A.
Fiedler
,
T.
Schroeder
, and
M.
Bickermann
, “
Czochralski-grown bulk β-Ga2O3 single crystals doped with mono-, di-, tri-, and tetravalent ions
,”
J. Cryst. Growth
529
,
125297
(
2020
).
68.
T.
Oshima
,
T.
Okuno
, and
S.
Fujita
, “
Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors
,”
Jpn. J. Appl. Phys., Part 1
46
,
7217
(
2007
).
69.
T.
Kawaharamura
,
G. T.
Dang
, and
M.
Furuta
, “
Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel MIST chemical vapor deposition
,”
Jpn. J. Appl. Phys., Part 1
51
,
040207
(
2012
).
70.
M.
Razeghi
,
J.-H.
Park
,
R.
McClintock
,
D.
Pavlidis
,
F. H.
Teherani
,
D. J.
Rogers
,
B. A.
Magill
,
G. A.
Khodaparast
,
Y.
Xu
,
J.
Wu
, and
V. P.
Dravid
, “
A review of the growth, doping, and applications of beta-Ga2O3 thin films
,”
Proc. SPIE
10533
,
105330R
(
2018
).
71.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Villora
,
K.
Shimamura
, and
S.
Yamakoshi
, “
Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy
,”
Appl. Phys. Express
5
,
035502
(
2012
).
72.
H.
Okumura
,
M.
Kita
,
K.
Sasaki
,
A.
Kuramata
,
M.
Higashiwaki
, and
J. S.
Speck
, “
Systematic investigation of the growth rate of β-Ga2O3 (010) by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Express
7
,
095501
(
2014
).
73.
N.
Moser
,
J.
McCandless
,
A.
Crespo
,
K.
Leedy
,
A.
Green
,
A.
Neal
,
S.
Mou
,
E.
Ahmadi
,
J.
Speck
,
K.
Chabak
,
N.
Peixoto
, and
G.
Jessen
, “
Ge-doped β-Ga2O3 MOSFETs
,”
IEEE Electron Device Lett.
38
,
775
778
(
2017
).
74.
R. K.
Ramachandran
,
J.
Dendooven
,
J.
Botterman
,
S. P.
Sree
,
D.
Poelman
,
J. A.
Martens
,
H.
Poelman
, and
C.
Detavernier
, “
Plasma enhanced atomic layer deposition of Ga2O3 thin films
,”
J. Mater. Chem. A
2
,
19232
19238
(
2014
).
75.
V. D.
Wheeler
,
N.
Nepal
,
D. R.
Boris
,
S. B.
Qadri
,
L. O.
Nyakiti
,
A.
Lang
,
A.
Koehler
,
G.
Foster
,
S. G.
Walton
,
C. R.
Eddy
, Jr.
, and
D. J.
Meyer
, “
Phase control of crystalline Ga2O3 films by plasma-enhanced atomic layer deposition
,”
Chem. Mater.
32
,
1140
1152
(
2020
).
76.
Y.
Zhang
,
F.
Alema
,
A.
Mauze
,
O. S.
Koksaldi
,
R.
Miller
,
A.
Osinsky
, and
J. S.
Speck
, “
MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature
,”
APL Mater.
7
,
022506
(
2019b
).
77.
F.
Alema
,
B.
Hertog
,
A.
Osinsky
,
P.
Mukhopadhyay
,
M.
Toporkov
, and
W. V.
Schoenfeld
, “
Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD
,”
J. Cryst. Growth
475
,
77
82
(
2017
).
78.
H.
Murakami
,
K.
Nomura
,
K.
Goto
,
K.
Sasaki
,
K.
Kawara
,
Q. T.
Thieu
,
R.
Togashi
,
Y.
Kumagai
,
M.
Higashiwaki
,
A.
Kuramata
,
S.
Yamakoshi
,
B.
Monemar
, and
A.
Koukitu
, “
Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy
,”
Appl. Phys. Express
8
,
015503
(
2014
).
79.
N.
Blumenschein
,
T.
