Persistent room temperature phosphorescence (pRTP) is important to high-resolution imaging independent of autofluorescence and the scattering of excitation light for security and imaging applications. Although efficient and bright pRTP is crucial to imaging applications, photophysical processes from the triple states of heavy-atom-free chromophores have been explained by making many assumptions that are potentially based on incorrect photophysical explanations. This often confuses researchers in their efforts to control and enhance the pRTP characteristics. This paper introduces recent advances in our understanding of photophysical processes from the lowest triplet excited state of heavy-atom-free chromophores based on statistical evidence from experimental and theoretical viewpoints. After the introduction of two photophysical processes showing persistent RT emissions and the characteristics of the persistent emissions, physical parameters relating to pRTP and appropriate techniques for measuring the parameters are explained. For molecularly dispersed heavy-metal-free chromophores in a solid state, recent understandings of the physical parameters verified by correlations from optically estimated and theoretical viewpoints are summarized. Using the photophysical insights obtained for the dispersed chromophores, uncertainties regarding the photophysical processes of aggregated chromophores are discussed. After highlighting recently developed materials showing efficient pRTP, the potential advantages of pRTP over previous persistent emissions are discussed considering recent demonstrations of persistent emitters. This review quantitatively summarizes the relationship between the molecular backbone and physical parameters of pRTP characteristics and guides the reader in their efforts to appropriately design materials with efficient pRTP and control long-lived triplet excitons for promising applications.

1.
M. A.
Baldo
,
D. F. O.
Brien
,
Y.
You
,
A.
Shoustikov
,
S.
Sibley
,
M. E.
Thompson
, and
S. R.
Forrest
, “
Highly efficient phosphorescent emission from organic electroluminescent device
,”
Nature
395
,
151
154
(
1998
).
2.
M. A.
Baldo
,
S.
Lamansky
,
P. E.
Burrows
,
M. E.
Thompson
, and
S. R.
Forrest
, “
Very high-efficiency green organic light-emitting devices based on electrophosphorescence
,”
Appl. Phys. Lett.
75
,
125458
(
1999
).
3.
C.
Adachi
,
M. A.
Baldo
,
M. E.
Thompson
, and
S. R.
Forrest
, “
Nearly 100% internal phosphorescence efficiency in an organic light-emitting device
,”
J. Appl. Phys.
90
,
5048
5051
(
2001
).
4.
S. R.
Forrest
, “
The path to ubiquitous and low-cost organic electronic appliances on plastic
,”
Nature
428
,
911
918
(
2004
).
5.
S.
Reineke
,
F.
Lindner
,
G.
Schwartz
,
N.
Seidler
,
K.
Walzer
,
B.
Lüssem
, and
K.
Leo
, “
White organic light-emitting diodes with fluorescent tube efficiency
,”
Nature
459
,
234
238
(
2009
).
6.
J. G. J. E. D.
Dolmans
,
D.
Fukumura
, and
R. K.
Jain
, “
Photodynamic therapy for cancer
,”
Nat. Rev. Cancer
3
,
380
387
(
2003
).
7.
H. A.
Collins
,
M.
Khurana
,
E. H.
Moriyama
,
A.
Mariampillai
,
E.
Dahlstedt
,
M.
Balaz
,
M. K.
Kuimova
,
M.
Drobizhev
,
V. X.
Yang
,
D.
Phillips
 et al, “
Blood-vessel closure using photosensitizers engineered for two-photon excitation
,”
Nat. Photonics
2
,
420
424
(
2008
).
8.
J. W.
Perry
,
K.
Mansour
,
S. R.
Marder
,
K. J.
Perry
,
D.
Alvarez
, and
I.
Choong
, “
Enhanced reverse saturable absorption and optical limiting in heavy-atom- substituted phthalocyanines
,”
Opt. Lett.
19
,
625
627
(
1994
).
9.
G. J.
Zhou
,
W. Y.
Wong
,
S. Y.
Poon
,
C.
Ye
, and
Z.
Lin
, “
Symmetric versus unsymmetric platinum(II) bis(aryleneethynylene)s with distinct electronic structures for optical power limiting/optical transparency trade‐off optimization
,”
Adv. Funct. Mater.
19
,
531
544
(
2009
).
10.
S.
Hirata
,
K.
Totani
,
T.
Yamashita
,
C.
Adachi
, and
M.
Vacha
, “
Large reverse saturable absorption under weak continuous incoherent light
,”
Nat. Mater.
13
,
938
946
(
2014
).
11.
S.
Baluschev
,
T.
Miteva
,
V.
Yakutkin
,
G.
Nelles
,
A.
Yasuda
, and
G.
Wegner
, “
Up-conversion fluorescence: Noncoherent excitation by sunlight
,”
Phys. Rev. Lett.
97
,
143903
(
2006
).
12.
A.
Monguzzi
,
R.
Tubino
,
S.
Hoseinkhani
,
M.
Campione
, and
F.
Meinardi
, “
Low power, non-coherent sensitized photon up-conversion: Modelling and perspectives
,”
Phys. Chem. Chem. Phys.
14
,
4322
4332
(
2012
).
13.
T. N.
Singh-Rachford
and
F. N.
Castellano
, “
Photon upconversion based on sensitized triplet–triplet annihilation
,”
Coord. Chem. Rev.
254
,
2560
2573
(
2010
).
14.
G.
Zhang
,
G. M.
Palmer
,
M. W.
Dewhirts
, and
C. L.
Fraser
, “
A dual-emissive-materials design concept enables tumour hypoxia imaging
,”
Nat. Mater.
8
,
747
751
(
2009
).
15.
S.
Zhang
,
M.
Hosaka
,
T.
Yoshihara
,
K.
Negishi
,
Y.
Iida
,
S.
Tobita
, and
T.
Takeuchi
, “
Phosphorescent light–emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals
,”
Cancer Res.
70
,
4490
(
2010
).
16.
X.
Zhen
,
Y.
Tao
,
Z.
An
,
P.
Chen
,
C.
Xu
,
R.
Chen
,
W.
Huang
, and
K.
Pu
, “
Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging
,”
Adv. Mater.
29
,
1606665
(
2017
).
17.
J. N.
Turro
,
Modern Molecular Photochemistry
(
University Science Books
,
Sausalito, CA
,
1991
).
18.
D. B.
Clapp
, “
The phosphorescence of tetraphenylmethane and certain related substances
,”
J. Am. Chem. Soc.
61
,
523
524
(
1939
).
19.
J. L.
Kropp
and
W. R.
Dawson
, “
Radiationless deactivation of triplet coronene in plastics
,”
J. Chem. Phys.
71
,
4499
4506
(
1967
).
20.
P. F.
Jones
and
S.
Siegel
, “
Temperature effects on the phosphorescence of aromatic hydrocarbons in poly(methylmethacrylate)
,”
J. Chem. Phys.
50
,
1134
(
1969
).
21.
L. J.
Sims
,
A. V.
Guzzo
, and
A. B.
Denison
, “
Temperature dependent electron relaxation time in the photo-excited triplet state of pyrene-d-10
,”
Chem. Phys. Lett.
5
,
370
372
(
1970
).
22.
B.
Bonno
,
F.
Gerardot
,
J. L.
Laporte
, and
Y.
Rousset
, “
Triplet exciton fusion in organic mixed crystals: The naphthalene as host and chrysene and 1,2,5,6-dibenzanthracene as guests system
,”
J. Photochem.
38
,
157
165
(
1987
).
23.
W.
Zhao
,
Z.
He
, and
B. Z.
Tang
, “
Room-temperature phosphorescence from organic aggregates
,”
Nat. Rev. Mater.
5
,
869
885
(
2020
).
24.
A. S.
Mathew
,
C. A.
DeRosa
,
J. N.
Demas
, and
C. L.
Fraser
, “
Difluoroboron β-diketonate materials with long-lived phosphorescence enable lifetime based oxygen imaging with a portable cost effective camera
,”
Anal. Methods
8
,
3109
3114
(
2016
).
25.
I.
Bhattacharjee
and
S.
Hirata
, “
Highly efficient persistent room-temperature phosphorescence from heavy atom-free molecules triggered by hidden long phosphorescent antenna
,”
Adv. Mater.
32
,
202001348
(
2020
).
26.
Y.
Deng
,
D.
Zhao
,
X.
Chen
,
F.
Wang
,
H.
Song
, and, and
D.
Shen
, “
Long lifetime pure organic phosphorescence based on water soluble carbon dots
,”
Chem. Commun.
49
,
5751
5753
(
2013
).
27.
S.
Hirata
,
K.
Totani
,
H.
Kaji
,
M.
Vacha
,
T.
Watanabe
, and
C.
Adachi
, “
Reversible thermal recording media using time‐dependent persistent room temperature phosphorescence
,”
Adv. Opt. Mater.
1
,
438
442
(
2013
).
28.
Z.
An
,
C.
Zheng
,
Y.
Tao
,
R.
Chen
,
H.
Shi
,
T.
Chen
,
Z.
Wang
,
H.
Li
,
R.
Deng
,
X.
Liu
, and
W.
Huang
, “
Stabilizing triplet excited states for ultralong organic phosphorescence
,”
Nat. Mater.
14
,
685
690
(
2015
).
29.
K.
Jiang
,
L.
Zhang
,
J.
Lu
,
C.
Xu
,
C.
Cai
, and
H.
Lin
, “
Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting
,”
Angew. Chem. Int. Ed.
55
,
7231
7235
(
2016
).
30.
P.
Long
,
Y.
Feng
,
C.
Cao
,
Y.
Li
,
J.
Han
,
S.
Li
,
C.
Peng
,
Z.
Li
, and
W.
Feng
, “
Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots
,”
Adv. Funct. Mater.
28
,
1800791
(
2018
).
31.
M.
Louis
,
H.
Thomas
,
M.
Gmelch
,
A.
Haft
,
F.
Fries
, and
S.
Reineke
, “
Blue-light-absorbing thin films showing ultralong room-temperature phosphorescence
,”
Adv. Mater.
31
,
1807887
(
2019
).
32.
I.
Bhattacharjee
,
K.
Hayashi
, and
S.
Hirata
, “
Key of suppressed triplet nonradiative transition-dependent chemical backbone for spatial self-tunable afterglow
,”
JACS Au
1
,
945
954
(
2021
).
33.
C. A.
DeRosa
,
J.
Samonina-Kosicka
,
Z.
Fan
,
H. C.
Hendargo
,
D. H.
Weitzel
,
G. M.
Palmer
, and
C. L.
Fraser
, “
Oxygen sensing difluoroboron dinaphthoylmethane polylactide
,”
Macromolecules
48
,
2967
2977
(
2015
).
34.
S. M. A.
Fateminia
,
Z.
Mao
,
S.
Xu
,
Z.
Yang
,
Z.
Chi
, and
B.
Liu
, “
Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications
,”
Angew. Chem. Int. Ed.
56
,
12160
12164
(
2017
).
35.
J.
Yang
,
X.
Zhen
,
B.
Wang
,
X.
Gao
,
Z.
Ren
,
J.
Wang
,
Y.
Xie
,
J.
Li
,
Q.
Peng
,
K.
Pu
, and
Z.
Li
, “
The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens
,”
Nat. Commun.
9
,
840
(
2018
).
36.
M. A.
Baldo
,
C.
Adachi
, and
S. R.
Forrest
, “
Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation
,”
Phys. Rev. B
62
,
10967
(
2000
).
37.
C.
Adachi
,
R. C.
Kwong
,
P.
Djurovich
,
V.
Adamovich
,
M. A.
Baldo
,
M. E.
Thompson
, and
S. R.
Forrest
, “
Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials
,”
Appl. Phys. Lett.
79
,
2082
2084
(
2001
).
38.
A.
Endo
,
M.
Ogasawara
,
A.
Takahashi
,
D.
Yokoyama
,
Y.
Kato
, and
C.
Adachi
, “
Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence
,”
Adv. Mater.
21
,
4802
4806
(
2009
).
39.
A.
Endo
,
K.
Sato
,
K.
Yoshimura
,
T.
Kai
,
A.
Kawada
,
H.
Miyazaki
, and
C.
