Because of their unique structural, chemical, optical, and biological properties, metal phosphate coatings are highly versatile for various applications. Thermodynamically facile and favorable functionalization of phosphate moieties (like orthophosphates, metaphosphates, pyrophosphates, and phosphorus-doped oxides) makes them highly sought-after functional materials as well. Being a sequential self-limiting technique, atomic layer deposition has been used for producing high-quality conformal coatings with sub-nanometer control. In this review, different atomic layer deposition-based strategies used for the deposition of phosphate materials are discussed. The mechanisms underlying those strategies are discussed, highlighting advantages and limitations of specific process chemistries. In a second part, the application of metal phosphates deposited through atomic layer deposition in energy storage and other emerging technologies such as electrocatalysis, biomedical, or luminescence applications are summarized. Next to this, perspectives on untangled knowledge gaps and opportunities for future research are also emphasized.

1.
S. M.
George
, “
Atomic layer deposition: An overview
,”
Chem. reviews
110
,
111
131
(
2010
).
2.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
, “
Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends
,”
J. Appl. Phys.
113
,
021301
(
2013
).
3.
R. L.
Puurunen
, “
Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
,”
J. Appl. Phys.
97
,
121301
(
2005
).
4.
T.
Tynell
and
M.
Karppinen
, “
Atomic layer deposition of ZnO: A review
,”
Semicond. Sci. Technol.
29
,
043001
(
2014
).
5.
J.-P.
Niemelä
,
G.
Marin
, and
M.
Karppinen
, “
Titanium dioxide thin films by atomic layer deposition: A review
,”
Semicond. Sci. Technol.
32
,
093005
(
2017
).
6.
D.
Hagen
,
M. E.
Pemble
, and
M.
Karppinen
, “
Atomic layer deposition of metals: Precursors and film growth
,”
Appl. Phys. Rev.
6
,
041309
(
2019
).
7.
M.
Mäntymäki
,
M.
Ritala
, and
M.
Leskelä
, “
Metal fluorides as lithium-ion battery materials: An atomic layer deposition perspective
,”
Coatings
8
,
277
(
2018
).
8.
N. P.
Dasgupta
,
X.
Meng
,
J. W.
Elam
, and
A. B.
Martinson
, “
Atomic layer deposition of metal sulfide materials
,”
Acc. Chem. Res.
48
,
341
348
(
2015
).
9.
A. K.
Padhi
, “
Effect of structure on the Fe3+\Fe2+ redox couple in iron phosphates
,”
J. Electrochem. Soc.
144
,
1609
(
1997
).
10.
M.
Nakayama
,
S.
Goto
,
Y.
Uchimoto
,
M.
Wakihara
, and
Y.
Kitajima
, “
Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material
,”
Chem. Mater.
16
,
3399
3401
(
2004
).
11.
N. V.
Phuong
,
K.
Lee
,
D.
Chang
,
M.
Kim
,
S.
Lee
, and
S.
Moon
, “
Zinc phosphate conversion coatings on magnesium alloys: A review
,”
Met. Mater. Int.
19
,
273
281
(
2013
).
12.
B.
Verma
and
R.
Baghel
, “
A review on luminescence properties in eu doped phosphate phosphors
,”
Int. J. Mater. Sci.
12
,
483
489
(
2017
).
13.
C.
Militzer
,
J.
Buchsbaum
,
V.
Dzhagan
,
D. R. T.
Zahn
,
H.
Wulff
,
C. A.
Helm
, and
W. A.
Goedel
, “
Atomic layer deposition of titanium phosphate from titanium tetrachloride and triethyl phosphate onto carbon fibers
,”
Adv. Mater. Interfaces
5
,
1800423
(
2018
).
14.
A. K.
Padhi
,
K. S.
Nanjundaswamy
, and
J. B.
Goodenough
, “
Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
,”
J. Electrochem. Soc.
144
,
1188
1194
(
1997
).
15.
Z.
Gong
and
Y.
Yang
, “
Recent advances in the research of polyanion-type cathode materials for Li-ion batteries
,”
Energy Environ. Sci.
4
,
3223
3242
(
2011
).
16.
C.
Masquelier
and
L.
Croguennec
, “
Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries
,”
Chem. Rev.
113
,
6552
6591
(
2013
).
17.
X.
Li
and
J.
Wang
, “
Phosphorus-based electrocatalysts: Black phosphorus, metal phosphides, and phosphates
,”
Adv. Mater. Interfaces
7
,
2000676
(
2020
).
