Quantum emitters have become a vital tool for both fundamental science and emerging technologies. In recent years, the focus in the field has shifted to exploration and identification of new quantum systems enabled by the emerging library of atomically thin, two dimensional materials. In this review, we highlight the current state of the art in engineering of quantum emitters in 2D systems, with an emphasis on transition metal di-chalcogenides (TMDCs) and hexagonal boron nitride. We start by reviewing progress in TMDCs, with focus on emitter engineering, ability to tune their spectral properties, and observation of interlayer excitons. We then discuss emitters in hBN and focus on emitters' origin, engineering, and emerging phenomena—spanning super-resolution imaging and optical spin readout. We summarize by discussing practical advances of integration of emitters in 2D hosts with plasmonic and dielectric photonic cavities, underpinned by quantum light–matter interactions. We conclude by outlining pathways for practical on-chip quantum photonics applications and highlight challenges and opportunities within this field of research.

1.
S.
Wehner
,
D.
Elkouss
, and
R.
Hanson
, “
Quantum internet: A vision for the road ahead
,”
Science
362
(
6412
),
eaam9288
(
2018
).
3.
H.-K.
Lo
,
M.
Curty
, and
K.
Tamaki
, “
Secure quantum key distribution
,”
Nat Photonics
8
(
8
),
595
604
(
2014
).
4.
See ionq.com for quantum computing startup based on trapped ions.
5.
M.
Kjaergaard
,
M. E.
Schwartz
,
J.
Braumüller
,
P.
Krantz
,
J. I. J.
Wang
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Superconducting qubits: Current state of play
,”
Annu. Rev. Condens. Matter Phys.
11
(
1
),
369
395
(
2020
).
6.
M.
Atatüre
,
D.
Englund
,
N.
Vamivakas
,
S.-Y.
Lee
, and
J.
Wrachtrup
, “
Material platforms for spin-based photonic quantum technologies
,”
Nat. Rev. Mater.
3
,
38
51
(
2018
).
7.
S. I.
Azzam
,
K.
Parto
, and
G.
Moody
, “
Prospects and challenges of quantum emitters in 2D materials
,”
Appl. Phys. Lett.
118
(
24
),
240502
(
2021
).
8.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
9.
A.
Rodin
,
M.
Trushin
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
Collective excitations in 2D materials
,”
Nat. Rev. Phys.
2
(
10
),
524
537
(
2020
).
10.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
(
7459
),
419
425
(
2013
).
11.
F.
Xia
,
H.
Wang
,
D.
Xiao
,
M.
Dubey
, and
A.
Ramasubramaniam
, “
Two-dimensional material nanophotonics
,”
Nat. Photonics
8
(
12
),
899
907
(
2014
).
12.
X.
Liu
and
M. C.
Hersam
, “
2D materials for quantum information science
,”
Nat. Rev. Mater.
4
(
10
),
669
684
(
2019
).
13.
J. R.
Schaibley
,
H.
Yu
,
G.
Clark
,
P.
Rivera
,
J. S.
Ross
,
K. L.
Seyler
,
W.
Yao
, and
X.
Xu
, “
Valleytronics in 2D materials
,”
Nat. Rev. Mater.
1
(
11
),
16055
(
2016
).
14.
A.
Srivastava
,
M.
Sidler
,
A. V.
Allain
,
D. S.
Lembke
,
A.
Kis
, and
A.
Imamoğlu
, “
Optically active quantum dots in monolayer WSe2
,”
Nat. Nanotechnol.
10
(
6
),
491
496
(
2015
).
15.
Y.-M.
He
,
G.
Clark
,
J. R.
Schaibley
,
Y.
He
,
M.-C.
Chen
,
Y.-J.
Wei
,
X.
Ding
,
Q.
Zhang
,
W.
Yao
,
X.
Xu
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Single quantum emitters in monolayer semiconductors
,”
Nat. Nanotechnol.
10
(
6
),
497
502
(
2015
).
16.
M.
Koperski
,
K.
Nogajewski
,
A.
Arora
,
V.
Cherkez
,
P.
Mallet
,
J. Y.
Veuillen
,
J.
Marcus
,
P.
Kossacki
, and
M.
Potemski
, “
Single photon emitters in exfoliated WSe2 structures
,”
Nat. Nanotechnol.
10
(
6
),
503
506
(
2015
).
17.
C.
Chakraborty
,
L.
Kinnischtzke
,
K. M.
Goodfellow
,
R.
Beams
, and
A. N.
Vamivakas
, “
Voltage-controlled quantum light from an atomically thin semiconductor
,”
Nat. Nanotechnol.
10
(
6
),
507
511
(
2015
).
18.
P.
Tonndorf
,
R.
Schmidt
,
R.
Schneider
,
J.
Kern
,
M.
Buscema
,
G. A.
Steele
,
A.
Castellanos-Gomez
,
H. S. J.
van der Zant
,
S.
Michaelis de Vasconcellos
, and
R.
Bratschitsch
, “
Single-photon emission from localized excitons in an atomically thin semiconductor
,”
Optica
2
(
4
),
347
352
(
2015
).
19.
J.
Klein
,
M.
Lorke
,
M.
Florian
,
F.
Sigger
,
L.
Sigl
,
S.
Rey
,
J.
Wierzbowski
,
J.
Cerne
,
K.
Müller
,
E.
Mitterreiter
,
P.
Zimmermann
,
T.
Taniguchi
,
K.
Watanabe
,
U.
Wurstbauer
,
M.
Kaniber
,
M.
Knap
,
R.
Schmidt
,
J. J.
Finley
, and
A. W.
Holleitner
, “
Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation
,”
Nat. Commun.
10
(
1
),
2755
(
2019
).
20.
C.
Palacios-Berraquero
,
D. M.
Kara
,
A. R. P.
Montblanch
,
M.
Barbone
,
P.
Latawiec
,
D.
Yoon
,
A. K.
Ott
,
M.
Loncar
,
A. C.
Ferrari
, and
M.
Atatüre
, “
Large-scale quantum-emitter arrays in atomically thin semiconductors
,”
Nat. Commun.
8
(
1
),
15093
(
2017
).
21.
P.
Tonndorf
,
S.
Schwarz
,
J.
Kern
,
I.
Niehues
,
O.
Del Pozo-Zamudio
,
A. I.
Dmitriev
,
A. P.
Bakhtinov
,
D. N.
Borisenko
,
N. N.
Kolesnikov
,
A. I.
Tartakovskii
,
S.
Michaelis de Vasconcellos
, and
R.
Bratschitsch
, “
Single-photon emitters in GaSe
,”
2D Mater.
4
(
2
),
021010
(
2017
).
22.
L.
Yu
,
M.
Deng
,
J. L.
Zhang
,
S.
Borghardt
,
B.
Kardynal
,
J.
Vučković
, and
T. F.
Heinz
, “
Site-controlled quantum emitters in monolayer MoSe2
,”
Nano Lett.
21
(
6
),
2376
2381
(
2021
).
23.
J.
Kern
,
I.
Niehues
,
P.
Tonndorf
,
R.
Schmidt
,
D.
Wigger
,
R.
Schneider
,
T.
Stiehm
,
S.
Michaelis de Vasconcellos
,
D. E.
Reiter
,
T.
Kuhn
, and
R.
Bratschitsch
, “
Nanoscale positioning of single-photon emitters in atomically thin WSe2
,”
Adv. Mater.
28
(
33
),
7101
7105
(
2016
).
24.
P.
Tonndorf
,
O.