Adachi
, “
Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes
,”
Appl. Phys. Lett.
98
,
083302
(
2011
).
40.
H.
Uoyama
,
K.
Goushi
,
K.
Shizu
,
H.
Nomura
, and
C.
Adachi
, “
Highly efficient organic light-emitting diodes from delayed fluorescence
,”
Nature
492
,
234
238
(
2012
).
41.
Q.
Zhang
,
B.
Li
,
S.
Huang
,
H.
Nomura
,
H.
Tanaka
, and
C.
Adachi
, “
Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence
,”
Nat. Photon
ics
8
,
326
332
(
2014
).
42.
H.
Nakanotani
,
T.
Higuchi
,
T.
Furukawa
,
K.
Masui
,
K.
Morimoto
,
M.
Numata
,
H.
Tanaka
,
Y.
Sagara
,
T.
Yasuda
, and
C.
Adachi
, “
High-efficiency organic light-emitting diodes with fluorescent emitters
,”
Nat. Commun.
5
,
4016
(
2014
).
43.
T.
Hatakeyama
,
K.
Shiren
,
K.
Nakajima
,
S.
Nomura
,
S.
Nakatsuka
,
K.
Kinoshita
,
J.
Ni
,
Y.
Ono
, and
T.
Ikuta
, “
Ultrapure blue thermally activated delayed fluorescence molecules: Efficient HOMO–LUMO separation by the multiple resonance effect
,”
Adv. Mater.
28
,
2777
2781
(
2016
).
44.
M. K.
Etherington
,
J.
Gibson
,
H. F.
Higginbotham
,
T. J.
Penfold
, and
A. P.
Monkman
, “
Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
,”
Nat. Commun.
7
,
13680
(
2016
).
45.
T. J.
Penfold
,
E.
Gindensperger
,
C.
Daniel
, and
C. M.
Marian
, “
Spin-vibronic mechanism for intersystem crossing
,”
Chem. Rev.
118
,
6975
7025
(
2018
).
46.
H.
Noda
,
X.-K.
Chen
,
H.
Nakanotani
,
T.
Hosokai
,
M.
Miyajima
,
N.
Notsuka
,
Y.
Kashima
,
J.-L.
Brédas
, and
C.
Adachi
, “
Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors
,”
Nat. Mater.
18
,
1084
1090
(
2019
).
47.
Y.
Wada
,
H.
Nakagawa
,
S.
Matsumoto
,
Y.
Wakisaka
, and
H.
Kaji
, “
Organic light emitters exhibiting very fast reverse intersystem crossing
,”
Nat. Photonics
14
,
643
649
(
2020
).
48.
C.-Y.
Chan
,
M.
Tanaka
,
Y.-T.
Lee
,
Y.-W.
Wong
,
H.
Nakanotani
,
T.
Hatakeyama
, and
C.
Adachi
, “
Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission
,”
Nat. Photonics
15
,
203
207
(
2021
).
49.
H.
Shen
,
Q.
Gao
,
Y.
Zhang
,
Y.
Lin
,
Q.
Lin
,
Z.
Li
,
L.
Chen
,
Z.
Zeng
,
X.
Li
,
Y.
Jia
,
S.
Wa
,
Z.
Du
,
L. S.
Li
, and
Z.
Zhang
, “
Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency
,”
Nat. Photonics
13
,
192
197
(
2019
).
50.
K.
Lin
,
J.
Xing
,
L. N.
Quan
,
F. P. G.
de Arquer
,
X.
Gong
,
J.
Lu
,
L.
Xie
,
W.
Zhao
,
D.
Zhang
,
C.
Yan
,
W.
Li
,
X.
Liu
,
Y.
Lu
,
J.
Kirman
,
E. H.
Sargent
,
Q.
Xiong
, and
Z.
Wei
, “
Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent
,”
Nature
562
,
245
248
(
2018
).
51.
T.
Chiba
,
Y.
Hayashi
,
H.
Ebe
,
K.
Hoshi
,
J.
Sato
,
S.
Sato
,
Y.-J.
Pu
,
S.
Ohisa
, and
J.
Kido
, “
Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices
,”
Nat. Photonics
12
,
681
687
(
2018
).
52.
J.
Kuijt
,
F.
Ariese
,
U. A. T.
Brinkman
, and
C.
Gooijer
, “
Room temperature phosphorescence in the liquid state as a tool in analytical chemistry
,”
Anal. Chim. Acta
488
,
135
171
(
2003
).
53.
S.
Mukherjee
and
P.
Thilagar
, “
Recent advances in purely organic phosphorescent materials
,”
Chem. Commun.
51
,
10988
11003
(
2015
).
54.
S.
Xu
,
R.
Chen
,
C.
Zheng
, and
W.
Huang
, “
Excited state modulation for organic afterglow: Materials and applications
,”
Adv. Mater.
28
,
9920
9940
(
2016
).
55.
M.
Baroncini
,
G.
Bergamini
, and
P.
Ceroni
, “
Rigidification or interaction-induced phosphorescence of organic molecules
,”
Chem. Commun.
53
,
2081
2093
(
2017
).
56.
S.
Hirata
, “
Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization
,”
Adv. Opt. Mater.
5
,
1700116
(
2017
).
57.
Q.
Li
,
Y.
Tang
,
W.
Hu
, and
Z.
Li
, “
Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: The intrinsic principle and recent progress
,”
Small
14
,
1801560
(
2018
).
58.
A.
Forni
,
E.
Lucenti
,
C.
Botta
, and, and
E.
Cariati
, “
Metal free room temperature phosphorescence from molecular self-interactions in the solid state
,”
J. Mater. Chem. C
6
,
4603
4626
(
2018
).
59.
S.
Hirata
, “
Ultralong-lived room temperature triplet excitons: Molecular persistent room temperature phosphorescence and nonlinear optical characteristics with continuous irradiation
,”
J. Mater. Chem. C
6
,
11785
11794
(
2018
).
60.
H.
Yuasa
and
S.
Kuno
, “
Intersystem crossing mechanisms in the room temperature phosphorescence of crystalline organic compounds
,”
Bull. Chem. Soc. Jpn.
91
,
223
229
(
2018
).
61.
Kenry,
C.
Chen
and
B.
Liu
, “
Enhancing the performance of pure organic room temperature phosphorescent luminophore
,”
Nat. Commun.
10
,
2111
(
2019
).
62.
X.
Ma
,
J.
Wang
, and
H.
Tian
, “
Assembling-induced emission: An efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence
,”
Acc. Chem. Res.
52
,
738
748
(
2019
).
63.
T.
Yuan
,
T.
Meng
,
P.
He
,
Y.
Shi
,
Y.
Li
,
X.
Li
,
L.
Fan
, and
S.
Yang
, “
Carbon quantum dots: An emerging material for optoelectronic applications
,”
J. Mater. Chem. C
7
,
6820
6835
(
2019
).
64.
L.
Xiao
and
H.
Fu
, “
Enhanced room‐temperature phosphorescence through intermolecular halogen/hydrogen bonding
,” Chemistry
25
,
714
723
(
2019
).
65.
H.
Ma
,
A.
Lv
,
L.
Fu
,
S.
Wang
,
Z.
An
,
H.
Shi
, and
W.
Huang
, “
Room temperature phosphorescence in metal‐free organic materials
,”
Ann. Phys.
531
,
1800482
(
2019
).
66.
G.
Zhan
,
Z.
Liu
,
Z.
Bian
, and
C.
Huang
, “
Recent advances in organic light-emitting diodes based on pure organic room temperature phosphorescence materials
,”
Front. Chem.
7
,
305
(
2019
).
67.
T.
Zhang
,
X.
Ma
,
H.
Wu
,
L.
Zhu
,
Y.
Zhao
, and
H.
Tian
, “
Molecular engineering for metal‐free amorphous materials with room‐temperature phosphorescence
,”
59
,
11206
11216
(
2020
).
68.
J.
Yang
,
M.
Fang
, and
Z.
Li
, “
Stimulus‐responsive room temperature phosphorescence in purely organic luminogens
,”
InfoMat
2
,
791
806
(
2020
).
69.
K.
Jiang
,
Y.
Wang
,
Z.
Li
, and
H.
Lin
, “
Afterglow of carbon dots: Mechanism, strategy and applications
,”
Mater. Chem. Front.
4
,
386
399
(
2020
).
70.
L.
Gu
,
X.
Wang
,
M.
Singh
,
H.
Shi
,
H.
Ma
,
Z.
An
, and
W.
Huang
, “
Organic room-temperature phosphorescent materials: From static to dynamic
,”
J. Phys. Chem. Lett.
11
,
6191
6200
(
2020
).
71.
J.
Zhi
,
Q.
Zhou
,
H.
Shi
,
Z.
An
, and
W.
Huang
, “
Organic room temperature phosphorescence materials for biomedical applications
,”
Chemistry
15
,
947
957
(
2020
).
72.
J.
Wang
,
X. Y.
Lou
,
Y. W. J.
Tang
, and
Y. W.
Yang
, “
Recent advances of polymer‐based pure organic room temperature phosphorescent materials
,”
Macro-mol. Rapid Commun.
42
,
2100021
(
2021
).
73.
H.-R.
Wang
,
X.-G.
Yang
,
J.-H.
Qin
, and
L.-F.
Ma
, “
Long-lived room temperature phosphorescence of organic–inorganic hybrid systems
,”
Inorg. Chem. Front.
8
,
1942
1950
(
2021
).
74.
H.
Gao
and
X.
Ma
, “
Recent progress on pure organic room temperature phosphorescent polymers
,”
Aggregate
2
,
e38
(
2021
).
75.
S.
Guo
,
W.
Dai
,
X.
Chen
,
Y.
Lei
,
J.
Shi
,
B.
Tong
,
Z.
Cai
, and
Y.
Dong
, “
Recent progress in pure organic room temperature phosphorescence of small molecular host–guest systems
,”
ACS Mater. Lett.
3
,
379
397
(
2021
).
76.
R.
Gao
,
M. S.
Kodaimati
, and
D.
Yan
, “
Recent advances in persistent luminescence based on molecular hybrid materials
,”
Chem. Soc. Rev.
50
,
5564
5589
(
2021
).
77.
A. D.
Nidhankar
,
Goudappagouda
,
V. C.
Wakchaure
, and
S. S.
Babu
, “
Efficient metal-free organic room temperature phosphors
,”
Chem. Sci.
12
,
4216
4236
(
2021
).
78.
K.
Van den Eeckhout
,
P. F.
Smet
, and
D.
Poelman
, “
Persistent luminescence in Eu2+-doped compounds: A review
,”
Material
3
,
2536
2566
(
2010
).
79.
J.
Xu
and
S.
Tanabe
, “
Persistent luminescence instead of phosphorescence: History, mechanism, and perspective
,”
J. Lumin.
205
,
581
620
(
2019
).
80.
H.
Ohkita
,
W.
Sakai
,
A.
Tsuchida
, and
M.
Yamamoto
, “
Charge recombination via electron tunneling after two-photon ionization of dopant chromophore in poly(butyl methacrylate) film at 20 K
,”
Bull. Chem. Soc. Jpn.
70
,
2665
2670
(
1997
).
81.
H.
Ohkita
,
W.
Sakai
,
A.
Tsuchida
, and
M.
Yamamoto
, “
Charge recombination luminescence via the photoionization of a dopant chromophore in polymer solids
,”
Macromolecules
30
,
5376
5383
(
1997
).
82.
R.
Kabe
and
C.
Adachi
, “
Organic long persistent luminescence
,”
Nature
550
,
384
387
(
2017
).
83.
Z.
Lin
,
R.
Kabe
,
K.
Wang
, and
C.
Adachi
, “
Influence of energy gap between charge-transfer and locally excited states on organic long persistence luminescence
,” Nat. Commun.
11
,
191
(
2020
).
84.
W.
Li
,
Z.
Li
,
C.
Si
,
M. Y.
Wong
,
K.
Jinnai
,
A. K.
Gupta
,
R.
Kabe
,
C.
Adachi
,
W.
Huang
,
E.
Zysman‐Colman
 et al, “
Organic long‐persistent luminescence from a thermally activated delayed fluorescence compound
,”
Adv. Mater.