18.
R. K.
Brow
, “
The structure of simple phosphate glasses
,”
J. Non-Cryst. Solids
263
,
1
28
(
2000
).
19.
J.
Su
,
T.
Tsuruoka
,
T.
Tsujita
,
Y.
Nishitani
,
K.
Nakura
, and
K.
Terabe
, “
Atomic layer deposition of a magnesium phosphate solid electrolyte
,”
Chem. Mater.
31
,
5566
5575
(
2019
).
20.
L.
Popović
,
D.
De Waal
, and
J.
Boeyens
, “
Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates
,”
J. Raman Spectrosc.
36
,
2
11
(
2005
).
21.
T.
Dobbelaere
,
A. K.
Roy
,
P.
Vereecken
, and
C.
Detavernier
, “
Atomic layer deposition of aluminum phosphate based on the plasma polymerization of trimethyl phosphate
,”
Chem. Mater.
26
,
6863
6871
(
2014
).
22.
G.
Socrates
,
Infrared and Raman Characteristic Group Frequencies: Tables and Charts
(
John Wiley & Sons
,
2004
).
23.
K.
Nakamoto
, “
Infrared and Raman spectra of inorganic and coordination compounds
,”
Handbook of Vibrational Spectroscopy
(
Wiley
,
2006
).
24.
M.
Nieminen
,
L.
Niinistö
, and
R.
Lappalainen
, “
Determination of P/Al ratio in phosphorus-doped aluminium oxide thin films by XRF, RBS and FTIR
,”
Microchim. Acta
119
,
13
22
(
1995
).
25.
P. J.
Pallister
and
S. T.
Barry
, “
Surface chemistry of group 11 atomic layer deposition precursors on silica using solid-state nuclear magnetic resonance spectroscopy
,”
J. Chem. Phys.
146
,
052812
(
2017
).
26.
M. J.
Young
,
A.
Yanguas-Gil
,
S.
Letourneau
,
M.
Coile
,
D.
Mandia
,
N. M.
Bedford
,
B.
Aoun
,
A. S.
Cavanagh
,
S. M.
George
, and
J. W.
Elam
, “
Probing the atomic-scale structure of amorphous aluminum oxide grown by atomic layer deposition
,”
ACS Appl. Mater. Interfaces
12
(
20
),
22804-22814
(
2020
).
27.
S. I.
Kol'tsov
,
A. N.
Volkova
, and
V. B.
Aleskovskii
, “
Preparation and investigation of the chemical composition of the products formed by successive chemisorption of titanium and phosphorus chlorides on the surface of silica gel
,”
J. Appl. Chem. USSR
42
,
980
984
(
1969
) [in Russian].
28.
S.
Shibata
, “
Thermal atomic layer deposition of lithium phosphorus oxynitride as a thin-film solid electrolyte
,”
J. Electrochem. Soc.
163
,
A2555
A2562
(
2016
).
29.
J.
Hämäläinen
,
J.
Holopainen
,
F.
Munnik
,
M.
Heikkilä
,
M.
Ritala
, and
M.
Leskelä
, “
Atomic layer deposition of aluminum and titanium phosphates
,”
J. Phys. Chem. C
116
,
5920
5925
(
2012
).
30.
M. K.
Wiedmann
,
D. H. K.
Jackson
,
Y. J.
Pagan-Torres
,
E.
Cho
,
J. A.
Dumesic
, and
T. F.
Kuech
, “
Atomic layer deposition of titanium phosphate on silica nanoparticles
,”
J. Vac. Sci. Technol. A
30
,
01A134
(
2012
).
31.
J.
Liu
,
Y.
Tang
,
B.
Xiao
,
T.-K.
Sham
,
R.
Li
, and
X.
Sun
, “
Atomic layer deposited aluminium phosphate thin films on N-doped CNTs
,”
RSC Adv.
3
,
4492
(
2013
).
32.
M.
Ishii
,
S.
Iwai
,
H.
Kawata
,
T.
Ueki
, and
Y.
Aoyagi
, “
Atomic layer epitaxy of AlP and its application to x-ray multilayer mirror
,”
J. Cryst. Growth
180
,
15
21
(
1997
).
33.
M.
Tiitta
,
E.
Nykänen
,
P.
Soininen
,
L.
Niinistö
,
M.
Leskelä
, and
R.
Lappalainen
, “
Preparation and characterization of phosphorus-doped aluminum oxide thin films
,”
Mater. Res. Bull.