Del Pozo-Zamudio
,
N.
Gruhler
,
J.
Kern
,
R.
Schmidt
,
A. I.
Dmitriev
,
A. P.
Bakhtinov
,
A. I.
Tartakovskii
,
W.
Pernice
,
S.
Michaelis de Vasconcellos
, and
R.
Bratschitsch
, “
On-chip waveguide coupling of a layered semiconductor single-photon source
,”
Nano Lett.
17
(
9
),
5446
5451
(
2017
).
25.
Q.
Wang
,
J.
Maisch
,
F.
Tang
,
D.
Zhao
,
S.
Yang
,
R.
Joos
,
S. L.
Portalupi
,
P.
Michler
, and
J. H.
Smet
, “
Highly polarized single photons from strain-induced quasi-1D localized excitons in WSe2
,”
Nano Lett.
21
(
17
),
7175
7182
(
2021
).
26.
J.-P.
So
,
K.-Y.
Jeong
,
J. M.
Lee
,
K.-H.
Kim
,
S.-J.
Lee
,
W.
Huh
,
H.-R.
Kim
,
J.-H.
Choi
,
J. M.
Kim
,
Y. S.
Kim
,
C.-H.
Lee
,
S.
Nam
, and
H.-G.
Park
, “
Polarization control of deterministic single-photon emitters in monolayer WSe2
,”
Nano Lett.
21
(
3
),
1546
1554
(
2021
).
27.
A.
Branny
,
S.
Kumar
,
R.
Proux
, and
B. D.
Gerardot
, “
Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
,”
Nat. Commun.
8
,
15053
(
2017
).
28.
E.
Mitterreiter
,
B.
Schuler
,
A.
Micevic
,
D.
Hernangómez-Pérez
,
K.
Barthelmi
,
K. A.
Cochrane
,
J.
Kiemle
,
F.
Sigger
,
J.
Klein
,
E.
Wong
,
E. S.
Barnard
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Lorke
,
F.
Jahnke
,
J. J.
Finley
,
A. M.
Schwartzberg
,
D. Y.
Qiu
,
S.
Refaely-Abramson
,
A. W.
Holleitner
,
A.
Weber-Bargioni
, and
C.
Kastl
, “
The role of chalcogen vacancies for atomic defect emission in MoS2
,”
Nat. Commun.
12
(
1
),
3822
(
2021
).
29.
L.
Linhart
,
M.
Paur
,
V.
Smejkal
,
J.
Burgdörfer
,
T.
Mueller
, and
F.
Libisch
, “
Localized intervalley defect excitons as single-photon emitters in WSe2
,”
Phys. Rev. Lett.
123
(
14
),
146401
(
2019
).
30.
S.
Kumar
,
A.
Kaczmarczyk
, and
B. D.
Gerardot
, “
Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2
,”
Nano Lett.
15
(
11
),
7567
7573
(
2015
).
31.
K.
Parto
,
S. I.
Azzam
,
K.
Banerjee
, and
G.
Moody
, “
Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K
,”
Nat. Commun.
12
(
1
),
3585
(
2021
).
32.
O.
Iff
,
D.
Tedeschi
,
J.
Martín-Sánchez
,
M.
Moczała-Dusanowska
,
S.
Tongay
,
K.
Yumigeta
,
J.
Taboada-Gutiérrez
,
M.
Savaresi
,
A.
Rastelli
,
P.
Alonso-González
,
S.
Höfling
,
R.
Trotta
, and
C.
Schneider
, “
Strain-tunable single photon sources in WSe2 monolayers
,”
Nano Lett.
19
(
10
),
6931
6936
(
2019
).
33.
C.
Chakraborty
,
K. M.
Goodfellow
,
S.
Dhara
,
A.
Yoshimura
,
V.
Meunier
, and
A. N.
Vamivakas
, “
Quantum-confined stark effect of individual defects in a van der Waals heterostructure
,”
Nano Lett.
17
(
4
),
2253
2258
(
2017
).
34.
J.
Klein
,
L.
Sigl
,
S.
Gyger
,
K.
Barthelmi
,
M.
Florian
,
S.
Rey
,
T.
Taniguchi
,
K.
Watanabe
,
F.
Jahnke
,
C.
Kastl
,
V.
Zwiller
,
K. D.
Jöns
,
K.
Müller
,
U.
Wurstbauer
,
J. J.
Finley
, and
A. W.
Holleitner
, “
Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2
,”
ACS Photonics
8
(
2
),
669
677
(
2021
).
35.
H.
Zhao
,
M. T.
Pettes
,
Y.
Zheng
, and
H.
Htoon
, “
Site-controlled telecom single-photon emitters in atomically-thin MoTe2
,” arXiv:2105.00576 (
2021
).
36.
Y.-M.
He
,
O.
Iff
,
N.
Lundt
,
V.
Baumann
,
M.
Davanco
,
K.
Srinivasan
,
S.
Höfling
, and
C.
Schneider
, “
Cascaded emission of single photons from the biexciton in monolayered WSe2
,”
Nat. Commun.
7
(
1
),
13409
(
2016
).
37.
C.
Palacios-Berraquero
,
M.
Barbone
,
D. M.
Kara
,
X.
Chen
,
I.
Goykhman
,
D.
Yoon
,
A. K.
Ott
,
J.
Beitner
,
K.
Watanabe
,
T.
Taniguchi
,
A. C.
Ferrari
, and
M.
Atatüre
, “
Atomically thin quantum light-emitting diodes
,”
Nat. Commun.
7
,
12978
(
2016
).
38.
J.-P.
So
,
H.-R.
Kim
,
H.
Baek
,
K.-Y.
Jeong
,
H.-C.
Lee
,
W.
Huh
,
Y. S.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Kim
,
C.-H.
Lee
, and
H.-G.
Park
, “
Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure
,”
Sci. Adv.
7
(
43
),
eabj3176
(
2021
).
39.
A.
Hötger
,
J.
Klein
,
K.
Barthelmi
,
L.
Sigl
,
F.
Sigger
,
W.
Männer
,
S.
Gyger
,
M.
Florian
,
M.
Lorke
,
F.
Jahnke
,
T.
Taniguchi
,
K.
Watanabe
,
K. D.
Jöns
,
U.
Wurstbauer
,
C.
Kastl
,
K.
Müller
,
J. J.
Finley
, and
A. W.
Holleitner
, “
Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices
,”
Nano Lett.
21
(
2
),
1040
1046
(
2021
).
40.
H.
Kim
,
J. S.
Moon
,
G.
Noh
,
J.
Lee
, and
J.-H.
Kim
, “
Position and frequency control of strain-induced quantum emitters in WSe2 monolayers
,”
Nano Lett.
19
(
10
),
7534
7539
(
2019
).
41.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
2D materials and van der Waals heterostructures
,”
Science
353
(
6298
),
aac9439
(
2016
).
42.
Y.
Jiang
,
S.
Chen
,
W.
Zheng
,
B.
Zheng
, and
A.
Pan
, “
Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures
,”
Light: Sci. Appl.
10
(
1
),
72
(
2021
).
43.
J. C. W.
Song
and
N. M.
Gabor
, “
Electron quantum metamaterials in van der Waals heterostructures
,”
Nat. Nanotechnol.
13
(
11
),
986
993
(
2018
).
44.
P.
Rivera
,
H.
Yu
,
K. L.
Seyler
,
N. P.
Wilson
,
W.
Yao
, and
X.
Xu
, “
Interlayer valley excitons in heterobilayers of transition metal dichalcogenides
,”
Nat. Nanotechnol.