Paskova
, and
J. F.
Muth
, “
Effect of growth pressure on PLD-deposited gallium oxide thin films for deep-UV photodetectors
,”
Phys. Status Solidi (a)
216
,
1900098
(
2019
).
80.
F.
Shan
,
G.
Liu
,
W.
Lee
,
G.
Lee
,
I.
Kim
, and
B.
Shin
, “
Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition
,”
J. Appl. Phys.
98
,
023504
(
2005
).
81.
Z.
Hajnal
,
J.
Miró
,
G.
Kiss
,
F.
Réti
,
P.
Deák
,
R. C.
Herndon
, and
J. M.
Kuperberg
, “
Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3
,”
J. Appl. Phys.
86
,
3792
3796
(
1999
).
82.
K.
Yamaguchi
, “
First principles study on electronic structure of β-Ga2O3
,”
Solid state Commun.
131
,
739
744
(
2004
).
83.
L.
Zhang
,
J.
Yan
,
Y.
Zhang
,
T.
Li
, and
X.
Ding
, “
First-principles study on electronic structure and optical properties of n-doped p-type β-Ga2O3
,”
Sci. China Phys.
55
,
19
24
(
2012
).
84.
J. B.
Varley
and
A.
Schleife
, “
Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3
,”
Semicond. Sci. Technol.
30
,
024010
(
2015
).
85.
H.
Peelaers
and
C. G.
Van de Walle
, “
Brillouin zone and band structure of β-Ga2O3
,”
Phys. Status Solidi (b)
252
,
828
832
(
2015
).
86.
A.
Mock
,
R.
Korlacki
,
C.
Briley
,
V.
Darakchieva
,
B.
Monemar
,
Y.
Kumagai
,
K.
Goto
,
M.
Higashiwaki
, and
M.
Schubert
, “
Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3
,”
Phys. Rev. B
96
,
245205
(
2017
).
87.
C.
Janowitz
,
V.
Scherer
,
M.
Mohamed
,
A.
Krapf
,
H.
Dwelk
,
R.
Manzke
,
Z.
Galazka
,
R.
Uecker
,
K.
Irmscher
,
R.
Fornari
,
M.
Michling
,
D.
Schmeißer
,
J. R.
Weber
,
J. B.
Varley
, and
C. G.
Van de Walle
, “
Experimental electronic structure of In2O3 and Ga2O3
,”
New J. Phys.
13
,
085014
(
2011
).
88.
S.
Mu
,
H.
Peelaers
,
Y.
Zhang
,
M.
Wang
, and
C. G.
Van de Walle
, “
Orientation-dependent band offsets between (AlxGa1−x)2O3 and Ga2O3
,”
Appl. Phys. Lett.
117
,
252104
(
2020
).
89.
E.
Ahmadi
,
Y.
Oshima
,
F.
Wu
, and
J. S.
Speck
, “
Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy
,”
Semicond. Sci. Technol.
32
,
035004
(
2017
).
90.
A.
Kumar
,
K.
Ghosh
, and
U.
Singisetti
, “
Low field transport calculation of 2-dimensional electron gas in β-(AlxGa1−x)2O3/Ga2O3 heterostructures
,”
J. Appl. Phys.
128
,
105703
(
2020
).
91.
M.
Feneberg
,
M.
Winkler
,
K.
Lange
,
M.
Wieneke
,
H.
Witte
,
A.
Dadgar
, and
R.
Goldhahn
, “
Valence band tomography of wurtzite GaN by spectroscopic ellipsometry
,”
Appl. Phys. Express
11
,
101001
(
2018
).
92.
J.
Furthmüller
and
F.
Bechstedt
, “
Quasiparticle bands and spectra of Ga2O3 polymorphs
,”
Phys. Rev. B
93
,
115204
(
2016
).
93.
F.
Bechstedt
,
Many-Body Approach to Electronic Excitations
(
Springer
,
2016
).
94.
C.
Sturm
,
R.
Schmidt-Grund
,
C.
Kranert
,
J.
Furthmüller
,
F.
Bechstedt
, and
M.