33
,
1315
1323
(
1998
).
34.
B.
Xiao
,
B.
Wang
,
J.
Liu
,
K.
Kaliyappan
,
Q.
Sun
,
Y.
Liu
,
G.
Dadheech
,
M. P.
Balogh
,
L.
Yang
,
T.-K.
Sham
,
R.
Li
,
M.
Cai
, and
X.
Sun
, “
Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating
,”
Nano Energy
34
,
120
130
(
2017
).
35.
S.
Knohl
,
A. K.
Roy
,
R.
Lungwitz
,
S.
Spange
,
T.
Mäder
,
D. J.
Nestler
,
B.
Wielage
,
S.
Schulze
,
M.
Hietschold
,
H.
Wulff
,
C. A.
Helm
,
F.
Seidel
,
D. R. T.
Zahn
, and
W. A.
Goedel
, “
Nonaqueous atomic layer deposition of aluminum phosphate
,”
ACS Appl. Mater. Interfaces
5
,
6161
6167
(
2013
).
36.
N.
Hornsveld
,
W. M. M.
Kessels
, and
M.
Creatore
, “
Atomic layer deposition of aluminum phosphate using AlMe3, PO(OMe)3, and O2 plasma: Film growth and surface reactions
,”
J. Phys. Chem. C
124
,
5495
5505
(
2020
).
37.
L.
Henderick
,
H.
Hamed
,
F.
Mattelaer
,
M. M.
Minjauw
,
J.
Meersschaut
,
J.
Dendooven
,
M.
Safari
,
P. M.
Vereecken
, and
C.
Detavernier
, “
Atomic layer deposition of nitrogen doped Al-phosphate coatings for Li-ion battery applications
,”
ACS Appl. Mater. Interfaces
12
,
25949
25960
(
2020
).
38.
V.
Brei
,
V.
Kaspersky
, and
N.
Gulyanitskaya
, “
Synthesis and study of boron phosphate and titanium silicate compounds on silica surface
,”
React. Kinet. Catal. Lett.
50
,
415
421
(
1993
).
39.
M.
Putkonen
,
T.
Sajavaara
,
P.
Rahkila
,
L.
Xu
,
S.
Cheng
,
L.
Niinistö
, and
H. J.
Whitlow
, “
Atomic layer deposition and characterization of biocompatible hydroxyapatite thin films
,”
Thin Solid Films
517
,
5819
5824
(
2009
).
40.
A.
Ananda Sagari
,
J.
Malm
,
M.
Laitinen
,
P.
Rahkila
,
M.
Hongqiang
,
M.
Putkonen
,
M.
Karppinen
,
H. J.
Whitlow
, and
T.
Sajavaara
, “
Influence of titanium-substrate roughness on Ca–P–O thin films grown by atomic layer deposition
,”
Thin Solid Films
531
,
26
31
(
2013
).
41.
S. W.
Park
,
D. Y.
Jang
,
J. W.
Kim
, and
J. H.
Shim
, “
Fabrication of ion conductive tin oxide-phosphate amorphous thin films by atomic layer deposition
,”
J. Vac. Sci. Technol. A
33
,
041511
(
2015
).
42.
J.
Hämäläinen
,
J.
Holopainen
,
F.
Munnik
,
T.
Hatanpää
,
M.
Heikkilä
,
M.
Ritala
, and
M.
Leskelä
, “
Lithium phosphate thin films grown by atomic layer deposition
,”
J. Electrochem. Soc.
159
,
A259
A263
(
2012
).
43.
B.
Wang
,
J.
Liu
,
Q.
Sun
,
R.
Li
,
T.-K.
Sham
, and
X.
Sun
, “
Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries
,”
Nanotechnology
25
,
504007
(
2014
).
44.
M.
Létiche
,
E.
Eustache
,
J.
Freixas
,
A.
Demortière
,
V. D.
Andrade
,
L.
Morgenroth
,
P.
Tilmant
,
F.
Vaurette
,
D.
Troadec
,
P.
Roussel
,
T.
Brousse
, and
C.
Lethien
, “
Atomic layer deposition of functional layers for on chip 3D Li-ion all solid state microbattery
,”
Adv. Energy Mater.
7
,
1601402
(
2016
).
45.
A.
Werbrouck
,
F.
Mattelaer
,
M.
Minjauw
,
M.
Nisula
,
J.
Julin
,
F.
Munnik
,
J.
Dendooven
, and
C.