13
(
11
),
1004
1015
(
2018
).
45.
Q.
Tan
,
A.
Rasmita
,
S.
Li
,
S.
Liu
,
Z.
Huang
,
Q.
Xiong
,
A.
Yang Shengyuan
,
K. S.
Novoselov
, and
W.-B.
Gao
, “
Layer-engineered interlayer excitons
,”
Sci. Adv.
7
(
30
),
eabh0863
(
2021
)
46.
O.
Karni
,
E.
Barré
,
S. C.
Lau
,
R.
Gillen
,
E. Y.
Ma
,
B.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Maultzsch
,
K.
Barmak
,
R. H.
Page
, and
T. F.
Heinz
, “
Infrared interlayer exciton emission in MoS2/WSe2 heterostructures
,”
Phys. Rev. Lett.
123
(
24
),
247402
(
2019
).
47.
A. R. P.
Montblanch
,
D. M.
Kara
,
I.
Paradisanos
,
C. M.
Purser
,
M. S. G.
Feuer
,
E. M.
Alexeev
,
L.
Stefan
,
Y.
Qin
,
M.
Blei
,
G.
Wang
,
A. R.
Cadore
,
P.
Latawiec
,
M.
Lončar
,
S.
Tongay
,
A. C.
Ferrari
, and
M.
Atatüre
, “
Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures
,”
Commun. Phys.
4
(
1
),
119
(
2021
).
48.
D. N.
Shanks
,
F.
Mahdikhanysarvejahany
,
C.
Muccianti
,
A.
Alfrey
,
M. R.
Koehler
,
D. G.
Mandrus
,
T.
Taniguchi
,
K.
Watanabe
,
H.
Yu
,
B. J.
LeRoy
, and
J. R.
Schaibley
, “
Nanoscale trapping of interlayer excitons in a 2D semiconductor heterostructure
,”
Nano Lett.
21
(
13
),
5641
5647
(
2021
).
49.
H.
Baek
,
M.
Brotons-Gisbert
,
Z. X.
Koong
,
A.
Campbell
,
M.
Rambach
,
K.
Watanabe
,
T.
Taniguchi
, and
B. D.
Gerardot
, “
Highly energy-tunable quantum light from moiré-trapped excitons
,”
Sci. Adv.
6
(
37
),
eaba8526 (2020)
.
50.
J.
Xia
,
J.
Yan
,
Z.
Wang
,
Y.
He
,
Y.
Gong
,
W.
Chen
,
T. C.
Sum
,
Z.
Liu
,
P. M.
Ajayan
, and
Z.
Shen
, “
Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers
,”
Nat. Phys.
17
(
1
),
92
98
(
2021
).
51.
Y.
Bai
,
L.
Zhou
,
J.
Wang
,
W.
Wu
,
L. J.
McGilly
,
D.
Halbertal
,
C. F. B.
Lo
,
F.
Liu
,
J.
Ardelean
,
P.
Rivera
,
N. R.
Finney
,
X.-C.
Yang
,
D. N.
Basov
,
W.
Yao
,
X.
Xu
,
J.
Hone
,
A. N.
Pasupathy
, and
X. Y.
Zhu
, “
Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions
,”
Nat. Mater.
19
(
10
),
1068
1073
(
2020
).
52.
W.
Li
,
X.
Lu
,
S.
Dubey
,
L.
Devenica
, and
A.
Srivastava
, “
Dipolar interactions between localized interlayer excitons in van der Waals heterostructures
,”
Nat. Mater.
19
(
6
),
624
629
(
2020
).
53.
X.
Lu
,
X.
Chen
,
S.
Dubey
,
Q.
Yao
,
W.
Li
,
X.
Wang
,
Q.
Xiong
, and
A.
Srivastava
, “
Optical initialization of a single spin-valley in charged WSe2 quantum dots
,”
Nat. Nanotechnol.
14
(
5
),
426
431
(
2019
).
54.
M.
Brotons-Gisbert
,
H.
Baek
,
A.
Molina-Sánchez
,
A.
Campbell
,
E.
Scerri
,
D.
White
,
K.
Watanabe
,
T.
Taniguchi
,
C.
Bonato
, and
B. D.
Gerardot
, “
Spin–layer locking of interlayer excitons trapped in moiré potentials
,”
Nat. Mater.
19
(
6
),
630
636
(
2020
).
55.
K.
Tran
,
G.
Moody
,
F.
Wu
,
X.
Lu
,
J.
Choi
,
K.
Kim
,
A.
Rai
,
D. A.
Sanchez
,
J.
Quan
,
A.
Singh
,
J.
Embley
,
A.
Zepeda
,
M.
Campbell
,
T.
Autry
,
T.
Taniguchi
,
K.
Watanabe
,
N.
Lu
,
S. K.
Banerjee
,
K. L.
Silverman
,
S.
Kim
,
E.
Tutuc
,
L.
Yang
,
A. H.
MacDonald
, and
X.
Li
, “
Evidence for moiré excitons in van der Waals heterostructures
,”
Nature
567
(
7746
),
71
75
(
2019
).
56.
K. L.
Seyler
,
P.
Rivera
,
H.
Yu
,
N. P.
Wilson
,
E. L.
Ray
,
D. G.
Mandrus
,
J.
Yan
,
W.
Yao
, and
X.
Xu
, “
Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers
,”
Nature
567
(
7746
),
66
70
(
2019
).
57.
Y.
Luo
,
G. D.
Shepard
,
J. V.
Ardelean
,
D. A.
Rhodes
,
B.
Kim
,
K.
Barmak
,
J. C.
Hone
, and
S.
Strauf
, “
Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities
,”
Nat. Nanotechnol.
13
(
12
),
1137
1142
(
2018
).
58.
T. T.
Tran
,
K.
Bray
,
M. J.
Ford
,
M.
Toth
, and
I.
Aharonovich
, “
Quantum emission from hexagonal boron nitride monolayers
,”
Nat. Nanotechnol.
11
(
1
),
37
41
(
2016
).
59.
T. T.
Tran
,
C.
Elbadawi
,
D.
Totonjian
,
C. J.
Lobo
,
G.
Grosso
,
H.
Moon
,
D. R.
Englund
,
M. J.
Ford
,
I.
Aharonovich
, and
M.
Toth
, “
Robust multicolor single photon emission from point defects in hexagonal boron nitride
,”
ACS Nano
10
(
8
),
7331
7338
(
2016
).
60.
N. V.
Proscia
,
Z.
Shotan
,
H.
Jayakumar
,
P.
Reddy
,
C.
Cohen
,
M.
Dollar
,
A.
Alkauskas
,
M.
Doherty
,
C. A.
Meriles
, and
V. M.
Menon
, “
Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride
,”
Optica
5
(
9
),
1128
1134
(
2018
).
61.
Z.-Q.
Xu
,
C.
Elbadawi
,
T. T.
Tran
,
M.
Kianinia
,
X.
Li
,
D.
Liu
,
T. B.
Hoffman
,
M.
Nguyen
,
S.
Kim
,
J. H.
Edgar
,
X.
Wu
,
L.
Song
,
S.
Ali
,
M.
Ford
,
M.
Toth
, and
I.
Aharonovich
, “
Single photon emission from plasma treated 2D hexagonal boron nitride
,”
Nanoscale
10
(
17
),
7957
7965
(
2018
).
62.
T.
Vogl
,
M. W.
Doherty
,
B. C.
Buchler
,
Y.