32
,
2003911
(
2020
).
85.
L.
Xiao
,
Z.
Wang
,
C.
Zhang
,
X.
Xie
,
H.
Ma
,
Q.
Peng
,
Z.
An
,
X.
Wang
,
Z.
Shuai
, and
M.
Xiao
, “
Long persistent luminescence enabled by dissociation of triplet intermediate states in an organic guest/host system
,”
J. Phys. Chem. Lett.
11
,
3582
3588
(
2019
).
86.
Z.
Wang
,
Y.
Zhang
,
C.
Wang
,
X.
Zheng
,
Y.
Zheng
,
L.
Gao
,
C.
Yang
,
Y.
Li
,
L.
Qu
, and
Y.
Zhao
, “
Color‐tunable polymeric long‐persistent luminescence based on polyphosphazenes
,”
Adv. Mater.
32
,
1907355
(
2020
).
87.
Z.
Wang
,
C. Y.
Zhu
,
J. T.
Mo
,
X. Y.
Xu
,
J.
Ruan
,
M.
Pan
, and
C. Y.
Su
, “
Multi‐mode color‐tunable long persistent luminescence in single‐component coordination polymers
,”
Angew. Chem. Int. Ed.
60
,
2526
2523
(
2021
).
88.
S.
Hirata
and
M.
Vacha
, “
Large transmittance change induced by exciton accumulation under weak continuous photoexcitation
,”
Adv. Opt. Mater.
4
,
297
305
(
2016
).
89.
R.
Kabe
,
N.
Notsuka
,
K.
Yoshida
, and
C.
Adachi
, “
Afterglow organic light-emitting diode
,”
Adv. Mater.
28
,
655
660
(
2016
).
90.
S.
Hirata
,
K.
Totani
,
J.
Zhang
,
T.
Yamashita
,
H.
Kaji
,
S. R.
Marder
,
T.
Watanabe
, and
C.
Adachi
, “
Efficient persistent room temperature phosphorescence from organic amorphous in ambient condition
,”
Adv. Funct. Mater.
23
,
3386
3397
(
2013
).
91.
S.
Hirata
,
H.
Hara
, and
I.
Bhattacharjee
, “
Phosphorescence quenching of heavy-atom-free dopant chromophores triggered by thermally activated triplet exciton diffusion of a conjugated crystalline host
,”
J. Phys. Chem. C
124
,
25121
25132
(
2020
).
92.
S.
Hirata
, “
Intrinsic analysis of radiative and room–temperature nonradiative processes based on triplet state intramolecular vibrations of heavy atom-free conjugated molecules toward efficient persistent room temperature phosphorescence
,”
J. Phys. Chem. Lett.
9
,
4251
4259
(
2018
).
93.
Y.
Wen
,
H.
Liu
,
S.
Zhang
,
J.
Cao
,
J.
De
, and
B.
Yang
, “
Achieving highly efficient pure organic single-molecule white-light emitter: The coenhanced fluorescence and phosphorescence dual emission by tailoring alkoxy substituents
,”
Adv. Opt. Mater.
8
,
1901995
(
2020
).
94.
Z.
Yang
,
C.
Xu
,
W.
Li
,
Z.
Mao
,
X.
Ge
,
Q.
Huang
,
H.
Deng
,
J.
Zhao
,
F. L.
Gu
,
Y.
Zhang
, and
Z.
Chi
, “
Boosting the quantum efficiency of ultralong organic phosphorescence up to 52 % via intramolecular halogen bonding
,”
Angew. Chem. Int. Ed.
59
,
17451
17455
(
2020
).
95.
Y.
Zhang
,
Z.
Wang
,
Y.
Su
,
Y.
Zheng
,
W.
Tang
,
C.
Yang
,
H.
Tang
,
L.
Qu
,
Y.
Li
, and
Y.
Zhao
, “
Simple vanilla derivatives for long-lived room-temperature polymer phosphorescence as invisible security inks
,”
Res.
2021
,
8096263
.
96.
H.
Burrows
,
M.
Fernandes
,
J.
de Melo
,
A.
Monkman
, and
S.
Navaratnam
, “
Characterization of the triplet state of tris(8-hydroxyquinoline)aluminium(III) in benzene solution
,”
J. Am. Chem. Soc.
125
,
15310
15311
(
2003
).
97.
R.
Huang
,
J.
Avó
,
T.
Northey
,
E.
Chaning-Pearce
,
J. L.
dos Santos
,
J. S.
Ward
,
P.
Data
,
M. K.
Etherington
,
M. A.
Fox
,
T. J.
Penfold
 et al, “
The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters
,”
J. Mater. Chem. C
5
,
6269
6280
(
2017
).
98.
S.
Hirata
and
I.
Bhattacharjee
, “
Vibrational radiationless transition from triplet states of chromophores at room temperature
,”
J. Phys. Chem. A
125
,
885
894
(
2021
).
99.
S.
Kwon
,
D.
Lee
,
S.
Seo
,
J.
Jung
, and
J.
Kim
, “
Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices
,”
Angew. Chem. Int. Ed.
53
,
11177
11181
(
2014
).
100.
Y.
Su
,
S. Z. F.
Phua
,
Y.
Li
,
X.
Zhou
,
D.
Jana
,
G.
Liu
,
W. Q.
Lim
,
W. K.
Ong
,
C.
Yang
, and
Y.
Zhao
, “
Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption
,”
Sci. Adv.
4
,
eaas9732
(
2018
).
101.
Y.
Chen
,
J.
He
,
C.
Hu
,
H.
Zhang
,
B.
Lei
, and
Y.
Liu
, “
Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates
,”
J. Mater. Chem. C
5
,
6243
6250
(
2017
).
102.
M.
Louis
,
H.
Thomas
,
M.
Gmelch
,
F.
Fries
,
A.
Haft
,
J.
Lindenthal
, and
S.
Reineke
, “
Biluminescence under ambient conditions: Water‐soluble organic emitter in high‐oxygen‐barrier polymer
,”
Adv. Opt. Mater.
8
,
2000427
(
2020
).
103.
S.
Kuila
and
S. J.
George
, “
Phosphorescence energy transfer: Ambient afterglow fluorescence from water‐processable and purely organic dyes via delayed sensitization
,”
Angew. Chem. Int. Ed.
59
,
9393
9397
(
2020
).
104.
R.
Tian
,
S.-M.
Xu
,
Q.
Xu
, and
C.
Lu
, “
Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry
,”
Sci. Adv.
6
,
eaaz6107
(
2020
).
105.
K.
Jiang
,
Y. H.
Wang
,
C. Z.
Cai
, and
H. W.
Lin
, “
Activating room temperature long afterglow of carbon dots via covalent fixation
,”
Chem. Mater.
29
,
4866
4873
(
2017
).
106.
Q.
Li
,
M.
Zhou
,
Q.
Yang
,
Q.
Wu
,
J.
Shi
,
A.
Gong
, and
M.
Yang
, “
Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices
,”
Chem. Mater.
28
,
8221
8227
(
2016
).
107.
Y.
Lei
,
W.
Dai
,
Y.
Tian
,
J.
Yang
,
P.
Li
,
J.
Shi
,
B.
Tong
,
Z.
Cai
, and
Y.
Dong
, “
Revealing insight into long-lived room-temperature phosphorescence of host–guest systems
,”
J. Phys. Chem. Lett.
10
,
6019
6025
(
2019
).
108.
Y.
Lei
,
W.
Dai
,
J.
Guan
,
S.
Guo
,
F.
Ren
,
Y.
Zhou
,
J.
Shi
,
B.
Tong
,
Z.
Cai
,
J.
Zheng
 et al, “
Wide-range color-tunable organic phosphorescence materials for printable and writable security inks
,”
Angew. Chem. Int. Ed.
59
,
16054
16060
(
2020
).
109.
J.
Wei
,
B.
Liang
,
R.
Duan
,
Z.
Cheng
,
C.
Li
,
T.
Zhou
,
Y.
Yi
, and
Y.
Wang
, “
Induction of strong long‐lived room‐temperature phosphorescence of N‐phenyl‐2‐naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix
,”
Angew. Chem. Int. Ed.
55
,
15589
15593
(
2016
).
110.
N.
Notsuka
,
R.
Kabe
,
K.
Goushi
, and
C.
Adachi
, “
Confinement of long-lived triplet excitons in organic semiconducting host−guest systems
,”
Adv. Funct. Mater.
27
,
1703902
(
2017
).
111.
G. L.
Closs
,
M. D.
Johnson
,
J. R.
Miller
, and
P. A.
Piotrowiak
, “
Connection between intramolecular long-range electron, hole, and triplet energy transfers
,”
J. Am. Chem. Soc.
111
,
3751
3753
(
1989
).
112.
K.
Takimiya
,
S.
Shinamura
,
I.
Osaka
, and
E.
Miyazaki
, “
Thienoacene-based organic semiconductors
,”
Adv. Mater.
23
,
4347
4370
(
2011
).
113.
A.
Köhler
and
H.
Bässler
, “
What controls triplet exciton transfer in organic semiconductors?
,”
J. Mater. Chem.
21
,
4003
4011
(
2011
).
114.
K.
Narushima
,
Y.
Kiyota
,
T.
Mori
,
S.
Hirata
, and
M.
Vacha
, “
Suppressed triplet exciton diffusion due to small orbital overlap as a key design factor for ultralong-lived room temperature phosphorescence in molecular crystals
,”
Adv. Mater.
31
,
1807268
(
2019
).
115.
S.
Hirata
, “
Roles of localized electronic structures caused by π degeneracy due to highly symmetric heavy atom‐free conjugated molecular crystals leading to efficient persistent room‐temperature phosphorescence
,”
Adv. Sci.
6
,
1900410
(
2019
).
116.
S.
Raišys
,
O.
Adomėnienė
,
P.
Adomėnas
,
A.
Rudnick
,
A.
Köhler
, and, and
K.
Kazlauskas
, “
Triplet exciton diffusion and quenching in matrix-free solid photon upconversion films
,”
J. Phys. Chem. C
125
,
3764
3775
(
2021
).
117.
E. W.
Schlag
,
S.
Schneider
, and
S. F.
Fischer
, “
Lifetimes in excited states
,”
Ann. Rev. Phys. Chem.
22
,
465
526
(
1971
).
118.
F.
Metz
,
S.
Friedrich
, and
G.
Hohlneicher
, “
What is the mechanism for the nonradiative decay of the lowest triplet state of aromatic hydrocarbons?
,”
Chem. Phys. Lett.
16
,
353
358
(
1972
).
119.
R. R.
Valiev
,
V. N.
Cherepanov
,
R. T.
Nasibullin
,
D.
Sundholm
, and
T.
Kurten
, “
Calculating rate constants for intersystem crossing and internal conversion in the Franck–Condon and Herzberg–Teller approximations
,”
Phys. Chem. Chem. Phys.
21
,
18495
18500
(
2019
).
120.
F.
Metz
, “
Position-dependent deuterium effect on relative rate constants for ISC processes in aromatic hydrocarbons
,”
Chem. Phys. Lett.
22
,
186
190
(
1973
).
121.
S.
Manzhos
,
H.
Segawa
, and
K.
Yamashita
, “
Derivative coupling constants of NK1, NK7 Dyes and their relation to excited state dynamics in solar cell applications
,”
Chem. Phys. Lett.
501
,
580
586
(
2011
).
122.
K.
Shizu
,
H.
Noda
,
H.
Tanaka
,
M.
Taneda
,
M.
Uejima
,
T.
Sato
,
K.
Tanaka
,
H.
Kaji
, and
C.
Adachi
, “
Highly efficient blue electroluminescence using delayed-fluorescence emitters with large overlap density between luminescent and ground states
,”
J. Phys. Chem. C
119
,
26283
26289
(
2015
).
123.
K.
Shizu
,
M.
Uejima
,
H.
Nomura
,
T.
Sato
,
K.
Tanaka
,
H.
Kaji
, and
C.
Adachi
, “
Enhanced electroluminescence from a thermally activated delayed-fluorescence emitter by suppressing nonradiative decay
,”
Phys. Rev. Appl.