Detavernier
, “
Reaction pathways for atomic layer deposition with lithium hexamethyl disilazide, trimethyl phosphate, and oxygen plasma
,”
J. Phys. Chem. C
124
(
50
),
27829–27839
(
2020
).
46.
B.
Wang
,
J.
Liu
,
Q.
Sun
,
B.
Xiao
,
R.
Li
,
T.-K.
Sham
, and
X.
Sun
, “
Titanium dioxide/lithium phosphate nanocomposite derived from atomic layer deposition as a high-performance anode for lithium ion batteries
,”
Adv. Mater. Interfaces
3
,
1600369
(
2016
).
47.
S.
Deng
 et al., “
Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes
,”
Nano Energy
65
,
103988
(
2019
).
48.
A. C.
Kozen
,
A. J.
Pearse
,
C.-F.
Lin
,
M.
Noked
, and
G. W.
Rubloff
, “
Atomic layer deposition of the solid electrolyte LiPON
,”
Chem. Mater.
27
,
5324
5331
(
2015
).
49.
A. C.
Kozen
,
C.-F.
Lin
,
O.
Zhao
,
S. B.
Lee
,
G. W.
Rubloff
, and
M.
Noked
, “
Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase
,”
Chem. Mater.
29
,
6298
6307
(
2017
).
50.
C.-F.
Lin
,
M.
Noked
,
A. C.
Kozen
,
C.
Liu
,
O.
Zhao
,
K.
Gregorczyk
,
L.
Hu
,
S. B.
Lee
, and
G. W.
Rubloff
, “
Solid electrolyte lithium phosphorus oxynitride as a protective nanocladding layer for 3D high-capacity conversion electrodes
,”
ACS Nano
10
,
2693
2701
(
2016
).
51.
B.
Put
,
M. J.
Mees
,
N.
Hornsveld
,
S.
Hollevoet
,
A.
Sepúlveda
,
P. M.
Vereecken
,
W. M. M.
Kessels
, and
M.
Creatore
, “
Plasma-assisted ALD of LiPO(N) for solid state batteries
,”
J. Electrochem. Soc.
166
,
A1239
A1242
(
2019
).
52.
M.
Nisula
,
Y.
Shindo
,
H.
Koga
, and
M.
Karppinen
, “
Atomic layer deposition of lithium phosphorus oxynitride
,”
Chem. Mater.
27
,
6987
6993
(
2015
).
53.
A. J.
Pearse
,
T. E.
Schmitt
,
E. J.
Fuller
,
F.
El-Gabaly
,
C.-F.
Lin
,
K.
Gerasopoulos
,
A. C.
Kozen
,
A. A.
Talin
,
G.
Rubloff
, and
K. E.
Gregorczyk
, “
Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte
,”
Chem. Mater.
29
,
3740
3753
(
2017
).
54.
T.
Dobbelaere
,
F.
Mattelaer
,
A. K.
Roy
,
P.
Vereecken
, and
C.
Detavernier
, “
Plasma-enhanced atomic layer deposition of titanium phosphate as an electrode for lithium-ion batteries
,”
J. Mater. Chem. A
5
,
330
338
(
2017
).
55.
L.
Henderick
,
H.
Hamed
,
F.
Mattelaer
,
M.
Minjauw
,
M.
Nisula
,
J.
Meersschaut
,
J.
Dendooven
,
M.
Safari
,
P.
Vereecken
, and
C.
Detavernier
, “
Plasma enhanced atomic layer deposition of a (nitrogen doped) Ti phosphate coating for improved energy storage in Li-ion batteries
,”
J. Power Sources
497
,
229866
(
2021
).
56.
J.
Liu
,
M. N.
Banis
,
Q.
Sun
,
A.
Lushington
,
R.
Li
,
T.-K.
Sham
, and
X.
Sun
, “
Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries
,”
Adv. Mater.
26
,
6472
6477
(
2014
).
57.
B.
Xiao
,
J.
Liu
,
Q.
Sun
,
B.
Wang
,
M. N.
Banis
,
D.
Zhao
,
Z.
Wang
,
R.
Li
,
X.
Cui
,
T.-K.
Sham
, and
X.
Sun
, “
Unravelling the role of electrochemically active FePO4 coating by atomic layer deposition for increased high-voltage stability of LiNi0.5Mn1.5O4 Cathode Material
,”
Adv. Sci.
2
,
1500022
(
2015
).
58.
O.
Chernyaeva
,
V.