Lu
, and
P. K.
Lam
, “
Atomic localization of quantum emitters in multilayer hexagonal boron nitride
,”
Nanoscale
11
(
30
),
14362
14371
(
2019
).
63.
G.
Grosso
,
H.
Moon
,
B.
Lienhard
,
S.
Ali
,
D. K.
Efetov
,
M. M.
Furchi
,
P.
Jarillo-Herrero
,
M. J.
Ford
,
I.
Aharonovich
, and
D.
Englund
, “
Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride
,”
Nat. Commun.
8
(
1
),
705
(
2017
).
64.
R.
Bourrellier
,
S.
Meuret
,
A.
Tararan
,
O.
Stéphan
,
M.
Kociak
,
L. H. G.
Tizei
, and
A.
Zobelli
, “
Bright UV single photon emission at point defects in h-BN
,”
Nano Lett.
16
(
7
),
4317
4321
(
2016
).
65.
N.
Chejanovsky
,
M.
Rezai
,
F.
Paolucci
,
Y.
Kim
,
T.
Rendler
,
W.
Rouabeh
,
F.
Fávaro de Oliveira
,
P.
Herlinger
,
A.
Denisenko
,
S.
Yang
,
I.
Gerhardt
,
A.
Finkler
,
J. H.
Smet
, and
J.
Wrachtrup
, “
Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride
,”
Nano Lett.
16
(
11
),
7037
7045
(
2016
).
66.
D.
Yim
,
M.
Yu
,
G.
Noh
,
J.
Lee
, and
H.
Seo
, “
Polarization and Localization of single-photon emitters in hexagonal boron nitride wrinkles
,”
ACS Appl. Mater. Interfaces
12
(
32
),
36362
36369
(
2020
).
67.
N.
Mendelson
,
Z.-Q.
Xu
,
T. T.
Tran
,
M.
Kianinia
,
J.
Scott
,
C.
Bradac
,
I.
Aharonovich
, and
M.
Toth
, “
Engineering and tuning of quantum emitters in few-layer hexagonal boron nitride
,”
ACS Nano
13
(
3
),
3132
3140
(
2019
).
68.
N.
Mendelson
,
L.
Morales-Inostroza
,
C.
Li
,
R.
Ritika
,
M. A. P.
Nguyen
,
J.
Loyola-Echeverria
,
S.
Kim
,
S.
Götzinger
,
M.
Toth
, and
I.
Aharonovich
, “
Grain dependent growth of bright quantum emitters in hexagonal boron nitride
,”
Adv. Opt. Mater.
9
(
1
),
2001271
(
2021
).
69.
I. H.
Abidi
,
N.
Mendelson
,
T. T.
Tran
,
A.
Tyagi
,
M.
Zhuang
,
L.-T.
Weng
,
B.
Özyilmaz
,
I.
Aharonovich
,
M.
Toth
, and
Z.
Luo
, “
Selective defect formation in hexagonal boron nitride
,”
Adv. Opt. Mater.
7
(
13
),
1900397
(
2019
).
70.
N.
Mendelson
,
D.
Chugh
,
J. R.
Reimers
,
T. S.
Cheng
,
A.
Gottscholl
,
H.
Long
,
C. J.
Mellor
,
A.
Zettl
,
V.
Dyakonov
,
P. H.
Beton
,
S. V.
Novikov
,
C.
Jagadish
,
H. H.
Tan
,
M. J.
Ford
,
M.
Toth
,
C.
Bradac
, and
I.
Aharonovich
, “
Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride
,”
Nat. Mater.
20
(
3
),
321
328
(
2021
).
71.
M.
Abdi
,
J.-P.
Chou
,
A.
Gali
, and
M. B.
Plenio
, “
Color centers in hexagonal boron nitride monolayers: A group theory and ab initio analysis
,”
ACS Photonics
5
(
5
),
1967
1976
(
2018
).
72.
A.
Korkmaz
,
Y.
Bulutay
, and
C.
Sevik
, “
C., Defect states in monolayer hexagonal BN: A comparative DFT and DFT-1/2 study
,”
Phys. B: Condens. Matter
584
,
411959
(
2020
).
73.
S.
Gao
,
H.-Y.
Chen
, and
M.
Bernardi
, “
Radiative properties of quantum emitters in boron nitride from excited state calculations and Bayesian analysis
,”
npj Comput. Mater.
7
(
1
),
85
(
2021
).
74.
J. R.
Reimers
,
A.
Sajid
,
R.
Kobayashi
, and
M. J.
Ford
, “
Convergence of defect energetics calculations
,”
J. Phys. Chem. C
124
(
38
),
21178
21183
(
2020
).
75.
P.
Auburger
and
A.
Gali
, “
Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits
,”
Phys. Rev. B
104
(
7
),
075410
(
2021
).
76.
C.
Jara
,
T.
Rauch
,
S.
Botti
,
M. A. L.
Marques
,
A.
Norambuena
,
R.
Coto
,
J. E.
Castellanos-Águila
,
J. R.
Maze
, and
F.
Munoz
, “
First-principles identification of single photon emitters based on carbon clusters in hexagonal boron nitride
,”
J. Phys. Chem. A
125
(
6
),
1325
1335
(
2021
).
77.
C.
Linderälv
,
W.
Wieczorek
, and
P.
Erhart
, “
Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride
,”
Phys. Rev. B
103
(
11
),
115421
(
2021
).
78.
L.
Weston
,
D.
Wickramaratne
,
M.
Mackoit
,
A.
Alkauskas
, and
C. G.
Van de Walle
, “
Native point defects and impurities in hexagonal boron nitride
,”
Phys. Rev. B
97
(
21
),
214104
(
2018
).
79.
C.
Li
,
N.
Mendelson
,
R.
Ritika
,
Y.
Chen
,
Z.-Q.
Xu
,
M.
Toth
, and
I.
Aharonovich
, “
Scalable and deterministic fabrication of quantum emitter arrays from hexagonal boron nitride
,”
Nano Lett.
21
(
8
),
3626
3632
(
2021
).
80.
M.
Fischer
,
J.
Caridad
,
A.
Sajid
,
S.
Ghaderzadeh
,
M.
Ghorbani-Asl
,
L.
Gammelgaard
,
P.
Bøggild
,
K. S.
Thygesen
,
A.
Krasheninnikov
, and
S.
Xiao
, “
Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering
,”
Sci. Adv.
7
(
8
),
eabe7138
(
2021
).
81.
C.
Fournier
,
A.
Plaud
,
S.
Roux
,
A.
Pierret
,
M.
Rosticher
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Buil
,
X.
Quélin
,
J.
Barjon
,
J.-P.
Hermier
, and
A.
Delteil
, “
Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride
,”
Nat. Commun.
12
(
1
),
3779
(
2021
).
82.
X.
Xu
,
Z. O.
Martin
,
D.
Sychev
,
A. S.
Lagutchev
,
Y.
Chen
,
T.
Taniguchi
,
K.
Watanabe
,
V. M.
Shalaev
, and
A.
Boltasseva
, “
Creating quantum emitters in hexagonal boron nitride deterministically on chip-compatible substrates
,” arXiv:2106.14983 (
2021
).
83.
J.
Ziegler
,
R.
Klaiss
,
A.
Blaikie
,
D.
Miller
,
V. R.
Horowitz
, and
B. J.
Alemán
, “
Deterministic quantum emitter formation in hexagonal boron nitride via controlled edge creation
,”
Nano Lett.
19
(
3
),
2121
2127
(
2019
).
84.