3
,
014001
(
2015
).
124.
S. K.
Lower
and
M. A.
El-Sayed
, “
The triplet state and molecular electronic processes in organic molecules
,”
Chem. Rev.
66
,
199
241
(
1966
).
125.
K.
Schmidt
,
S.
Brovelli
,
V.
Coropceanu
,
D.
Baljonne
,
J.
Cornil
,
C.
Bazzini
,
T.
Caronna
,
R.
Tubino
,
F.
Meinardi
,
Z.
Shuai
, and
J.-L.
Bredas
, “
Intersystem crossing processes in nonplanar aromatic heterocyclic molecules
,”
J. Phys. Chem. A
111
,
10490
10499
(
2007
).
126.
A.
Endo
,
K.
Suzuki
,
T.
Yoshihara
,
S.
Tobita
,
M.
Yahiro
, and
C.
Adachi
, “
Measurement of photoluminescence efficiency of Ir(III) phenylpyridine derivatives in solution and solid-state films
,”
Chem. Phys. Lett.
460
,
155
157
(
2008
).
127.
K.
Mori
,
T. P. M.
Goumans
,
E.
van Lenthe
, and
F.
Wang
, “
Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin–orbit coupling
,”
Phys. Chem. Chem. Phys.
16
,
14523
14530
(
2014
).
128.
R.
Bensasson
and
J. E.
Land
, “
Triplet–triplet extinction coefficients via energy transfer
,”
Trans. Faraday Soc.
67
,
1904
1915
(
1971
).
129.
P.
Xue
,
P.
Wang
,
P.
Chen
,
B.
Yao
,
P.
Gong
,
J.
Sun
,
Z.
Zhang
, and
R.
Lu
, “
Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect
,”
Chem. Sci.
8
,
6060
6065
(
2017
).
130.
C.
Chen
,
Z.
Chi
,
K. C.
Chong
,
A. S.
Batsanov
,
Z.
Yang
,
Z.
Mao
,
Z.
Yang
, and
B.
Liu
, “
Carbazole isomers induce ultralong organic phosphorescence
,”
Nat. Mater.
20
,
175
180
(
2021
).
131.
H.-T.
Feng
,
J.
Zeng
,
P.-A.
Yin
,
X.-D.
Wang
,
Q.
Peng
,
Z.
Zhao
,
J. W. Y.
Lam
, and
B. Z.
Tang
, “
Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects
,”
Nat. Commun.
11
,
2617
(
2020
).
132.
R.
Gómez-Bombarelli
,
J.
Aguilera-Iparraguirre
,
T. D.
Hirzel
,
D.
Duvenaud
,
D.
Maclaurin
,
M. A.
Blood-Forsythe
,
H. S.
Chae
,
M.
Einzinger
,
D.-G.
Ha
,
T.
Wu
 et al, “
Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
,”
Nat. Mater.
15
,
1120
1127
(
2016
).
133.
S.
Hirata
and
K.
Shizu
, “
High-throughput virtual screening
,”
Nat. Mater.
15
,
1056
1057
(
2016
).
134.
X.
Wang
,
Y.
Sun
,
G.
Wang
,
J.
Li
,
X.
Li
, and
K.
Zhang
, “
TADF-Type Organic Afterglow
,”
Angew. Chem. Int. Ed.
60
,
17138
17147
(
2021
).
135.
K.
Suzuki
,
A.
Kobayashi
,
S.
Kaneko
,
K.
Takehira
,
T.
Yoshihara
,
H.
Ishida
,
Y.
Shiina
,
S.
Oishi
, and
S.
Tobita
, “
Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector
,”
Phys. Chem. Chem. Phys.
11
,
9850
9860
(
2009
).
136.
T.
Palmeira
and
M. N.
Berberan-Santos
, “
Are super-exponential luminescence decays possible?
,”
Chem. Phys.
445
,
14
20
(
2014
).
137.
T.
Palmeira
and
M. N.
Berberan-Santos
, “
Effect of triplet–triplet absorption on time-resolved phosphorescence
,”
J. Lumin.
158
,
510
518
(
2015
).
138.
T.
Palmeira
,
A.
Fedorov
, and
M. N.
Berberan-Santos
, “
Influence of excited-state absorption on time-resolved luminescence: General formalism and application to the phosphorescence of polycyclic aromatic hydrocarbons
,”
ChemPhysChem
16
,
640
648
(
2015
).
139.
S.
Hirata
,
M.
Nishio
,
H.
Uchida
,
T.
Usuki
,
T.
Nakae
,
M.
Miyachi
,
Y.
Yamanoi
, and
H.
Nishihara
, “
Effect of the tris (trimethylsilyl) silyl group on the fluorescence and triplet yields of oligothiophenes
,”
J. Phys. Chem. C
124
,
3277
3286
(
2020
).
140.
R. S.
Becker
,
Theory and Interpretation of Fluorescence and Phosphorescence
(
Wiley Interscience
,
New York
,
1969
).
141.
A. R.
Horrockes
and
F.
Wilkinson
, “
Triplet state formation efficiencies of aromatic hydrocarbons in solution
,”
Proc. R. Soc. A
306
,
257
273
(
1968
).
142.
M. S.
Kwon
,
Y.
Yu
,
C.
Coburn
,
A. W.
Phillips
,
K.
Chung
,
A.
Shanker
,
J.
Jung
,
G.
Kim
,
K.
Pipe
,
S. R.
Forrest
 et al, “
Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials
,”
Nat. Commun.
6
,
8947
(
2015
).
143.
M. A.
El-Sayed
, “
Spin—orbit coupling and the radiationless processes in nitrogen heterocyclics
,”
J. Chem. Phys.
38
,
2834
(
1963
).
144.
R. A.
Marcus
, “
On the theory of oxidation‐reduction reactions involving electron transfer. I
,”
J. Chem. Phys.
24
,
966
(
1956
).
145.
L.
Dexter
, “
A theory of sensitized luminescence in solids
,”
J. Chem. Phys.
21
,
836
(
1953
).
146.
S. P.
McGlynn
,
F. J.
Smith
, and
G.
Cilento
, “
Some aspects of the triplet
,”
Photochem. Photobiol.
3
,
269
204
(
1964
).
147.
D.
Beljonne
,
Z.
Shuai
,
G.
Pourtois
, and
J. L.
Bredas
, “
Spin−orbit coupling and intersystem crossing in conjugated polymers: A configuration interaction description
,”
J. Phys. Chem. A
105
,
3899
3907
(
2001
).
148.
T.
Kamatsuki
,
I.
Bhattacharjee
, and
S.
Hirata
, “
The substituent-induced symmetry-forbidden electronic transition allows significant optical limiting under weak sky-blue irradiance
,”
J. Phys. Chem. Lett.
11
,
8675
8681
(
2020
).
149.
M. J.
Bearpark
,
F.
Bernardi
,
S.
Clifford
,
M.
Olivucci
,
M. A.
Robb
,
B. R.
Smith
, and
T.
Vreven
, “
The azulene S1 state decays via a conical intersection: A CASSCF study with MMVB dynamics
,”
J. Am. Chem. Soc.
118
,
169
175
(
1996
).
150.
M.
Liebel
,
C.
Schnedermann
, and
P.
Kukura
, “
Vibrationally coherent crossing and coupling of electronic states during internal conversion in β-carotene
,”
Phys. Rev. Lett.
112
,
198302
(
2014
).
151.
M. J. G.
Peach
and
D. J.
Tozer
, “
Overcoming low orbital overlap and triplet instability problems in TDDFT
,”
J. Phys. Chem. A
116
,
9783
9789
(
2012
).
152.
K.
Samanta
,
D.
Kim
,
V.
Coropceanu
, and
J.-L.
Bredas
, “
Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: Impact of the nature of singlet vs triplet excited states
,”
J. Am. Chem. Soc.
139
,
4042
4051
(
2017
).
153.
M. A.
Filatov
,
S.
Baluschev
, and
K.
Landfester
, “
Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen
,”
Chem. Soc. Rev.
45
,
4668
4689
(
2016
).
154.
L.
Ma
,
S.
Sun
,
B.
Ding
,
X.
Ma
, and
H.
Tian
, “
Highly efficient room-temperature phosphorescence based on single-benzene structure molecules and photoactivated luminescence with afterglow
,”
Adv. Funct. Mater.
31
,
2010659
(
2021
).
155.
K.
Horie
and
I.
Mita
, “
Photochemistry in polymer solid. Decay of benzophenone phosphorescence in poly(methyl methacrylate)
,”
Chem. Phys. Lett.
93
,
61
65
(
1982
).
156.
K.
Horie
,
K.
Morishima
, and
I.
Mita
, “
Photochemistry in polymer solid. 3. Kinetics for nonexponential decay of benzophenone phosphorescence in acrylic and methacrylic polymer
,”
Macromolecules
17
,
1746
1750
(
1984
).
157.
K.
Horie
,
H.
Ando
, and
I.
Mita
, “
Photochemistry in polymer solids. 8. Mechanism of photoreaction of benzophenone in poly(vinyl alcohol)
,”
Macromolecules
20
,
54
58
(
1987
).
158.
O.
Bolton
,
K.
Lee
,
H. J.
Kim
,
K. Y.
Lin
, and
J.
Kim
, “
Activating efficient phosphorescence from purely organic materials by crystal design
,”
Nat. Chem.
3
,
205
210
(
2011
).
159.
K.
Totani
,
Y.
Okada
,
S.
Hirata
,
M.
Vacha
, and
T.
Watanabe
, “
Thermoresponsive persistent phosphorescent color change using efficient thermally activated reverse energy transfer with a large energy difference
,”
Adv. Opt. Mater.
1
,
283
288
(
2013
).
160.
Y.
Wang
,
J.
Yang
,
M.
Fang
,
Y.
Yu
,
B.
Zou
,
L.
Wang
,
Y.
Tian
,
J.
Cheng
,
B. Z.
Tang
, and
Z.
Li
, “
Förster resonance energy transfer: An efficient way to develop stimulus-responsive room-temperature phosphorescence materials and their applications
,”
Matter
3
,
449
463
(
2020
).
161.
Y. Y.
Gong
,
Y. Q.
Tan
,
J.
Mei
,
Y. R.
Zhang
,
W. Z.
Yuan
,
Y. M.
Zhang
,
J. Z.
Sun
, and
B. Z.
Tang
, “
Room temperature phosphorescence from natural products: Crystallization matters
,” Sci. China Chem.
56
,
1178
1182
(
2013
).
162.
X.
Chen
,
W.
Luo
,
H.
Ma
,
Q.
Peng
,
W. Z.
Yuan
, and
Y.
Zhang
, “
Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids)
,”
Sci. Chi. Chem.
61
,
351
359
(
2018
).
163.
X.
Dou
,
Q.
Zhou
,
X.
Chen
,
Y.
Tan
,
X.
He
,
P.
Lu
,
K.
Sui
,
B. Z.
Tang
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate
,”
Biomacromolecules
19
,
2014
2022
(
2018
).
164.
M.
Fang
,
J.
Yang
,
X.
Xiang
,
Y.
Xie
,
Y.
Dong
,
Q.
Peng
,
Q.
Li
, and
Z.
Li
, “
Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond
,”
Mater. Chem. Front.
2
,
2124
2129
(
2018
).
165.
Y.
Mu
,
Z.
Yang
,
J.
Chen
,
Z.
Yang
,
W.
Li
,
X.
Tan
,
Z.
Mao
,
T.
Yu
,
J.
Zhao
,
S.
Zheng
 et al, “
Mechano-induced persistent room-temperature phosphorescence from purely organic molecules
,”
Chem. Sci.
9
,
3782
3787
(
2018
).
166.
X.
Chen
,
X.
Liu
,
J.
Lei
,
L.
Xu
,
Z.
Zhao
,
F.
Kausar
,
X.
Xie
,
X.
Zhu
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes
,”
Mol. Syst. Des. Eng.
3
,
364
375
(
2018
).
167.
Q.
Zhou
,
Z.
Wang
,
X.
Dou
,
Y.
Wang
,
S.
Liu
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers
,”
Mater. Chem. Front.
3
,
257
264
(
2019
).
168.