Kyashkin
,
A.
Ivleva
,
V.
Yrova
, and
E.
Solovyova
, “
The influence of process conditions on the phase composition of the LiFePO4 film obtained by the atomic layer method
,”
Polyhedron
157
,
297
300
(
2019
).
59.
K. B.
Gandrud
,
A.
Pettersen
,
O.
Nilsen
, and
H.
Fjellvåg
, “
High-performing iron phosphate for enhanced lithium ion solid state batteries as grown by atomic layer deposition
,”
J. Mater. Chem. A
1
,
9054
9059
(
2013
).
60.
A.
Brennhagen
,
K. B.
Kvamme
,
K. S.
Sverdlilje
, and
O.
Nilsen
, “
High power iron phosphate cathodes by atomic layer deposition
,”
Solid State Ionics
353
,
115377
(
2020
).
61.
T.
Dobbelaere
,
F.
Mattelaer
,
J.
Dendooven
,
P.
Vereecken
, and
C.
Detavernier
, “
Plasma-enhanced atomic layer deposition of iron phosphate as a positive electrode for 3D lithium-ion microbatteries
,”
Chem. Mater.
28
,
3435
3445
(
2016
).
62.
H. H.
Sønsteby
,
E.
Østreng
,
H.
Fjellvåg
, and
O.
Nilsen
, “
Atomic layer deposition of LaPO4 and Ca:LaPO4
,”
Chem. Vapor Depos.
20
,
269
273
(
2014
).
63.
H.
Yuan
,
B.
Luo
,
S. A.
Campbell
, and
W. L.
Gladfelter
, “
Atomic layer deposition of p-type phosphorus-doped zinc oxide films using diethylzinc, ozone and trimethylphosphite
,”
Electrochem. Solid-State Lett.
14
,
H181
(
2011
).
64.
T.
Tynell
,
R.
Okazaki
,
I.
Terasaki
,
H.
Yamauchi
, and
M.
Karppinen
, “
Electron doping of ALD-grown ZnO thin films through Al and P substitutions
,”
J. Mater. Sci.
48
,
2806
2811
(
2012
).
65.
T.
Dobbelaere
,
M.
Minjauw
,
T.
Ahmad
,
P.
Vereecken
, and
C.
Detavernier
, “
Plasma-enhanced atomic layer deposition of zinc phosphate
,”
J. Non-Cryst. Solids
444
,
43
48
(
2016
).
66.
V. D.
Palma
,
G.
Zafeiropoulos
,
T.
Goldsweer
,
W.
Kessels
,
M.
van de Sanden
,
M.
Creatore
, and
M.
Tsampas
, “
Atomic layer deposition of cobalt phosphate thin films for the oxygen evolution reaction
,”
Electrochem. Commun.
98
,
73
77
(
2019
).
67.
V.
Di Palma
,
H. C.
Knoops
,
W. M.
Kessels
, and
M.
Creatore
, “
Atomic layer deposition of cobalt phosphate from cobaltocene, trimethylphosphate, and O2 plasma
,”
J. Vac. Sci. Technol. A
38
,
022416
(
2020
).
68.
J.
Rongé
,
T.
Dobbelaere
,
L.
Henderick
,
M. M.
Minjauw
,
S. P.
Sree
,
J.
Dendooven
,
J. A.
Martens
, and
C.
Detavernier
, “
Bifunctional earth-abundant phosphate/phosphide catalysts prepared via atomic layer deposition for electrocatalytic water splitting
,”
Nanoscale Adv.
1
,
4166
4172
(
2019
).
69.
T.
Dobbelaere
,
F.
Mattelaer
,
P. M.
Vereecken
, and
C.
Detavernier
, “
Plasma-enhanced atomic layer deposition of vanadium phosphate as a lithium-ion battery electrode material
,”
J. Vac. Sci. Technol. A
35
,
041513
(
2017
).
70.
R. B.
Nuwayhid
,
A.
Jarry
,
G. W.
Rubloff
, and
K. E.
Gregorczyk
, “
Atomic layer deposition of sodium phosphorus oxynitride: A conformal solid-state sodium-ion conductor
,”
ACS Appl. Mater. Interfaces
12
,
21641
21650
(
2020
).
71.
L. E.
Black
,
A.
Cavalli
,
M. A.
Verheijen
,
J. E. M.
Haverkort
,
E. P. A. M.
Bakkers
, and
W. M. M.
Kessels
, “
Effective surface passivation of InP nanowires by atomic-layer-deposited Al2O3 with POx interlayer
,”
Nano Lett.