Z.-Q.
Xu
,
N.
Mendelson
,
J. A.
Scott
,
C.
Li
,
I. H.
Abidi
,
H.
Liu
,
Z.
Luo
,
I.
Aharonovich
, and
M.
Toth
, “
Charge and energy transfer of quantum emitters in 2D heterostructures
,”
2D Mater.
7
(
3
),
031001
(
2020
).
85.
J. C.
Stewart
,
Y.
Fan
,
J. S. H.
Danial
,
A.
Goetz
,
A. S.
Prasad
,
O. J.
Burton
,
J. A.
Alexander-Webber
,
S. F.
Lee
,
S. M.
Skoff
,
V.
Babenko
, and
S.
Hofmann
, “
Quantum emitter localization in layer-engineered hexagonal boron nitride
,”
ACS Nano
15
(
8
),
13591
13603
(
2021
).
86.
A.
Gruber
,
A.
Dräbenstedt
,
C.
Tietz
,
L.
Fleury
,
J.
Wrachtrup
, and
C. v
Borczyskowski
, “
Scanning confocal optical microscopy and magnetic resonance on single defect centers
,”
Science
276
(
5321
),
2012
2014
(
1997
).
87.
N. T.
Son
,
C. P.
Anderson
,
A.
Bourassa
,
K. C.
Miao
,
C.
Babin
,
M.
Widmann
,
M.
Niethammer
,
J. U.
Hassan
,
N.
Morioka
,
I. G.
Ivanov
,
F.
Kaiser
,
J.
Wrachtrup
, and
D. D.
Awschalom
, “
Developing silicon carbide for quantum spintronics
,”
Appl. Phys. Lett.
116
(
19
),
190501
(
2020
).
88.
D. D.
Awschalom
,
R.
Hanson
,
J.
Wrachtrup
, and
B. B.
Zhou
, “
Quantum technologies with optically interfaced solid-state spins
,”
Nat. Photonics
12
(
9
),
516
527
(
2018
).
89.
G.
Wolfowicz
,
F. J.
Heremans
,
C. P.
Anderson
,
S.
Kanai
,
H.
Seo
,
A.
Gali
,
G.
Galli
, and
D. D.
Awschalom
, “
Quantum guidelines for solid-state spin defects
,”
Nat. Rev. Mater.
6
,
906
(
2021
).
90.
A.
Gottscholl
,
M.
Kianinia
,
V.
Soltamov
,
S.
Orlinskii
,
G.
Mamin
,
C.
Bradac
,
C.
Kasper
,
K.
Krambrock
,
A.
Sperlich
,
M.
Toth
,
I.
Aharonovich
, and
V.
Dyakonov
, “
Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature
,”
Nat. Mater.
19
(
5
),
540
545
(
2020
).
91.
H. L.
Stern
,
J.
Jarman
,
Q.
Gu
,
S. E.
Barker
,
N.
Mendelson
,
D.
Chugh
,
S.
Schott
,
H. H.
Tan
,
H.
Sirringhaus
, and
I.
Aharonovich
, “
Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride
,” arXiv:2103.16494 (
2021
).
92.
M.
Kianinia
,
S.
White
,
J. E.
Fröch
,
C.
Bradac
, and
I.
Aharonovich
, “
Generation of spin defects in hexagonal boron nitride
,”
ACS Photonics
7
(
8
),
2147
2152
(
2020
).
93.
V.
Ivády
,
G.
Barcza
,
G.
Thiering
,
S.
Li
,
H.
Hamdi
,
J.-P.
Chou
,
Ö.
Legeza
, and
A.
Gali
, “
Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride
,”
npj Comput. Mater.
6
(
1
),
41
(
2020
).
94.
J. R.
Reimers
,
J.
Shen
,
M.
Kianinia
,
C.
Bradac
,
I.
Aharonovich
,
M. J.
Ford
, and
P.
Piecuch
, “
Photoluminescence, photophysics, and photochemistry of the VB defect in hexagonal boron nitride
,”
Phys. Rev. B
102
(
14
),
144105
(
2020
).
95.
A.
Gottscholl
,
M.
Diez
,
V.
Soltamov
,
C.
Kasper
,
A.
Sperlich
,
M.
Kianinia
,
C.
Bradac
,
I.
Aharonovich
, and
V.
Dyakonov
, “
Room temperature coherent control of spin defects in hexagonal boron nitride
,”
Sci. Adv.
7
(
14
),
eabf3630
(
2021
).
96.
W.
Liu
,
Z.
Li
,
Y.
Yang
,
S.
Yu
,
Y.
Meng
,
Z.
Wang
,
N.
Guo
,
F.
Yan
,
Q.
Li
, and
J.
Wang
, “
Rabi oscillation of VB spin in hexagonal boron nitride
,” arXiv:2101.11220 (
2021
).
97.
A.
Gottscholl
,
M.
Diez
,
V.
Soltamov
,
C.
Kasper
,
D.
Krauße
,
A.
Sperlich
,
M.
Kianinia
,
C.
Bradac
,
I.
Aharonovich
, and
V.
Dyakonov
, “
Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors
,”
Nat. Commun.
12
(
1
),
4480
(
2021
).
98.
W.
Liu
,
Z.-P.
Li
,
Y.-Z.
Yang
,
S.
Yu
,
Y.
Meng
,
Z.-A.
Wang
,
Z.-C.
Li
,
N.-J.
Guo
,
F.-F.
Yan
,
Q.
Li
,
J.-F.
Wang
,
J.-S.
Xu
,
Y.-T.
Wang
,
J.-S.
Tang
,
C.-F.
Li
, and
G.-C.
Guo
, “
Temperature-dependent energy-level shifts of spin defects in hexagonal boron nitride
,”
ACS Photonics
8
(
7
),
1889
1895
(
2021
).
99.
X.
Gao
,
B.
Jiang
,
A. E.
Llacsahuanga Allcca
,
K.
Shen
,
M. A.
Sadi
,
A. B.
Solanki
,
P.
Ju
,
Z.
Xu
,
P.
Upadhyaya
,
Y. P.
Chen
,
S. A.
Bhave
, and
T.
Li
, “
High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing
,”
Nano Lett.
21
,
7708
(
2021
).
100.
N.
Chejanovsky
,
A.
Mukherjee
,
J.
Geng
,
Y.-C.
Chen
,
Y.
Kim
,
A.
Denisenko
,
A.
Finkler
,
T.
Taniguchi
,
K.
Watanabe
,
D. B. R.
Dasari
,
P.
Auburger
,
A.
Gali
,
J. H.
Smet
, and
J.
Wrachtrup
, “
Single-spin resonance in a van der Waals embedded paramagnetic defect
,”
Nat. Mater.
20
(
8
),
1079
1084
(
2021
).
101.
N. R.
Jungwirth
,
B.
Calderon
,
Y.
Ji
,
M. G.
Spencer
,
M. E.
Flatt
, and
G. D.
Fuchs
, “
Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride
,”
Nano Lett.
16
(
10
),
6052
6057
(
2016
).
102.
G.
Noh
,
D.
Choi
,
J.-H.
Kim
,
D.-G.
Im
,
Y.-H.
Kim
,
H.
Seo
, and
J.
Lee
, “
Stark tuning of single-photon emitters in hexagonal boron nitride
,”
Nano Lett.
18
(
8
),
4710
4715
(
2018
).
103.
N.
Nikolay
,
N.
Mendelson
,
N.
Sadzak
,
F.
Böhm
,
T. T.
Tran
,
B.