Grundmann
, “
Dipole analysis of the dielectric function of color dispersive materials: Application to monoclinic Ga2O3
,”
Phys. Rev. B
94
,
035148
(
2016
).
95.
T.
Onuma
,
S.
Saito
,
K.
Sasaki
,
T.
Masui
,
T.
Yamaguchi
,
T.
Honda
, and
M.
Higashiwaki
, “
Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy
,”
Jpn. J. Appl. Phys., Part 1
54
,
112601
(
2015
).
96.
H.
Tippins
, “
Optical absorption and photoconductivity in the band edge of β-Ga2O3
,”
Phys. Rev.
140
,
A316
(
1965
).
97.
M.
Rebien
,
W.
Henrion
,
M.
Hong
,
J.
Mannaerts
, and
M.
Fleischer
, “
Optical properties of gallium oxide thin films
,”
Appl. Phys. Lett.
81
,
250
252
(
2002
).
98.
P.
Wu
,
Y.
Gao
,
R.
Kershaw
,
K.
Dwight
, and
A.
Wold
, “
Growth and characterization of gallium (iii) oxide films
,”
Mater. Res. Bull.
25
,
357
363
(
1990
).
99.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
, “
Deep-ultraviolet transparent conductive β-Ga2O3 thin films
,”
Appl. Phys. Lett.
77
,
4166
4168
(
2000
).
100.
J.
Manifacier
,
J.
Gasiot
, and
J.
Fillard
, “
A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film
,”
J. Phys. E
9
,
1002
(
1976
).
101.
A.
Ortiz
,
J.
Alonso
,
E.
Andrade
, and
C.
Urbiola
, “
Structural and optical characteristics of gallium oxide thin films deposited by ultrasonic spray pyrolysis
,”
J. Electrochem. Soc.
148
, F
26
(
2001
).
102.
D.-W.
Choi
,
K.-B.
Chung
, and
J.-S.
Park
, “
Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water
,”
Thin Solid Films
546
,
31
34
(
2013
).
103.
Y.
Kang
,
K.
Krishnaswamy
,
H.
Peelaers
, and
C. G.
Van de Walle
, “
Fundamental limits on the electron mobility of β-Ga2O3
,”
J. Phys.: Condens. Matter
29
,
234001
(
2017
).
104.
H.-G.
Kim
and
W.-T.
Kim
, “
Optical properties of β-Ga2O3 and α-Ga2O3: Co thin films grown by spray pyrolysis
,”
J. Appl. Phys.
62
,
2000
2002
(
1987
).
105.
J.
Pankove
,
Optical Processes on Semiconductors
(
Dover Publication
,
New York
,
1971
).
106.
J.
Hao
and
M.
Cocivera
, “
Optical and luminescent properties of undoped and rare-earth-doped Ga2O3 thin films deposited by spray pyrolysis
,”
J. Phys. D: Appl. Phys.
35
,
433
(
2002
).
107.
F.
Ricci
,
F.
Boschi
,
A.
Baraldi
,
A.
Filippetti
,
M.
Higashiwaki
,
A.
Kuramata
,
V.
Fiorentini
, and
R.
Fornari
, “
Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3
,”
J. Phys.: Condens. Matter
28
,
224005
(
2016
).
108.
P.
Lautenschlager
,
M.
Garriga
,
S.
Logothetidis
, and
M.
Cardona
, “
Interband critical points of GaAs and their temperature dependence
,”
Phys. Rev. B
35
,
9174
9189
(
1987
).
109.
S.
Rafique
,
L.
Han
,
S.
Mou
, and
H.
Zhao
, “
Temperature and doping concentration dependence of the energy band gap in β-Ga2O3 thin films grown on sapphire
,”
Opt. Mater. Express
7
,
3561
3570
(
2017
).
110.
A.
Mock
,
J.
VanDerslice
,
R.
Korlacki
,
J. A.
Woollam
, and
M.
Schubert
, “
Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga2O3
,”
Appl. Phys. Lett.
112
,
041905
(
2018
).