17
,
6287
6294
(
2017
).
72.
K.
Knemeyer
,
M. P.
Hermida
,
P.
Ingale
,
J.
Schmidt
,
J.
Kröhnert
,
R. N.
d'Alnoncourt
,
M.
Driess
, and
F.
Rosowski
, “
Mechanistic studies of atomic layer deposition on oxidation catalysts-AlOx and POx deposition
,”
Phys. Chem. Chem. Phys.
22
(
32
),
17999–18006
(
2020
).
73.
B.
Kalkofen
,
B.
Ahmed
,
S.
Beljakowa
,
M.
Lisker
,
Y.
Kim
, and
E. P.
Butte
, “
Atomic layer deposition of phosphorus oxide films as solid sources for doping of semiconductor structures
,”
IEEE 18th International Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2018
), pp
1
4
.
74.
A.
Malygin
,
S.
Koltsov
, and
V.
Aleskovskii
, “
Chemical composition of chromium and phosphorus-containing silica, synthesized by molecular stratification method
,”
Zh. Obshch. Khim.
50
,
2633
2636
(
1980
).
75.
O.
Nilsen
,
V.
Miikkulainen
,
K. B.
Gandrud
,
E.
Østreng
,
A.
Ruud
, and
H.
Fjellvåg
, “
Atomic layer deposition of functional films for Li-ion microbatteries
,”
Phys. Status Solidi A
211
,
357
367
(
2014
).
76.
V.
Lacivita
,
A. S.
Westover
,
A.
Kercher
,
N. D.
Phillip
,
G.
Yang
,
G.
Veith
,
G.
Ceder
, and
N. J.
Dudney
, “
Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon)
,”
J. Am. Chem. Soc.
140
,
11029
11038
(
2018
).
77.
D.
Saulys
,
V.
Joshkin
,
M.
Khoudiakov
,
T.
Kuech
,
A.
Ellis
,
S.
Oktyabrsky
, and
L.
McCaughan
, “
An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions
,”
J. Cryst. Growth
217
,
287
301
(
2000
).
78.
J.
Liu
,
B.
Xiao
,
M. N.
Banis
,
R.
Li
,
T.-K.
Sham
, and
X.
Sun
, “
Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries
,”
Electrochim. Acta
162
,
275
281
(
2015
).
79.
M. N.
Getz
,
P.-A.
Hansen
,
H.
Fjellvåg
, and
O.
Nilsen
, “
Luminescent properties of europium titanium phosphate thin films deposited by atomic layer deposition
,”
RSC Adv.
7
,
8051
8059
(
2017
).
80.
M.
Diskus
,
O.
Nilsen
, and
H.
Fjellvåg
, “
Thin films of cobalt oxide deposited on high aspect ratio supports by atomic layer deposition
,”
Chem. Vapor Depos.
17
,
135
140
(
2011
).
81.
K. B.
Kvamme
, “
Phosphites in atomic layer deposition, synthesis and characterisation using unconventional phosphorous precursors
,” M.Sc. thesis (
University of Oslo
,
2016
).
82.
P.
Hofmann
,
F.
Walther
,
M.
Rohnke
,
J.
Sann
,
W. G.
Zeier
, and
J.
Janek
, “
LATP and LiCoPO4 thin film preparation–Illustrating interfacial issues on the way to all-phosphate SSBs
,”
Solid State Ionics
342
,
115054
(
2019
).
83.
B. C.
Sales
, “
Phosphate glasses
,”
MRS Bull.
12
,
32
35
(
1987
).
84.
J. D.
Musgraves
,
J.
Hu
, and
L.
Calvez
,
Springer Handbook of Glass
(
Springer Nature
,
2019
).
85.
M. M.
Thackeray
,
W. I. F.
David
, and
J. B.
Goodenough
, “
Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0 < x < 2)
,”
Mater. Res. Bull.
17
,
785
793
(
1982
).
86.
J.
Xu
,
F.
Lin
,
M. M.
Doeff
, and
W.
Tong
, “
A review of Ni-based layered oxides for rechargeable Li-ion batteries
,”
J. Mater. Chem. A
5
,
874
901
(
2017
).
87.
K.
Zaghib
,
A.
Mauger
, and
C. M.
Julien
, in
Rechargeable Batteries: Materials, Technologies and New Trends
, edited by
Z.