Sontheimer
,
I.
Aharonovich
, and
O.
Benson
, “
Very large and reversible stark-shift tuning of single emitters in layered hexagonal boron nitride
,”
Phys. Rev. Appl.
11
(
4
),
041001
(
2019
).
104.
Y.
Xia
,
Q.
Li
,
J.
Kim
,
W.
Bao
,
C.
Gong
,
S.
Yang
,
Y.
Wang
, and
X.
Zhang
, “
Room-temperature giant stark effect of single photon emitter in van der Waals material
,”
Nano Lett.
19
(
10
),
7100
7105
(
2019
).
105.
B.
Sontheimer
,
M.
Braun
,
N.
Nikolay
,
N.
Sadzak
,
I.
Aharonovich
, and
O.
Benson
, “
Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy
,”
Phys. Rev. B
96
(
12
),
121202
(
2017
).
106.
B.
Spokoyny
,
H.
Utzat
,
H.
Moon
,
G.
Grosso
,
D.
Englund
, and
M. G.
Bawendi
, “
Effect of spectral diffusion on the coherence properties of a single quantum emitter in hexagonal boron nitride
,”
J. Phys. Chem. Lett.
11
(
4
),
1330
1335
(
2020
).
107.
H.
Akbari
,
W.-H.
Lin
,
B.
Vest
,
P. K.
Jha
, and
H. A.
Atwater
, “
Temperature-dependent spectral emission of hexagonal boron nitride quantum emitters on conductive and dielectric substrates
,”
Phys. Rev. Appl.
15
(
1
),
014036
(
2021
).
108.
X.
Li
,
G. D.
Shepard
,
A.
Cupo
,
N.
Camporeale
,
K.
Shayan
,
Y.
Luo
,
V.
Meunier
, and
S.
Strauf
, “
Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra
,”
ACS Nano
11
(
7
),
6652
6660
(
2017
).
109.
T. T.
Tran
,
M.
Kianinia
,
M.
Nguyen
,
S.
Kim
,
Z.-Q.
Xu
,
A.
Kubanek
,
M.
Toth
, and
I.
Aharonovich
, “
Resonant excitation of quantum emitters in hexagonal boron nitride
,”
ACS Photonics
5
(
2
),
295
300
(
2018
).
110.
K.
Konthasinghe
,
C.
Chakraborty
,
N.
Mathur
,
L.
Qiu
,
A.
Mukherjee
,
G. D.
Fuchs
, and
A. N.
Vamivakas
, “
Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter
,”
Optica
6
(
5
),
542
548
(
2019
).
111.
S.
White
,
C.
Stewart
,
A. S.
Solntsev
,
C.
Li
,
M.
Toth
,
M.
Kianinia
, and
I.
Aharonovich
, “
Phonon dephasing and spectral diffusion of quantum emitters in hexagonal boron nitride
,”
Optica
8
(
9
),
1153
1158
(
2021
).
112.
S. J. U.
White
,
N. M. H.
Duong
,
A. S.
Solntsev
,
J.-H.
Kim
,
M.
Kianinia
, and
I.
Aharonovich
, “
Optical repumping of resonantly excited quantum emitters in hexagonal boron nitride
,”
Phys. Rev. Appl.
14
(
4
),
044017
(
2020
).
113.
A.
Dietrich
,
M.
Bürk
,
E. S.
Steiger
,
L.
Antoniuk
,
T. T.
Tran
,
M.
Nguyen
,
I.
Aharonovich
,
F.
Jelezko
, and
A.
Kubanek
, “
Observation of Fourier transform limited lines in hexagonal boron nitride
,”
Phys. Rev. B
98
(
8
),
081414
(
2018
).
114.
A.
Dietrich
,
M. W.
Doherty
,
I.
Aharonovich
, and
A.
Kubanek
, “
Solid-state single photon source with Fourier transform limited lines at room temperature
,”
Phys. Rev. B
101
(
8
),
081401
(
2020
).
115.
M.
Hoese
,
P.
Reddy
,
A.
Dietrich
,
M. K.
Koch
,
K. G.
Fehler
,
M. W.
Doherty
, and
A.
Kubanek
, “
Mechanical decoupling of quantum emitters in hexagonal boron nitride from low-energy phonon modes
,”
Sci. Adv.
6
(
40
),
eaba6038
(
2020
).
116.
M. A.
Feldman
,
C. E.
Marvinney
,
A. A.
Puretzky
, and
B. J.
Lawrie
, “
Evidence of photochromism in a hexagonal boron nitride single-photon emitter
,”
Optica
8
(
1
),
1
5
(
2021
).
117.
A.
Bommer
and
C.
Becher
, “
New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride
,”
Nanophotonics
8
(
11
),
2041
2048
(
2019
).
118.
P.
Khatri
,
A. J.
Ramsay
,
R. N. E.
Malein
,
H. M. H.
Chong
, and
I. J.
Luxmoore
, “
Optical gating of photoluminescence from color centers in hexagonal boron nitride
,”
Nano Lett.
20
(
6
),
4256
4263
(
2020
).
119.
M. K.
Boll
,
I. P.
Radko
,
A.
Huck
, and
U. L.
Andersen
, “
Photophysics of quantum emitters in hexagonal boron-nitride nano-flakes
,”
Opt. Express
28
(
5
),
7475
7487
(
2020
).
120.
M.
Kianinia
,
C.
Bradac
,
B.
Sontheimer
,
F.
Wang
,
T. T.
Tran
,
M.
Nguyen
,
S.
Kim
,
Z.-Q.
Xu
,
D.
Jin
,
A. W.
Schell
,
C. J.
Lobo
,
I.
Aharonovich
, and
M.
Toth
, “
All-optical control and super-resolution imaging of quantum emitters in layered materials
,”
Nat. Commun.
9
(
1
),
874
(
2018
).
121.
R. N. E.
Malein
,
P.
Khatri
,
A. J.
Ramsay
, and
I. J.
Luxmoore
, “
Stimulated emission depletion spectroscopy of color centers in hexagonal boron nitride
,”
ACS Photonics
8
(
4
),
1007
1012
(
2021
).
122.
P.
Khatri
,
R. N.
Edward Malein
,
A. J.
Ramsay
, and
I. J.
Luxmoore
, “
Stimulated emission depletion microscopy with color centers in hexagonal boron nitride
,”
ACS Photonics
8
(
7
),
2081
2087
(
2021
).
123.
S. J. U.
White
,
F.
Klauck
,
T.
Trong Tran
,
N.
Schmitt
,
M.
Kianinia
,
A.
Steinfurth
,
M.
Heinrich
,
M.
Toth
,
A.
Szameit
,
I.
Aharonovich
, and
A. S.
Solntsev
, “
Quantum random number generation using a hexagonal boron nitride single photon emitter
,”
J. Opt.
23
(
1
),
01LT01
(
2020
).
124.
S.
Yu
,
Y.-N.
Sun
,
W.
Liu
,
Z.-D.
Liu
,
Z.-J.
Ke
,
Y.-T.
Wang
,
J.-S.
Tang
,
C.-F.
Li
, and
G.-C.
Guo
, “
Realization of a causal-modeled delayed-choice experiment using single photons
,”
Phys. Rev. A
100
(
1
),
012115
(
2019
).
125.
J.
Comtet
,
B.
Grosjean
,
E.
Glushkov
,
A.
Avsar
,
K.
Watanabe
,
T.
Taniguchi
,
R.
Vuilleumier
,
M.-L.
Bocquet
, and
A.