Q.
Zhou
,
T.
Yang
,
Z.
Zhong
,
F.
Kausar
,
Z.
Wang
,
Y.
Zhang
, and
W. Z.
Yuan
, “
A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence
,”
Chem. Sci.
11
,
2926
2933
(
2020
).
169.
S.
Zheng
,
T.
Zhu
,
Y.
Wang
,
T.
Yang
, and
W. Z.
Yuan
, “
Accessing tunable afterglows from highly twisted nonaromatic organic AIEgens via effective through‐space conjugation
,”
Angew Chem. Int. Ed.
59
,
10018
10022
(
2020
).
170.
S.
Zheng
,
T.
Hu
,
X.
Bin
,
Y.
Wang
,
Y.
Yi
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Clustering-triggered efficient room-temperature phosphorescence from nonconventional luminophores
,”
ChemPhysChem
21
,
36
42
(
2020
).
171.
Y.
Wang
,
S.
Tang
,
Y.
Wen
,
S.
Zheng
,
B.
Yang
, and
W. Z.
Yuan
, “
Nonconventional luminophores with unprecedented efficiencies and color-tunable afterglows
,”
Mater. Horiz.
7
,
2105
2112
(
2020
).
172.
L.
Bian
,
H.
Ma
,
W.
Ye
,
A.
Lv
,
H.
Wang
,
W.
Jia
,
L.
Gu
,
H.
Shi
,
Z.
An
, and
W.
Huang
, “
Color-tunable ultralong organic phosphorescence materials for visual UV-light detection
,”
Sci. China Chem.
63
,
1443
1448
(
2020
).
173.
Y.
Lai
,
T.
Zhu
,
T.
Geng
,
S.
Zheng
,
T.
Yang
,
Z.
Zhao
,
G.
Xiao
,
B.
Zou
, and
W. Z.
Yuan
, “
Effective internal and external modulation of nontraditional intrinsic luminescence
,”
Small
16
,
2005035
(
2020
).
174.
T.
Hoffmann
,
P.
Schrögel
,
M.
Rothmann
,
R. Q.
Albuquerque
,
P.
Strohriegl
, and
A.
Köhler
, “
Triplet excimer emission in a series of 4,4′-bis(N-carbazolyl)-2,2′-biphenyl derivatives
,”
J. Phys. Chem. B
115
,
414
421
(
2011
).
175.
S.
Hirata
and
M.
Vacha
, “
White afterglow room‐temperature emission from an isolated single aromatic unit under ambient condition
,”
Adv. Opt. Mater.
5
,
1600996
(
2017
).
176.
P.
Xue
,
J.
Sun
,
P.
Chen
,
P.
Wang
,
B.
Yao
,
P.
Gong
,
Z.
Zhang
, and
R.
Lu
, “
Luminescence switching of a persistent room-temperature phosphorescent pure organic molecule in response to external stimuli
,”
Chem. Commun.
51
,
10381
10384
(
2015
).
177.
Z.
Yang
,
Z.
Mao
,
X.
Zhang
,
D.
Ou
,
Y.
Mu
,
Y.
Zhang
,
C.
Zhao
,
S.
Liu
,
Z.
Chi
,
J.
Xu
 et al, “
Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence
,”
Angew. Chem. Int. Ed.
55
,
2181
2185
(
2016
).
178.
W.
Gao
,
Y.
Su
,
Z.
Wang
,
Y.
Zhang
,
D.
Zhang
,
P.
Jia
,
C.
Yang
,
Y.
Li
,
R.
Ganguly
, and
Y.
Zhao
, “
Effect of carbazolyl groups on photophysical properties of cyanuric chloride
,”
ACS Appl. Mater. Interfaces
11
,
47162
47169
(
2019
).
179.
W.
Zhao
,
T. S.
Cheung
,
N.
Jiang
,
W.
Huang
,
J. W. Y.
Lam
,
X.
Zhang
,
Z.
He
, and
B. Z.
Tang
, “
Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer
,”
Nat. Commun.
10
,
1595
(
2019
).
180.
C. A.
Parker
and
C. G.
Hatchard
, “
Delayed Fluorescence from Solutions of Anthracene and Phenanthrene
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
269
,
574
584
(
1962
).
181.
C. A.
Parker
and
C. G.
Hatchard
, “
Sensitized anti-stokes delayed fluorescence
,”
Proc. Chem. Soc.
10
,
373
401
(
1962
).
182.
A.
Monguzzi
,
J.
Mezyk
,
F.
Scotognella
,
R.
Tubino
, and
F.
Meinardi
, “
Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold
,”
Phys. Rev. B
78
,
195112
(
2008
).
183.
X.
Li
and
M. L.
Tang
, “
Triplet transport in thin films: Fundamentals and applications
,”
Chem. Commun.
53
,
4429
4440
(
2017
).
184.
O. V.
Mikhnenko
,
P. W. M.
Blom
, and
T.-Q.
Nguyen
, “
Exciton diffusion in organic semiconductors
,”
Energy Environ. Sci.
8
,
1867
–−
1888
(
2015
).
185.
S.
Arnold
,
J. L.
Fave
, and
M.
Schott
, “
Experimental study of triplet exciton diffusivity in crystalline pyrene at 300 K
,”
Chem. Phys. Lett.
28
,
412
417
(
1974
).
186.
C.
Liu
,
K.
Huang
,
W.-T.
Park
,
M.
Li
,
T.
Yang
,
X.
Liu
,
L.
Liang
,
T.
Minari and
, and
Y.-Y.
Noh
, “
A unified understanding of charge transport in organic semiconductors: The importance of attenuated delocalization for the carriers
,”
Mater. Horiz.
4
,
608
–−
618
(
2017
).
187.
S.
Kuno
,
H.
Akeno
,
H.
Ohtani
, and
H.
Yuasa
, “
Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism
,”
Phys. Chem. Chem. Phys.
17
,
15989
15995
(
2015
).
188.
P.
Irkhin
and
I.
Biaggio
, “
Direct imaging of anisotropic exciton diffusion and triplet diffusion length in rubrene single crystals
,”
Phys. Rev. Lett.
107
,
017402
(
2011
).
189.
G. M.
Akselrod
,
P. B.
Deotare
,
N. J.
Thompson
,
J.
Lee
,
W. A.
Tisdale
,
M. A.
Baldo
,
V. M.
Menon
, and
V.
Bulovć
, “
Visualization of exciton transport in ordered and disordered molecular solids
,”
Nat. Commun.
5
,
3646
(
2014
).
190.
G. W.
Robinson
and
R. P.
Frosch
, “
Electronic excitation transfer and relaxation
,”
J. Chem. Phys.
38
,
1187
1203
(
1963
).
191.
S.
Hirata
,
K.
Totani
,
T.
Watanabe
,
H.
Kaji
, and
M.
Vacha
, “
Relationship between room temperature phosphorescence and deuteration position in a purely aromatic compound
,”
Chem. Phys. Lett.
591
,
119
125
(
2014
).
192.
S.
Lamansky
,
P.
Djurovich
,
D.
Murphy
,
F.
Abdel-Razzaq
,
H. E.
Lee
,
C.
Adachi
,
P. E.
Burrows
,
S. R.
Forrest
, and
M. E.
Thompson
, “
Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes
,”
J. Am. Chem. Soc.
123
,
4304
4312
(
2003
).
193.
H.
Ma
,
W.
Shi
,
J.
Ren
,
W.
Li
,
Q.
Peng
, and
Z.
Shuai
, “
Electrostatic interaction-induced room-temperature phosphorescence in pure organic molecules from QM/MM calculations
,”
J. Phys. Chem. Lett.
7
,
2893
2898
(
2016
).
194.
Y.
Tao
,
R.
Chen
,
H.
Li
,
J.
Yuan
,
Y.
Wan
,
H.
Jiang
,
C.
Chen
,
Y.
Si
,
C.
Zheng
,
B.
Yang
 et al, “
Resonance‐activated spin‐flipping for efficient organic ultralong room‐temperature phosphorescence
,”
Adv. Mater.
30
,
1803856
(
2018
).
195.
W.
Ma
,
Y.
Su
,
Q.
Zhang
,
C.
Deng
,
L.
Pasquali
,
W.
Zhu
,
Y.
Tian
,
P.
Ran
,
Z.
Chen
,
G.
Yang
, et al, “
Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging
,”
Nat. Mater.
221
,
117046
(
2021
).
196.
J.
Yuan
,
Y.
Wang
,
L.
Li
,
S.
Wang
,
X.
Tang
,
H.
Wang
,
M.
Li
,
C.
Zheng
, and
R.
Chen
, “
Activating intersystem crossing and aggregation coupling by CN-substitution for efficient organic ultralong room temperature phosphorescence
,”
J. Phys. Chem. C
124
,
10129
10134
(
2020
).
197.
M.
Jakoby
,
S.
Heidrich
,
L. G.
von Reventlow
,
C.
Degitz
,
S. M.
Suresh
,
E. Z.
Colman
,
W.
Wenzel
,
B. S.
Richards
, and
I. A.
Howard
, “
Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules
,”
Chem. Sci.
12
,
1121
1125
(
2021
).
198.
A. D.
Nidhankar
,
Goudappagouda
,
D. S. M.
Kumari
,
S. K.
Chaubey
,
R.
Nayak
,
R. G.
Gonnade
,
G. V. P.
Kumar
,
R.
Krishnan
, and
S. S.
Babu
, “
Self-assembled helical arrays for the stabilization of the triplet state
,”
Angew. Chem. Int. Ed.
59
,
13079
13085
(
2020
).
199.
K.
Kamada
,
Y.
Sakagami
,
T.
Mizokuro
,
Y.
Fujiwara
,
K.
Kobayashi
,
K.
Narushima
,
S.
Hirata
, and
M.
Vacha
, “
Efficient triplet-triplet annihilation upconversion in binary crystalline solids fabricated via solution casting and operated in air
,”
Mater. Horiz.
4
,
83
87
(
2017
).
200.
X.
Dou
,
T.
Zhu
,
Z.
Wang
,
W.
Sun
,
Y.
Lai
,
K.
Sui
,
Y.
Tan
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Color‐tunable, excitation‐dependent, and time‐dependent afterglows from pure organic amorphous polymers
,”
Adv. Mater.
32
,
2004768
(
2020
).
201.
X.
Zhang
,
L.
Du
,
W.
Zhao
,
Z.
Zhao
,
Y.
Xiong
,
X.
He
,
P. F.
Gao
,
P.
Alam
,
C.
Wang
,
Z.
Li
 et al, “
Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons
,”
Nat Commun.
10
,
5161
(
2019
).
202.
W. Z.
Yuan
,
X. Y.
Shen
,
H.
Zhao
,
J. W. Y.
Lam
,
L.
Tang
,
P.
Lu
,
C.
Wang
,
Y.
Liu
,
Z.
Wang
,
Q.
Zheng
 et al, “
Crystallization-induced phosphorescence of pure organic luminogens at room temperature
,”
J. Phys. Chem. C
114
,
6090
––
6099
(
2010
).
203.
S.
Reineke
and
M. A.
Baldo
, “
Room temperature triplet state spectroscopy of organic semiconductors
,”
Sci. Rep.
4
,
3797
(
2014
).
204.
G.
Bergamini
,
A.
Fermi
,
C.
Botta
,
U.
Giovanella
,
S. D.
Motta
,
F.
Negri
,
R.
Peresutti
,
M.
Gingras
, and
P.
Ceroni
, “
A persulfurated benzene molecule exhibits outstanding phosphorescence in rigid environments: From computational study to organic nanocrystals and OLED applications
,”
J. Mater. Chem. C
1
,
2717
2724
(
2013
).
205.
B.
Nazarov
,
V. L.
Gerko
, and
M. V.
Alfimov
, “
Phosphorescence of aromatic molecules in complexes with crystalline β-cyclodextrin at room temperature
,”
Russ. Chem. Bull.
46
,
1386
1388
(
1997
).
206.
H.
Thomas
,
D. L.
Pastoetter
,
M.
Gmelch
,
T.
Achenbach
,
A.
Schlögl
,
M.
Louis
,
X.
Feng
, and
S.