Zhang
and
S. S.
Zhang
(
Springer International Publishing
,
Cham
,
2015
), pp
25
65
.
88.
G.
Hautier
,
A.
Jain
,
S. P.
Ong
,
B.
Kang
,
C.
Moore
,
R.
Doe
, and
G.
Ceder
, “
Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations
,”
Chem. Mater.
23
,
3495
3508
(
2011
).
89.
H.-T.
Fang
,
M.
Liu
,
D.-W.
Wang
,
T.
Sun
,
D.-S.
Guan
,
F.
Li
,
J.
Zhou
,
T.-K.
Sham
, and
H.-M.
Cheng
, “
Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays
,”
Nanotechnology
20
,
225701
(
2009
).
90.
C.
Gerbaldi
,
G.
Meligrana
,
S.
Bodoardo
,
A.
Tuel
, and
N.
Penazzi
, “
FePO4 nanoparticles supported on mesoporous SBA-15: Interesting cathode materials for Li-ion cells
,”
J. Power Sources
174
,
501
507
(
2007
).
91.
Z.
Wei
,
D.
Wang
,
X.
Yang
,
C.
Wang
,
G.
Chen
, and
F.
Du
, “
From crystalline to amorphous: an effective avenue to engineer high-performance electrode materials for sodium-ion batteries
,”
Adv. Mater. Interfaces
5
,
1800639
(
2018
).
92.
C.
Liu
,
Z. G.
Neale
, and
G.
Cao
, “
Understanding electrochemical potentials of cathode materials in rechargeable batteries
,”
Mater. Today
19
,
109
123
(
2016
).
93.
T.
Dobbelaere
, “
Plasma-enhanced atomic layer deposition of transition metal phosphates
,” Ph.D. thesis (
University of Ghent
,
2017
).
94.
A.
Manthiram
, “
A reflection on lithium-ion battery cathode chemistry
,”
Nat. Commun.
11
,
1550
(
2020
).
95.
C.
Guan
and
J.
Wang
, “
Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage
,”
Adv. Sci.
3
,
1500405
(
2016
).
96.
S.
Deng
,
B.
Xiao
,
B.
Wang
,
X.
Li
,
K.
Kaliyappan
,
Y.
Zhao
,
A.
Lushington
,
R.
Li
,
T. K.
Sham
,
H.
Wang
, and
X.
Sun
, “
New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes
,”
Nano Energy
38
,
19
27
(
2017
).
97.
J.
Liu
,
B.
Wang
,
Q.
Sun
,
R.
Li
,
T. K.
Sham
, and
X.
Sun
, “
Atomic layer deposition of hierarchical CNTs@FePO4 architecture as a 3D electrode for lithium-ion and sodium-ion batteries
,”
Adv. Mater. Interfaces
3
,
1600468
(
2016
).
98.
C. F.
Lin
,
X.
Fan
,
A.
Pearse
,
S. C.
Liou
,
K.
Gregorczyk
,
M.
Leskes
,
C.
Wang
,
S. B.
Lee
,
G. W.
Rubloff
, and
M.
Noked
, “
Highly reversible conversion-type FeOF composite electrode with extended lithium insertion by atomic layer deposition LiPON protection
,”
Chem. Mater.
29
,
8780
8791
(
2017
).
99.
M.
Nisula
and
M.
Karppinen
, “
Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes
,”
Nano Lett.
16
,
1276
1281
(
2016
).
100.
T.
Fujibayashi
,
Y.
Kubota
,
K.
Iwabuchi
, and
N.
Yoshii
, “
Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method
,”
AIP Adv.
7
,
085110
(
2017
).
101.
W.-Y.
Liu
,
Z.-W.
Fu
,
C.-L.
Li
, and
Q.-Z.
Qin
, “
Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of e-beam reaction evaporation
,”
Electrochem. Solid-State Lett.
7
,
J36
(
2004
).
102.
A.
Pearse
,
T.
Schmitt
,
E.
Sahadeo
,
D. M.
Stewart
,
A.
Kozen
,
K.
Gerasopoulos
,
A. A.
Talin
,
S. B.
Lee
,
G. W.
Rubloff
, and
K. E.
Gregorczyk
, “
Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry
,”
ACS Nano
12
,
4286
4294
(
2018
).
103.
C. C.
McCrory
,
S.
Jung
,
J. C.
Peters
, and
T. F.
Jaramillo
, “
Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
,”
J. Am. Chem. Soc.
135
,
16977
16987
(
2013
).
104.