Radenovic
, “
Direct observation of water-mediated single-proton transport between hBN surface defects
,”
Nat. Nanotechnol.
15
(
7
),
598
604
(
2020
).
126.
A.
Scavuzzo
,
S.
Mangel
,
J.-H.
Park
,
S.
Lee
,
D. L.
Duong
,
C.
Strelow
,
A.
Mews
,
M.
Burghard
, and
K.
Kern
, “
Electrically tunable quantum emitters in an ultrathin graphene–hexagonal boron nitride van der Waals heterostructure
,”
Appl. Phys. Lett.
114
(
6
),
062104
(
2019
).
127.
J. H.
Kim
,
S.
Aghaeimeibodi
,
J.
Carolan
,
D.
Englund
, and
E.
Waks
, “
Hybrid integration methods for on-chip quantum photonics
,”
Optica
7
(
4
),
291
308
(
2020
).
128.
A. W.
Elshaari
,
W.
Pernice
,
K.
Srinivasan
,
O.
Benson
, and
V.
Zwiller
, “
Hybrid integrated quantum photonic circuits
,”
Nat. Photonics
14
(
5
),
285
298
(
2020
).
129.
T.
Vogl
,
R.
Lecamwasam
,
B.
Buchler
,
Y. R.
Lu
, and
P. K.
Lam
, “
Compact cavity-enhanced single-photon generation with hexagonal boron nitride
,”
ACS Photonics
6
(
8
),
1955
1962
(
2019
).
130.
J. E.
Froch
,
S.
Kim
,
N.
Mendelson
,
M.
Kianinia
,
M.
Toth
, and
I.
Aharonovich
, “
Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities
,”
ACS Nano
14
(
6
),
7085
7091
(
2020
).
131.
N.
Mendelson
,
R.
Ritika
,
M.
Kianinia
,
J.
Scott
,
S.
Kim
,
J. E.
Fröch
,
C.
Gazzana
,
M.
Westerhausen
,
L.
Xiao
,
S.
Sepehr Mohajerani
,
S.
Strauf
,
M.
Toth
,
I.
Aharonovich
, and
Z.-Q.
Xu
, “
Coupling spin defects in a layered material to nanoscale plasmonic cavities
,”
Adv. Mater.
2021
,
2106046
.
132.
J. E.
Froch
,
L. P.
Spencer
,
M.
Kianinia
,
D. D.
Totonjian
,
M.
Nguyen
,
A.
Gottscholl
,
V.
Dyakonov
,
M.
Toth
,
S.
Kim
, and
I.
Aharonovich
, “
Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities
,”
Nano Lett.
21
(
15
),
6549
6555
(
2021
).
133.
L. T.
Peng
,
H.
Chan
,
P.
Choo
,
T. W.
Odom
,
S.
Sankaranarayanan
, and
X. D.
Ma
, “
Creation of single-photon emitters in WSe2 monolayers using nanometer-sized gold tips
,”
Nano Lett.
20
(
8
),
5866
5872
(
2020
).
134.
T. T.
Tran
,
D. Q.
Wang
,
Z. Q.
Xu
,
A. K.
Yang
,
M.
Toth
,
T. W.
Odom
, and
I.
Aharonovich
, “
Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays
,”
Nano Lett.
17
(
4
),
2634
2639
(
2017
).
135.
H.
Lee
,
I.
Kim
,
C.
Park
,
M. G.
Kang
,
J.
Choi
,
K. Y.
Jeong
,
J.
Mun
,
Y.
Kim
,
J.
Park
,
M. B.
Raschke
,
H. G.
Park
,
M. S.
Jeong
,
J.
Rho
, and
K. D.
Park
, “
Inducing and probing localized excitons in atomically thin semiconductors via tip-enhanced cavity-spectroscopy
,”
Adv. Func. Mater.
31
(
33
),
2170243
(
2021
).
136.
L. C.
Flatten
,
L.
Weng
,
A.
Branny
,
S.
Johnson
,
P. R.
Dolan
,
A. A. P.
Trichet
,
B. D.
Gerardot
, and
J. M.
Smith
, “
Microcavity enhanced single photon emission from two-dimensional WSe2
,”
Appl. Phys. Lett.
112
(
19
),
191105
(
2018
).
137.
N. V.
Proscia
,
H.
Jayakumar
,
X. C.
Ge
,
G.
Lopez-Morales
,
Z.
Shotan
,
W. D.
Zhou
,
C. A.
Meriles
, and
V. M.
Menon
, “
Microcavity-coupled emitters in hexagonal boron nitride
,”
Nanophotonics
9
(
9
),
2937
2944
(
2020
).
138.
M.
Nguyen
,
S.
Kim
,
T. T.
Tran
,
Z. Q.
Xu
,
M.
Kianinia
,
M.
Toth
, and
I.
Aharonovich
, “
Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres
,”
Nanoscale
10
(
5
),
2267
2274
(
2018
).
139.
J. E.
Fröch
,
C.
Li
,
Y.
Chen
,
M.
Toth
,
M.
Kianinia
,
S.
Kim
, and
I.
Aharonovich
, “
Purcell enhancement of a cavity-coupled emitter in hexagonal boron nitride
,”
Small
2021
,
2104805
.
140.
O.
Iff
,
Q.
Buchinger
,
M.
Moczala-Dusanowska
,
M.
Kamp
,
S.
Betzold
,
M.
Davanco
,
K.
Srinivasan
,
S.
Tongay
,
C.
Anton-Solanas
,
S.
Hofling
, and
C.
Schneider
, “
Purcell-enhanced single photon source based on a deterministically placed WSe2 monolayer quantum dot in a circular Bragg grating cavity
,”
Nano Lett.
21
(
11
),
4715
4720
(
2021
).
141.
T.
Cai
,
J. H.
Kim
,
Z. L.
Yang
,
S.
Dutta
,
S.
Aghaeimeibodi
, and
E.
Waks
, “
Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars
,”
ACS Photonics
5
(
9
),
3466
3471
(
2018
).
142.
L. N.
Tripathi
,
O.
Iff
,
S.
Betzold
,
L.
Dusanowski
,
M.
Emmerling
,
K.
Moon
,
Y. J.
Lee
,
S. H.
Kwon
,
S.
Hofling
, and
C.
Schneider
, “
Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces
,”
ACS Photonics
5
(
5
),
1919
1926
(
2018
).
143.
S.
Haeussler
,
G.
Bayer
,
R.
Waltrich
,
N.
Mendelson
,
C.
Li
,
D.
Hunger
,
I.
Aharonovich
, and
A.
Kubanek
, “
Tunable fiber-cavity enhanced photon emission from defect centers in hBN
,”
Adv. Opt. Mater.
9
(
17
),
2002218
(
2021
).
144.
S.
Dufferwiel
,
S.
Schwarz
,
F.
Withers
,
A. A. P.
Trichet
,
F.
Li
,
M.
Sich
,
O.
Del Pozo-Zamudio
,
C.
Clark
,
A.
Nalitov
,
D. D.
Solnyshkov
,
G.
Malpuech
,
K. S.
Novoselov
,
J. M.
Smith
,
M. S.
Skolnick
,
D. N.
Krizhanovskii
, and
A. I.
Tartakovskii
, “
Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities
,”
Nat. Commun.
6
,
8579
(
2015
).
145.
M.
Sidler
,
P.
Back
,
O.
Cotlet
,
A.
Srivastava
,
T.
Fink
,
M.
Kroner
,
E.
Demler
, and
A.