Reineke
, “
Aromatic phosphonates: A novel group of emitters showing blue ultralong room temperature phosphorescence
,”
Adv. Mater.
32
,
2000880
(
2020
).
207.
S.
Xu
,
W.
Wang
,
H.
Li
,
J.
Zhang
,
R.
Chen
,
S.
Wang
,
C.
Zheng
,
G.
Xing
,
C.
Song
, and
W.
Huang
, “
Design of highly efficient deep-blue organic afterglow through guest sensitization and matrices rigidification
,”
Nat. Commun.
11
,
4802
(
2020
).
208.
W.
Ye
,
H.
Ma
,
H.
Shi
,
H.
Wang
,
A.
Lv
,
L.
Bian
,
M.
Zhang
,
C.
Ma
,
K.
Ling
,
M.
Gu
 et al, “
Confining isolated chromophores for highly efficient blue phosphorescence
,”
Nat. Mater.
20
,
1539
1544
(
2021
).
209.
W.
Zhao
,
Z.
He
,
J. W. Y.
Lam
,
Q.
Peng
,
H.
Ma
,
Z.
Shuai
,
G.
Bai
,
J.
Hao
, and
B. Z.
Tang
, “
Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence
,”
Chem
1
,
592
602
(
2016
).
210.
M.
Shimizu
,
R.
Shigitani
,
M.
Nakatani
,
K.
Kuwabara
,
Y.
Miyake
,
K.
Tajima
,
H.
Sakai
, and
T.
Hasobe
, “
Siloxy group-induced highly efficient room temperature phosphorescence with long lifetime
,”
J. Phys. Chem. C
120
,
11631
11639
(
2016
).
211.
L.
Bian
,
H.
Shi
,
X.
Wang
,
K.
Ling
,
H.
Ma
,
M.
Li
,
Z.
Cheng
,
C.
Ma
,
S.
Cai
,
Q.
Wu
 et al, “
Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly
,”
J. Am. Chem. Soc.
140
,
10734
10739
(
2018
).
212.
L.
Gu
,
H.
Shi
,
L.
Bian
,
M.
Gu
,
K.
Ling
,
X.
Wang
,
H.
Ma
,
S.
Cai
,
W.
Ning
,
L.
Fu
 et al, “
Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal
,”
Nat. Photonics
13
,
406
411
(
2019
).
213.
Y.
Gong
,
G.
Chen
,
Q.
Peng
,
W. Z.
Yuan
,
Y.
Xie
,
S.
Li
,
Y.
Zhang
, and
B. Z.
Tang
, “
Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens
,”
Adv. Mater.
27
,
6195
6201
(
2015
).
214.
Y.
Liu
,
G.
Zhan
,
P.
Fang
,
Z.
Liu
,
Z.
Bian
, and
C.
Huang
, “
Manipulating organic triplet harvesting in regioisomeric microcrystals
,”
J. Mater. Chem. C
5
,
12547
12552
(
2017
).
215.
Y.
Xie
,
Y.
Ge
,
Q.
Peng
,
C.
Li
,
Q.
Li
, and
Z.
Li
, “
How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations
,”
Adv. Mater.
29
,
1606829
(
2017
).
216.
S.
Cai
,
H.
Shi
,
J.
Li
,
L.
Gu
,
Y.
Ni
,
Z.
Cheng
,
S.
Wang
,
W. W.
Xiong
,
L.
Li
,
Z.
An
 et al, “
Visible‐light‐excited ultralong organic phosphorescence by manipulating intermolecular interactions
,”
Adv. Mater.
29
,
1701244
(
2017
).
217.
S.
Cai
,
H.
Shi
,
D.
Tian
,
H.
Ma
,
Z.
Cheng
,
Q.
Wu
,
M.
Gu
,
L.
Huang
,
Z.
An
,
Q.
Peng
 et al, “
Enhancing ultralong organic phosphorescence by effective π‐type halogen bonding
,”
Adv. Funct. Mater.
28
,
1705045
(
2018
).
218.
S.
Cai
,
H.
Shi
,
Z.
Zhang
,
X.
Wang
,
H.
Ma
,
N.
Gan
,
Q.
Wu
,
Z.
Cheng
,
K.
Ling
,
M.
Gu
 et al, “
Hydrogen‐bonded organic aromatic frameworks for ultralong phosphorescence by intralayer π–π interactions
,”
Angew. Chem. Int. Ed.
57
,
4005
4009
(
2018
).
219.
Y.
Xiong
,
Z.
Zhao
,
W.
Zhao
,
H.
Ma
,
Q.
Peng
,
Z.
He
,
X.
Zhang
,
Y.
Chen
,
X.
He
,
J. W. Y.
Lam
 et al, “
Designing efficient and ultralong pure organic room-temperature phosphorescent materials by structural isomerism
,”
Angew. Chem. Int. Ed.
130
,
8129
8133
(
2018
).
220.
C.
Sun
,
X.
Ran
,
X.
Wang
,
Z.
Cheng
,
Q.
Wu
,
S.
Cai
,
L.
Gu
,
N.
Gan
,
H.
Shi
,
Z.
An
 et al, “
Twisted molecular structure on tuning ultralong organic phosphorescence
,”
J. Phys. Chem. Lett.
9
,
335
339
(
2018
).
221.
Q.
Wu
,
H.
Ma
,
K.
Ling
,
N.
Gan
,
Z.
Cheng
,
L.
Gu
,
S.
Cai
,
Z.
An
,
H.
Shi
, and
W.
Huang
, “
Reversible ultralong organic phosphorescence for visual and selective chloroform detection
,”
ACS Appl. Mater. Interfaces
10
,
33730
33736
(
2018
).
222.
L.
Gu
,
H.
Shi
,
C.
Miao
,
Q.
Wu
,
Z.
Cheng
,
S.
Cai
,
M.
Gu
,
C.
Ma
,
W.
Yao
,
Y.
Gao
 et al, “
Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding
,”
J. Mater. Chem. C
6
,
226
233
(
2018
).
223.
L.
Xu
,
G.
Li
,
T.
Xu
,
W.
Zhang
,
S.
Zhang
,
S.
Yin
,
Z.
An
, and
G.
He
, “
Chalcogen atom modulated persistent room-temperature phosphorescence through intramolecular electronic coupling
,”
Chem. Commun.
54
,
9226
9229
(
2018
).
224.
T.
Zhang
,
X.
Wang
,
Z.
An
,
Z.
Fang
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Pure organic persistent room‐temperature phosphorescence at both crystalline and amorphous states
,”
ChemPhysChem
19
,
2389
2396
(
2018
).
225.
Z.
Zhang
,
L.
Tang
,
X.
Fan
,
Y.
Wang
,
K.
Zhang
,
Q.
Sun
,
H.
Zhang
,
S.
Xue
, and
a. W.
Yang
, “
N-Alkylcarbazoles: Homolog manipulating long-lived room-temperature phosphorescence
,”
J. Mater. Chem. C
6
,
8984
8989
(
2018
).
226.
C.
Ma
,
H.
Ma
,
K.
Ling
,
R.
Zheng
,
M.
Gu
,
L.
Song
,
Z.
An
,
H.
Shi
, and
W.
Huang
, “
Insight into chirality on molecular stacking for tunable ultralong organic phosphorescence
,”
J. Mater. Chem. C
6
,
10179
10183
(
2018
).
227.
H.
Shi
,
L.
Song
,
H.
Ma
,
C.
Sun
,
K.
Huang
,
A.
Lv
,
W.
Ye
,
H.
Wang
,
S.
Cai
,
W.
Yao
 et al, “
Highly efficient ultralong organic phosphorescence through intramolecular-space heavy-atom effect
,”
J. Phys. Chem. Lett.
10
,
595
600
(
2019
).
228.
J.
Yuan
,
S.
Wang
,
Y.
Ji
,
R.
Chen
,
Q.
Zhu
,
Y.
Wang
,
C.
Zheng
,
Y.
Tao
,
Q.
Fan
, and
W.
Huang
, “
Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering
,”
Mater. Horiz.
6
,
1259
1264
(
2019
).
229.
J.
Yuan
,
R.
Chen
,
X.
Tang
,
Y.
Tao
,
S.
Xu
,
L.
Jin
,
C.
Chen
,
X.
Zhou
,
C.
Zheng
, and
W.
Huang
, “
Direct population of triplet excited states through singlet–triplet transition for visible-light excitable organic afterglow
,”
Chem. Sci.
10
,
5031
5038
(
2019
).
230.
Q.
Huang
,
X.
Mei
,
Z.
Xie
,
D.
Wu
,
S.
Yang
,
W.
Gong
,
Z.
Chi
,
Z.
Lin
, and
Q.
Ling
, “
Photo-induced phosphorescence and mechanoluminescence switching in a simple purely organic molecule
,”
J. Mater. Chem. C
7
,
2530
2534
(
2019
).
231.
X.
Wang
,
H.
Ma
,
M.
Gu
,
C.
Lin
,
N.
Gan
,
Z.
Xie
,
H.
Wang
,
L.
Bian
,
L.
Fu
,
S.
Cai
 et al, “
Multicolor ultralong organic phosphorescence through alkyl engineering for 4D coding applications
,”
Chem. Mater.
31
,
5584
5591
(
2019
).
232.
D.
Tu
,
S.
Cai
,
C.
Fernandez
,
H.
Ma
,
X.
Wang
,
H.
Wang
,
C.
Ma
,
H.
Yan
,
C.
Lu
, and
Z.
An
, “
Boron‐cluster‐enhanced ultralong organic phosphorescence
,”
Angew. Chem. Int. Ed.
58
,
9129
9133
(
2019
).
233.
X.
Liang
,
T.-T.
Liu
,
Z.-P.
Yan
,
Y.
Zhou
,
J.
Su
,
X.-F.
Luo
,
Z.-G.
Wu
,
Y.
Wang
,
Y.-X.
Zheng
, and
J.-L.
Zuo
, “
Organic room-temperature phosphorescence with strong circularly polarized luminescence based on paracyclophanes
,”
Angew. Chem. Int. Ed.
58
,
17220
17225
(
2019
).
234.
D.
Tian
,
Z.
Zhu
,
L.
Xu
,
H.
Cong
, and
J.
Zhu
, “
Intramolecular electronic coupling for persistent room-temperature luminescence for smartphone based time-gated fingerprint detection
,”
Mater. Horiz.
6
,
1215
1221
(
2019
).
235.
N.
Gan
,
X.
Wang
,
H.
Ma
,
A.
Lv
,
H.
W
,
Q.
Wang
,
M.
Gu
,
S.
Cai
,
Y.
Zhang
,
L.
Fu
,
M.
Zhang
 et al, “
Manipulating the stacking of triplet chromophores in the crystal form for ultralong organic phosphorescence
,”
Angew. Chem. Int. Ed.
58
,
14140
14145
(
2019
).
236.
F.
Li
,
S.
Guo
,
Y.
Qin
,
Y.
Shi
,
M.
Han
,
Z.
An
,
S.
Liu
,
Q.
Zhao
, and
W.
Huang
, “
Achieving dual persistent room‐temperature phosphorescence from polycyclic luminophores via inter‐/intramolecular charge transfer
,”
Adv. Opt. Mater.
7
,
1900511
(
2019
).
237.
T.
Zhang
,
H.
Gao
,
A.
Lv
,
Z.
Wang
,
Y.
Gong
,
D.
Ding
,
H.
Ma
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Hydrogen bonding boosted the persistent room temperature phosphorescence of pure organic compounds for multiple applications
,”
J. Mater. Chem. C
7
,
9095
9101
(
2019
).
238.
X. N.
Li
,
M.
Yang
,
X. L.
Chen
,
J. H.
Jia
,
W. W.
Zhao
,
X. Y.
Wu
,
S. S.
Wang
,
L.
Meng
, and
C. Z.
Lu
, “
Synergistic intra‐ and intermolecular noncovalent interactions for ultralong organic phosphorescence
,”
Small
15
,
1903270
(
2019
).
239.
X.
Wang
,
N.
Gan
,
M.
Gu
,
K.
Ling
,
C.
Ma
,
H.
Ma
,
W.
Yao
,
Y.