R.
Guo
,
X.
Lai
,
J.
Huang
,
X.
Du
,
Y.
Yan
,
Y.
Sun
,
G.
Zou
, and
J.
Xiong
, “
Phosphate-based electrocatalysts for water splitting: Recent progress
,”
ChemElectroChem
5
,
3822
3834
(
2018
).
105.
H.
Zhao
and
Z.-Y.
Yuan
, “
Insights into transition metal phosphate materials for efficient electrocatalysis
,”
ChemCatChem
12
(
15
),
3797
3810
(
2020
).
106.
C.-Z.
Yuan
,
Y.-F.
Jiang
,
Z.
Wang
,
X.
Xie
,
Z.-K.
Yang
,
A. B.
Yousaf
, and
A.-W.
Xu
, “
Cobalt phosphate nanoparticles decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction
,”
J. Mater. Chem. A
4
,
8155
8160
(
2016
).
107.
R. R.
Naslain
, “
The design of the fibre-matrix interfacial zone in ceramic matrix composites
,”
Composites, Part A
29
,
1145
1155
(
1998
).
108.
R.
Naslain
,
O.
Dugne
,
A.
Guette
,
J.
Sevely
,
C. R.
Brosse
,
J.-P.
Rocher
, and
J.
Cotteret
, “
Boron nitride interphase in ceramic-matrix composites
,”
J. Am. Ceram. Soc.
74
,
2482
2488
(
1991
).
109.
P. E. D.
Morgan
and
D. B.
Marshall
, “
Ceramic composites of monazite and alumina
,”
J. Am. Ceram. Soc.
78
,
1553
1563
(
1995
).
110.
J.-Y.
Chen
,
C.
Huang
,
W.
Hung
,
K.
Sun
, and
T.
Chen
, “
Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence
,”
Sol. Energy Mater. Sol. Cells
120
,
168
174
(
2014
).
111.
P.-A.
Hansen
,
H.
Fjellvåg
,
T. G.
Finstad
, and
O.
Nilsen
, “
Luminescent properties of multilayered Eu2O3 and TiO2 grown by atomic layer deposition
,”
Chem. Vapor Deposition
20
,
274
281
(
2014
).
112.
J.
Robertson
,
Y.
Guo
, and
L.
Lin
, “
Defect state passivation at III-V oxide interfaces for complementary metal–oxide–semiconductor devices
,”
J. Appl. Phys.
117
,
112806
(
2015
).
113.
M.
Houssa
,
E.
Chagarov
, and
A.
Kummel
, “
Surface defects and passivation of Ge and III'V interfaces
,”
MRS Bull.
34
,
504
513
(
2009
).
114.
V.
Dhaka
,
A.
Perros
,
S.
Naureen
,
N.
Shahid
,
H.
Jiang
,
J.-P.
Kakko
,
T.
Haggren
,
E.
Kauppinen
,
A.
Srinivasan
, and
H.
Lipsanen
, “
Protective capping and surface passivation of III-V nanowires by atomic layer deposition
,”
AIP Adv.
6
,
015016
(
2016
).
115.
B.
Sautreuil
,
P.
Viktorovitch
, and
R.
Blanchet
, “
Evidence for interfacial defects in metal-insulator-InP structures induced by the insulator deposition
,”
J. Appl. Phys.
57
,
2322
2324
(
1985
).
116.
R.
Schachter
,
D. J.
Olego
,
J. A.
Baumann
,
L. A.
Bunz
,
P. M.
Raccah
, and
W. E.
Spicer
, “
Interfacial properties of InP and phosphorus deposited at low temperature
,”
Appl. Phys. Lett.
47
,
272
274
(
1985
).
117.
K. P.
Pande
and
D.
Gutierrez
, “
Channel mobility enhancement in InP metal-insulator-semiconductor field-effect transistors
,”
Appl. Phys. Lett.
46
,
416
418
(
1985
).
118.
L.
Meiners
, “
Electrical properties of Al2O3 and AlPxOy dielectric layers on InP
,”
Thin Solid Films
113
,
85
92
(
1984
).
119.
H.
Hbib
,
O.
Bonnaud
,
M.
Gauneau
,
L.
Hamedi
,
R.
Marchand
, and
A.
Quemerais
, “
Characterization of phosphorus oxinitride (PON) gate insulators for InP metal-insulator-semiconductor devices
,”
Thin Solid Films
310
,
1
7
(
1997
).
You do not currently have access to this content.