Imamoglu
, “
Fermi polaron-polaritons in charge-tunable atomically thin semiconductors
,”
Nat. Phys.
13
(
3
),
255
(
2017
).
146.
X. Z.
Liu
,
T.
Galfsky
,
Z.
Sun
,
F. N.
Xia
,
E. C.
Lin
,
Y. H.
Lee
,
S.
Kena-Cohen
, and
V. M.
Menon
, “
Strong light–matter coupling in two-dimensional atomic crystals
,”
Nat. Photonics
9
(
1
),
30
34
(
2015
).
147.
T.
Cai
,
S.
Dutta
,
S.
Aghaeimeibodi
,
Z.
Yang
,
S.
Nah
,
J. T.
Fourkas
, and
E.
Waks
, “
Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons
,”
Nano Lett.
17
(
11
),
6564
6568
(
2017
).
148.
N. V.
Proscia
,
R. J.
Collison
,
C. A.
Meriles
, and
V. M.
Menon
, “
Coupling of deterministically activated quantum emitters in hexagonal boron nitride to plasmonic surface lattice resonances
,”
Nanophotonics
8
(
11
),
2057
2064
(
2019
).
149.
M.
Blauth
,
M.
Jurgensen
,
G.
Vest
,
O.
Hartwig
,
M.
Prechtl
,
J.
Cerne
,
J. J.
Finley
, and
M.
Kaniber
, “
Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides
,”
Nano Lett.
18
(
11
),
6812
6819
(
2018
).
150.
F.
Peyskens
,
C.
Chakraborty
,
M.
Muneeb
,
D.
Van Thourhout
, and
D.
Englund
, “
Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip
,”
Nat. Commun.
10
,
4435
(
2019
).
151.
C.
Errando-Herranz
,
E.
Scholl
,
R.
Picard
,
M.
Laini
,
S.
Gyger
,
A. W.
Elshaari
,
A.
Branny
,
U.
Wennberg
,
S.
Barbat
,
T.
Renaud
,
M.
Sartison
,
M.
Brotons-Gisbert
,
C.
Bonato
,
B. D.
Gerardot
,
V.
Zwiller
, and
K. D.
Jons
, “
Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters
,”
ACS Photonics
8
(
4
),
1069
1076
(
2021
).
152.
D.
White
,
A.
Branny
,
R. J.
Chapman
,
R.
Picard
,
M.
Brotons-Gisbert
,
A.
Boes
,
A.
Peruzzo
,
C.
Bonato
, and
B. D.
Gerardot
, “
Atomically-thin quantum dots integrated with lithium niobate photonic chips Invited
,”
Opt. Mater. Express
9
(
2
),
441
448
(
2019
).
153.
S.
Kim
,
N. M. H.
Duong
,
M.
Nguyen
,
T. J.
Lu
,
M.
Kianinia
,
N.
Mendelson
,
A.
Solntsev
,
C.
Bradac
,
D. R.
Englund
, and
I.
Aharonovich
, “
Integrated on chip platform with quantum emitters in layered materials
,”
Adv. Opt. Mater.
7
(
23
),
1901132
(
2019
).
154.
O.
Iff
,
N.
Lundt
,
S.
Betzold
,
L. N.
Tripathi
,
M.
Emmerling
,
S.
Tongay
,
Y. J.
Lee
,
S. H.
Kwon
,
S.
Hofling
, and
C.
Schneider
, “
Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities
,”
Opt. Express
26
(
20
),
25944
25951
(
2018
).
155.
T. K.
Fryett
,
Y. Y.
Chen
,
J.
Whitehead
,
Z. M.
Peycke
,
X. D.
Xu
, and
A.
Majumdar
, “
Encapsulated silicon nitride nanobeam cavity for hybrid nanophotonics
,”
ACS Photonics
5
(
6
),
2176
(
2018
).
156.
S. F.
Wu
,
S.
Buckley
,
A. M.
Jones
,
J. S.
Ross
,
N. J.
Ghimire
,
J. Q.
Yan
,
D. G.
Mandrus
,
W.
Yao
,
F.
Hatami
,
J.
Vuckovic
,
A.
Majumdar
, and
X. D.
Xu
, “
Control of two-dimensional excitonic light emission via photonic crystal
,”
2D Mater.
1
(
1
),
011001
(
2014
).
157.
X. T.
Gan
,
Y. D.
Gao
,
K. F.
Mak
,
X. W.
Yao
,
R. J.
Shiue
,
A.
van der Zande
,
M. E.
Trusheim
,
F.
Hatami
,
T. F.
Heinz
,
J.
Hone
, and
D.
Englund
, “
Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity
,”
Appl. Phys. Lett.
103
(
18
),
181119
(
2013
).
158.
S. F.
Wu
,
S.
Buckley
,
J. R.
Schaibley
,
L. F.
Feng
,
J. Q.
Yan
,
D. G.
Mandrus
,
F.
Hatami
,
W.
Yao
,
J.
Vuckovic
,
A.
Majumdar
, and
X. D.
Xu
, “
Monolayer semiconductor nanocavity lasers with ultralow thresholds
,”
Nature
520
(
7545
),
69
(
2015
).
159.
Y. Z.
Li
,
J. X.
Zhang
,
D. D.
Huang
,
H.
Sun
,
F.
Fan
,
J. B.
Feng
,
Z.
Wang
, and
C. Z.
Ning
, “
Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity
,”
Nat. Nanotechnol.
12
(
10
),
987
992
(
2017
).
160.
C.
Li
,
J. E.
Fröch
,
M.
Nonahal
,
T. N.
Tran
,
M.
Toth
,
S.
Kim
, and
I.
Aharonovich
, “
Integration of hBN quantum emitters in monolithically fabricated waveguides
,”
ACS Photonics
8
,
2966
(
2021
).
161.
S.
Kim
,
J. E.
Froch
,
J.
Christian
,
M.
Straw
,
J.
Bishop
,
D.
Totonjian
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Toth
, and
I.
Aharonovich
, “
Photonic crystal cavities from hexagonal boron nitride
,”
Nat. Commun.
9
,
2623
(
2018
).
162.
L.
Sortino
,
P. G.
Zotev
,
S.
Mignuzzi
,
J.
Cambiasso
,
D.
Schmidt
,
A.
Genco
,
M.
Assmann
,
M.
Bayer
,
S. A.
Maier
,
R.
Sapienza
, and
A. I.
Tartakovskii
, “
Enhanced light–matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas
,”
Nat. Commun.
10
,
5119
(
2019
).
163.
R.
Verre
,
D. G.
Baranov
,
B.
Munkhbat
,
J.
Cuadra
,
M.
Kall
, and
T.
Shegai
, “
Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators
,”
Nat. Nanotechnol.
14
(
7
),
679
(
2019
).
164.
L.
Sortino
,
P. G.
Zotev
,
C. L.
Phillips
,
A. J.
Brash
,
J.
Cambiasso
,
E.
Marensi
,
A. M.
Fox
,
S. A.
Maier
,
R.
Sapienza
, and
A. I.
Tartakovskii
, “
Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas
,”
Nat. Commun.
12
(
1
),
6063
(
2021
).
165.
Y.
Ye
,
Z. J.
Wong
,
X. F.
Lu
,
X. J.
Ni
,
H. Y.
Zhu
,
X. H.
Chen
,
Y.
Wang
, and
X.
Zhang
, “
Monolayer excitonic laser
,”
Nat. Photonics
9
(
11
),
733
737
(
2015
).
You do not currently have access to this content.