Zhang
,
H.
Shi
,
Z.
An
 et al, “
Subtle structure tailoring of metal-free triazine luminogens for highly efficient ultralong organic phosphorescence
,”
Chin. Chem. Lett.
30
,
1935
1938
(
2019
).
240.
Y.
Sasabe
,
Y.
Kato
,
T.
Watanabe
,
T.
Ohsawa
,
N.
Aizawa
,
W.
Fujiwara
, Y.‐
J.
Pu
,
H.
Katagiri
, and
J.
Kido
, “
Room‐temperature phosphorescence from a series of 3‐pyridylcarbazole derivatives
,”
Chemistry
25
,
16294
16300
(
2019
).
241.
J.
Jin
,
H.
Jiang
,
Q.
Yang
,
L.
Tang
,
Y.
Tao
,
Y.
Li
,
R.
Chen
,
C.
Zheng
,
Q.
Fan
,
K. Y.
Zhang
 et al, “
Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow
,”
Nat. Commun.
11
,
842
(
2020
).
242.
J.
Li
,
L.
Wang
,
Z.
Zhao
,
X.
Li
,
X.
Yu
,
P.
Huo
,
Q.
Jin
,
Z.
Liu
,
Z.
Bian
, and
C.
Huang
, “
Two‐coordinate copper(I)/NHC complexes: Dual emission properties and ultralong room‐temperature phosphorescence
,”
Angew. Chem. Int. Ed.
59
,
8210
8217
(
2020
).
243.
M.
Gu
,
H.
Shi
,
K.
Ling
,
A.
Lv
,
K.
Huang
,
M.
Singh
,
H.
Wang
,
L.
Gu
,
W.
Yao
,
Z.
An
 et al, “
Polymorphism-dependent dynamic ultralong organic phosphorescence
,”
Research
2021
,
8183450
.
244.
H.
Sun
,
R.
Ding
,
S.
Lv
,
S.
Zhou
,
S.
Guo
,
Z.
Qian
, and
H.
Feng
, “
Clustering-triggered ultralong room-temperature phosphorescence of organic crystals through halogen-mediated molecular assembly
,”
J. Phys. Chem. Lett.
11
,
4962
4969
(
2020
).
245.
L.
Zhang
,
M.
Li
,
Q.-Y.
Gao
, and
C.-F.
Chen
, “
An ultralong room-temperature phosphorescent material based on the combination of small singlet–triplet splitting energy and H-aggregation
,”
Chem. Commun.
56
,
4296
4299
(
2020
).
246.
T.
Ishi-i
,
H.
Tanaka
,
I. S.
Park
,
T.
Yasuda
,
S.
Kato
,
M.
Ito
,
H.
Hiyoshi
, and
T.
Matsumoto
, “
White-light emission from a pyrimidine–carbazole conjugate with tunable phosphorescence–fluorescence dual emission and multicolor emission switching
,”
Chem. Commun.
56
,
4051
4054
(
2020
).
247.
C.
Zhuo
,
M.
Ouyang
,
C.
Li
,
Y.
Zhang
,
F.
Cao
,
G.
Pan
,
C.
Lv
,
X.
Zhang
, and
J.
Sun
, “
Organic luminophores exhibiting bimodal emissions of fluorescence and room‐temperature phosphorescence for versatile applications
,”
Chem. Sel.
5
,
12770
12776
(
2020
).
248.
C.
Demangeat
,
Y.
Dou
,
B.
Hu
,
Y.
Bretonnière
,
C.
Andraud
,
A.
D'Aléo
,
J. W.
Wu
,
E.
Kim
,
T. L.
Bahers
, and
A. J.
Attias
, “
σ‐conjugation and H‐bond‐directed supramolecular self‐assembly: Key features for efficient long‐lived room temperature phosphorescent organic molecular crystals
,”
Angew. Chem. Int. Ed.
60
,
2446
2454
(
2021
).
249.
Z.
Yin
,
M.
Gu
,
H.
Ma
,
X.
Jiang
,
J.
Zhi
,
Y.
Wang
,
H.
Yang
,
W.
Zhu
, and
Z.
An
, “
Molecular engineering through control of structural deformation for highly efficient ultralong organic phosphorescence
,”
Angew. Chem. Int. Ed.
60
,
2058
2063
(
2021
).
250.
H.
Li
,
H.
Li
,
J.
Gu
,
F.
He
,
H.
Peng
,
Y.
Tao
,
D.
Tian
,
Q.
Yang
,
P.
Li
,
C.
Zheng
 et al, “
Fluorine-induced aggregate-interlocking for colortunable organic afterglow with a simultaneously improved efficiency and lifetime
,”
Chem. Sci.
12
,
3580
3586
(
2021
).
251.
J.
Liu
,
Z.
Ma
,
Z.
Li
,
Y.
Liu
,
X.
Fu
,
H.
Jiang
,
Z.
Ma
, and
X.
Jia
, “
Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions
,”
J. Mater. Chem. C
9
,
3257
3263
(
2021
).
252.
Z.
Ruan
,
Q.
Liao
,
Q.
Dang
,
X.
Chen
,
C.
Deng
,
Z.
Gao
,
J.
Lin
,
S.
Liu
,
Y.
Chen
,
Z.
Tian
 et al, “
Luminous butterflies: Rational molecular design to optimize crystal packing for dramatically enhanced room‐temperature phosphorescence
,”
Adv. Opt. Mater.
9
,
2001549
(
2021
).
253.
S.
Yuan
,
Q.
Sun
,
Y.
Wang
,
L.
Yue
,
J.
Ma
,
Y.
Zhang
,
H.
Zhang
,
S.
Xue
, and
W.
Yang
, “
Manipulating matrix stacking modes for ultralong-duration organic room-temperature phosphorescence in trace isomer doping systems
,”
J. Mater. Chem. C
9
,
8302
8307
(
2021
).
254.
C.
Chen
,
K. C.
Chong
,
Y.
Pan
,
G.
Qi
,
S.
Xu
, and
B.
Liu
, “
Revisiting carbazole: Origin, impurity, and properties
,”
ACS Mater. Lett.
3
,
1081
1087
(
2021
).
255.
Y.
Gong
,
L.
Zhao
,
Q.
Peng
,
D.
Fan
,
W. Z.
Yuan
,
Y.
Zhang
, and
B. Z.
Tang
, “
Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters
,”
Chem. Sci.
6
,
4438
4444
(
2015
).
256.
S.
Kuno
,
T.
Kanamori
,
Y.
Zhao
,
H.
Ohtani
, and
H.
Yuasa
, “
Long persistent phosphorescence of crystalline phenylboronic acid derivatives and its mechanistic study
,”
ChemPhotoChem
1
,
102
106
(
2017
).
257.
Y.
Shoji
,
Y.
Ikabata
,
Q.
Wang
,
D.
Nemoto
,
A.
Sakamoto
,
N.
Tanaka
,
J.
Seino
,
H.
Nakai
, and
T.
Fukushima
, “
Unveiling a new aspect of simple arylboronic esters: Long-lived room-temperature phosphorescence from heavy-atom-free molecules
,”
J. Am. Chem. Soc.
139
,
2728
2733
(
2017
).
258.
Z.
Chai
,
C.
Wang
,
J.
Wang
,
F.
Liu
,
Y.
Xie
,
Y. Z.
Zhang
,
J. R.
Li
,
Q.
Li
, and
Z.
Li
, “
Abnormal room temperature phosphorescence of purely organic boron-containing compounds: The relationship between the emissive behavior and the molecular packing, and the potential related applications
,”
Chem. Sci.
8
,
8336
8344
(
2017
).
259.
V. C.
Wakchaure
,
K. C.
Ranjeesh
,
Goudappagouda
,
T.
Das
,
K.
Vanka
,
R.
Gonnade
, and
S. S.
Babu
, “
Mechano-responsive room temperature luminescence variations of boron conjugated pyrene in air
,”
Chem. Commun.
54
,
6028
6031
(
2018
).
260.
M.
Li
,
K.
Ling
,
H.
Shi
,
N.
Gan
,
L.
Song
,
S.
Cai
,
Z.
Cheng
,
L.
Gu
,
X.
Wang
,
C.
Ma
 et al, “
Prolonging ultralong organic phosphorescence lifetime to 2.5 s through confining rotation in molecular rotor
,”
Adv. Opt. Mater.
7
,
1800820
(
2019
).
261.
M.
Li
,
X.
Cai
,
Z.
Qiao
,
K.
Liu
,
W.
Xie
,
L.
Wang
,
N.
Zheng
, and
S.-J.
Su
, “
Achieving high-efficiency purely organic room-temperature phosphorescence materials by boronic ester substitution of phenoxathiine
,”
Chem. Commun.
55
,
7215
7218
(
2019
).
262.
M.
Hoshi
,
R.
Nishiyabu
,
Y.
Hayashi
,
S.
Yagi
, and
Y.
Kubo
, “
Room‐temperature phosphorescence‐active boronate particles: Characterization and ratiometric afterglow‐sensing behavior by surface grafting of rhodamine B
,”
Chem. Asian J.
15
,
787
795
(
2020
).
263.
X.
Chen
,
Z.-F.
Liu
, and
W. J.
Jin
, “
The effect of electron donation and intermolecular interactions on ultralong phosphorescence lifetime of 4-carnoyl phenylboronic acids
,”
J. Phys. Chem. A
124
,
2746
2754
(
2020
).
264.
J.
Yang
,
Z.
Ren
,
B.
Chen
,
M.
Fang
,
Z.
Zhao
,
B. Z.
Tang
,
Q.
Peng
, and
Z.
Li
, “
Three polymorphs of one luminogen: How the molecular packing affects the RTP and AIE properties?
,”
J. Mater. Chem. C
5
,
9242
9246
(
2017
).
265.
J.
Yang
,
H.
Gao
,
Y.
Wang
,
Y.
Yu
,
Y.
Gong
,
M.
Fang
,
D.
Ding
,
W.
Hu
,
B. Z.
Tang
, and, and
Z.
Li
, “
The odd–even effect of alkyl chain in organic room temperature phosphorescence luminogens and the corresponding in vivo imaging
,”
Mater. Chem. Front.
3
,
1391
1397
(
2019
).
266.
Y.
Wang
,
J.
Yang
,
Y.
Tian
,
M.
Fang
,
Q.
Liao
,
L.
Wang
,
W.
Hu
,
B. Z.
Tang
, and
Z.
Li
, “
Persistent organic room temperature phosphorescence: What is the role of molecular dimers?
,”
Chem. Sci.
11
,
833
838
(
2020
).
267.
P.
Pander
,
A.
Swist
,
J.
Soloducho
, and
F. B.
Dias
, “
Room temperature phosphorescence lifetime and spectrum tuning of substituted thianthrenes
,”
Dyes Pigment
142
,
315
322
(
2017
).
268.
P.
Pander
,
A.
Swist
,
R.
Turczyn
,
S.
Pouget
,
D.
Djurado
,
A.
Lazauskas
,
R.
Pashazadeh
,
J. V.
Grazulevicius
,
R.
Motyka
,
A.
Klimash
 et al, “
Observation of dual room temperature fluorescence–phosphorescence in air, in the crystal form of a thianthrene derivative
,”
J. Phys. Chem. C
122
,
24958
24966
(
2018
).
269.
J.
Zhang
,
E.
Sharman
,
L.
Yang
,
J.
Jiang
, and
G.
Zhang
, “
Aggregation-induced enhancement of molecular phosphorescence lifetime: A first-principle study
,”
J. Phys. Chem. C
122
,
25796
25803
(
2018
).
270.
E.
Lucenti
,
A.
Forni
,
C.
Botta
,
L.
Carlucci
,
C.
Giannini
,
D.
Marinotto
,
A.
Pavanello
,
A.
Previtali
,
S.
Righetto
, and
E.
Cariati
, “
Cyclic triimidazole derivatives: Intriguing examples of multiple emissions and ultralong phosphorescence at room temperature
,”
Angew. Chem. Int. Ed.
56
,
16302
16307
(
2017
).
271.
S.
Pan
,
Z.
Chen
,
X.
Zheng
,
D.
Wu
,
G.
Chen
,
J.
Xu
,
H.
Feng
, and
Z.
Qian
, “
Ultralong room-temperature phosphorescence from supramolecular behavior via intermolecular electronic coupling in pure organic crystals
,”
J. Phys. Chem. Lett.
9
,
3939
3945
(
2018
).
272.
H.
Bhatia
,
I.
Bhattacharjee
, and
D.
Ray
, “
Biluminescence via fluorescence and persistent phosphorescence in amorphous organic donor(D4)−acceptor(A) conjugates and application in data security protection
,”
J. Phys. Chem. Lett.
9
,
3808
3813
(
2018
).
273.
H.
Bhatia
and
D.
Ray
, “
Use of dimeric excited states of the donors in D4-A systems for accessing white light emission, afterglow, and invisible security ink
,”
J. Phys. Chem. C
123
,
22104
22113
(
2019
).
274.
H.
Bhatia
,
S.
Dey
, and
D.
Ray
, “
Effect of π···π interactions of donor rings on persistent room-temperature phosphorescence in D4–A conjugates and data security application
,”
ACS Omega
6
,
3858
3865
(
2021
).
275.
G.
Chen
,
H.
Feng
,
F.
Feng
,
P.
Xu
,
J.
Xu
,
S.
Pan
, and
Z.
Qian
, “
Photophysical tuning of organic ionic crystals from ultralong afterglow to highly efficient phosphorescence by variation of halides
,”
J. Phys. Chem. Lett.
9
,
6305
6311
(
2018
).
276.
G.
Chen
,
S.
Guo
,
H.
Feng
, and
Z.
Qian
, “
Anion-regulated transient and persistent phosphorescence and size-dependent ultralong afterglow of organic ionic crystals
,”
J. Mater. Chem. C
7
,
14535
14542
(
2019
).
277.
J.
Chen
,
T.
Yu
,
E.
Ubba
,
Z.
Xie
,
Z.
Yang
,
Y.
Zhang
,
S.
Liu
,
J.
Xu
,
M. P.
Aldred
, and
Z.
Chi
, “
Achieving dual
emissive and time
dependent evolutive organic afterglow by bridging molecules with weak intermolecular hydrogen bonding
,”
Adv. Opt. Mater.
7
,
1801593
(
2019
).
278.
C. A. M.
Salla
,
G.
Farias
,
M.
Rouzières
,
P.
Dechambenoit
,
F.
Durola
,
H.
Bock
,
B.
de Souza
, and
I. H.
Bechtold
, “
Persistent solid‐state phosphorescence and delayed fluorescence at room temperature by a twisted hydrocarbon
,”
Angew. Chem. Int. Ed.
131
,
7056
7060
(
2019
).
279.
T.
Zhang
,
Z.
Zhao
,
H.
Ma
,
Y.
Zhang
, and
W. Z.
Yuan
, “
Polymorphic pure organic luminogens with through-space conjugation and persistent room-temperature phosphorescence
,”
Chem. Asian J.
14
,
884
889
(
2019
).
280.
B.
Chen
,
X.
Zhang
,
Y.
Wang
,
H.
Miao
, and
G.
Zhang
, “
Aggregation‐induced emission with long‐lived room‐temperature phosphorescence from methylene‐linked organic donor–acceptor structures
,”
Chem. Asian J.
14
,
751
754
(
2019
).
281.
A.
Tomkeviciene
,
A.
Dabulienė
,
T.
Matulaitis
,
M.
Guzauskas
,
V.
Andruleviciene
,
J. V.
Grazulevicius
,
Y.
Yamanaka
,
Y.
Yano
, and
T.
Ono
, “
Bipolar thianthrene derivatives exhibiting room temperature phosphorescence for oxygen sensing
,”
Dye Pig
ment
170
,
107605
(
2019
).
282.
P.
Wei
,
X.
Zhang
,
J.
Liu
,
G. G.
Shan
,
H.
Zhang
,
J.
Qi
,
W.
Zhao
,
H. H. Y.
Sung
,
I. D.
Williams
,
J. W. Y.
Lam
 et al, “
New wine in old bottles: Prolonging room‐temperature phosphorescence of crown ethers by supramolecular interactions
,”
Angew. Chem. Int. Ed.
59
,
9293
9298
(
2020
).
283.
Z.
Wu
,
J.
Nitsch
,
J.
Schuster
,
A.
Friedrich
,
K.
Edkins
,
M.
Loebnitz
,
F.
Dinkelbach
,
V.
Stepanenko
,
F.
Würthner
,
C. M.
Marian
, and
a
al
, “
Persistent room temperature phosphorescence from triarylboranes: A combined experimental and theoretical study
,”
Angew. Chem. Int. Ed.
59
,
17137
17144
(
2020
).
284.
L.
Favereau
,
C.
Quinton
,
C.
Poriel
,
T.
Roisnel
,
D.
Jacquemin
, and
J.
Crassous
, “
Persistent organic room-temperature phosphorescence in cyclohexane-trans-1,2-bisphthalimide derivatives: The dramatic impact of heterochiral vs homochiral interactions
,”
J. Phys. Chem. Lett.
11
,
6426
6434
(
2020
).
285.
M.
Yamada
,
K.
Ishigaki
,
T.
Taniguchi
, and
T.
Karatsu
, “
Persistent room temperature blue phosphorescence from racemic crystals of 1,1-diphenylmethanol derivatives
,”
J. Photochem. Photobiol., A
407
,
113043
(
2021
).
286.
L.
Ji
,
J.
Zhou
,
J.
Zhang
,
Z.
Zhang
,
Z.
Ma
,
W.
Wang
,
H.
Li
, and
C.
Wu
, “
A multicolor persistent luminescent phosphor Sr2Ga2GeO7:Pr3
+
for dynamic anticounterfeiting
,”
J. Am. Ceram. Soc.
102
,
5465
5470
(
2019
)
287.
M.
Gmelch
,
H.
Thomas
,
F.
Fries
, and
S.
Reineke
, “
Programmable transparent organic luminescent tags
,”
Sci. Adv.
5
,
eaau7310
(
2019
).
288.
Y.
Katsurada
,
S.
Hirata
,
K.
Totani
,
T.
Watanabe
, and
M.
Vacha
, “
Photoreversible on–off recording of persistent room‐temperature phosphorescence
,”
Adv. Opt. Mater.
3
,
1726
1737
(
2015
).
289.
B.
Zhou
,
G.
Xiao
, and
D.
Yan
, “
Boosting wide‐range tunable long‐afterglow in 1D metal–organic halide micro/nanocrystals for space/time‐resolved information photonics
,”
Adv. Mater.
33
,
2007571
(
2021
).
290.
Q. I. M.
de Chermont
,
C.
Chaneac
,
J.
Seguin
,
F.
Pelle
,
S.
Maitrejean
,
J. P.
Jolivet
,
D.
Gourier
,
M.
Bessodes
, and
D.
Scherman
, “
Nanoprobes with near-infrared persistent luminescence for in vivo imaging
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
9266
9271
(
2007
).
291.
T.
Maldiney
,
A.
Bessiere
,
J.
Seguin
,
E.
Teston
,
S. K.
Sharma
,
B.
Viana
,
A. J.
Bos
,
P.
Dorenbos
,
M.
Bessodes
,
D.
Gourier
 et al, “
The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells
,”
Nat. Mater.
13
,
418
426
(
2014
).
292.
M.
Palner
,
K.
Pu
,
S.
Shao
, and
J.
Rao
, “
Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging
,”
Angew. Chem. Int. Ed.
54
,
11477
11480
(
2015
).
293.
Q.
Miao
,
C.
Xie
,
X.
Zhen
,
Y.
Lyu
,
H.
Duan
,
X.
Liu
,
J. V.
Jokerst
, and
K.
Pu
, “
Molecular afterglow imaging with bright, biodegradable polymer nanoparticles
,”
Nat. Biotechnol.
35
,
1102
1110
(
2017
).
294.
J.
Huang
,
X.
Zhen
,
Z.
Zeng
,
J.
Li
,
C.
Xie
,
Q.
Miao
,
J.
Chen
,
P.
Chen
, and
K.
Pu
, “
A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging
,”
Nat. Commun.
10
,
2064
(
2019
).
295.
W.
Li
,
S.
Wu
,
X.
Xu
,
J.
Zhuang
,
H.
Zhang
,
X.
Zhang
,
C.
Hu
,
B.
Lei
,
C. F.
Kaminski
, and
Y.
Liu
, “
Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature
,”
Chem. Mater.
31
,
9887
9894
(
2019
).
296.
Z.
Zhu
,
Y.
Sun
,
T.
Ma
,
D.
Tian
, and
J.
Zhu
, “
Luminescence lifetime imaging of ultra-long room temperature phosphorescence on a smartphone
,”
Anal. Bioanal. Chem.
413
,
3291
3297
(
2021
).
297.
M.
Kato
,
H.
Ito
,
M.
Hasegawa
, and
K.
Ishii
, “
Soft crystals: Flexible response systems with high structural order
,”
Chem. Eur. J.
25
,
5105
––
5112
(
2019
).
298.
M.
Kato
, “
Luminescent platinum complexes having sensing functionalities
,”
Bull. Chem. Soc. Jpn.
80
,
287
294
(
2002
).
299.
X.
Zhang
,
B.
Li
,
Z.-H.
Chen
, and
Z.-N.
Chen
, “
Luminescence vapochromism in solid materials based on metal complexes for detection of volatile organic compounds (VOCs)
,”
J. Mater. Chem.
22
,
11427
11441
(
2012
).
300.
T.
Sagara
,
I.
Mutai
,
K.
Yoshikawa
, and
J.
Araki
, “
Material design for piezochromic luminescence: Hydrogen-bond-directed assemblies of a pyrene derivative
,”
J. Am. Chem. Soc.
129
,
1520
1521
(
2007
).
301.
H.
Ito
,
T.
Saito
,
N.
Oshima
,
N.
Kitamura
,
S.
Ishizaka
,
Y.
Hinatsu
,
M.
Wakeshima
,
M.
Kato
,
K.
Tsuge
, and
M.
Sawamura
, “
Reversible mechanochromic luminescence of [(C6F5Au)2(mu-1,4-diisocyanobenzene)]
,”
J. Am. Chem. Soc.
130
,
10044
10045
(
2008
).
302.
A. M.
Kuchison
,
M. O.
Wolf
, and
B. O.
Patrick
, “
Conjugated ligand-based tribochromic luminescence
,”
Chem. Commun.
47
,
7387
7389
(
2009
).
303.
S.
Takamizawa
and
Y.
Miyamoto
, “
Superelastic organic crystals
,”
Angew. Chem. Int. Ed.
53
,
6970
6973
(
2014
).
304.
J. M.
Ribó
,
J.
Crusats
,
F.
Sagués
,
J.
Claret
, and
R.
Rubires
, “
Chiral sign induction by vortices during the formation of mesophases in stirred solutions
,”
Science
292
,
2063
2066
(
2001
).
305.
Y.
Kitagawa
,
H.
Segawa
, and
K.
Ishii
, “
Magneto‐chiral dichroism of organic compounds
,”
Angew. Chem. Int. Ed.
50
,
9133
9136
(
2011
).
306.
N.
Xu
,
T.
Watanabe
,
M.
Akiyama
, and
X. G.
Zheng
, “
Artificial skin to sense mechanical stress by visible light emission
,”
Appl. Phys. Lett.
74
,
1236
1238
(
1999
).
307.
N.
Xu
,
T.
Watanabe
,
M.
Akiyama
, and
X. G.
Zheng
, “
Direct view of stress distribution in solid by mechanoluminescence
,”
Appl. Phys. Lett.
74
,
2414
2416
(
1999
).
308.
Q.
Wu
,
H.
Xiong
,
Y.
Zhu
,
X.
Ren
,
L.-L.
Chu
,
Y.-F.
Yao
,
G.
Huang
, and
J.
Wu
, “
Self-healing amorphous polymers with room-temperature phosphorescence enabled by boron-based dative bonds
,”
ACS Appl. Polym. Mater.
2
,
699
705
(
2020
).

Supplementary Material

You do not currently have access to this content.