A biological organism, such as an octopus tentacle or elephant trunk, exhibits complex 3D spatial trajectories. Although soft manipulators showing 2D in-plane deformations have been extensively studied and applied in many areas, the design method of soft manipulators with a mathematical model that can follow a particular 3D spatial trajectory remains elusive. In this paper, we present a methodology to automatically design bio-inspired multi-segment pneu-net soft manipulators that can match complex 3D trajectories upon single pressurization. The 3D motions can be characterized by a combination of twisting, bending, and helical deformations, which are enabled by the design of the soft segments with programmable chamber orientations. To inverse design the soft manipulators with trajectory matching, we develop an analytical framework that takes into account the material nonlinearity, geometric anisotropy, and varying loading directions. The spatial trajectory can be reconstructed by combining with a 3D rod theory. In this sense, multi-segment soft manipulators with trajectory matching are inversely designed by varying the geometric and material parameters. We further demonstrate the grasping of complex objects using the designed soft manipulators. The proposed methodology has immense potential to design soft manipulators in 3D space and broaden their application.

1.
V.
Magdanz
,
J.
Gebauer
,
D.
Mahdy
,
J.
Simmchen
, and
I. S.
Khalil
, “
Sperm-templated magnetic microrobots
,” in
International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
(
IEEE
,
2019
), pp.
1
6
.
2.
M.
Wang
,
B.-P.
Lin
, and
H.
Yang
, “
A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes
,”
Nat. Commun.
7
,
13981
(
2016
).
3.
M.
Schaffner
,
J. A.
Faber
,
L.
Pianegonda
,
P. A.
Rühs
,
F.
Coulter
, and
A. R.
Studart
, “
3D printing of robotic soft actuators with programmable bioinspired architectures
,”
Nat. Commun.
9
,
878
(
2018
).
4.
W.
Hu
and
G.
Alici
, “
Bioinspired three-dimensional-printed helical soft pneumatic actuators and their characterization
,”
Soft Rob.
7
,
267
282
(
2020
).
5.
N. K.
Uppalapati
and
G.
Krishnan
, “
Towards pneumatic spiral grippers: Modeling and design considerations
,”
Soft Rob.
5
,
695
709
(
2018
).
6.
T. T.
Hoang
,
P. T.
Phan
,
M. T.
Thai
,
N. H.
Lovell
, and
T. N.
Do
, “
Bio-inspired conformable and helical soft fabric gripper with variable stiffness and touch sensing
,”
Adv. Mater. Technol.
5
(
12
),
2000724
(
2020
).
7.
W.
Wang
,
C.
Li
,
M.
Cho
, and
S.-H.
Ahn
, “
Soft tendril-inspired grippers: Shape morphing of programmable polymer-paper bilayer composites
,”
ACS Appl. Mater. Interfaces
10
,
10419
10427
(
2018
).
8.
S.
Gong
and
W.
Cheng
, “
Toward soft skin-like wearable and implantable energy devices
,”
Adv. Energy Mater.
7
,
1700648
(
2017
).
9.
C.
Laschi
,
B.
Mazzolai
, and
M.
Cianchetti
, “
Soft robotics: Technologies and systems pushing the boundaries of robot abilities
,”
Sci. Rob.
1
,
eaah3690
(
2016
).
10.
S.
Xu
,
D. M.
Vogt
,
W.
Hsu
,
J.
Osborne
,
T.
Walsh
,
J. R.
Foster
,
S. K.
Sullivan
,
V. C.
Smith
,
A. W.
Rousing
, and
E. C.
Goldfield
, “
Biocompatible soft fluidic strain and force sensors for wearable devices
,”
Adv. Funct. Mater.
29
,
1807058
(
2019
).
11.
Y.
Mengüç
,
Y.-L.
Park
,
E.
Martinez-Villalpando
,
P.
Aubin
,
M.
Zisook
,
L.
Stirling
,
R. J.
Wood
, and
C. J.
Walsh
, “
Soft wearable motion sensing suit for lower limb biomechanics measurements
,” in
IEEE International Conference on Robotics and Automation
(
IEEE
,
2013
), pp.
5309
5316
.
12.
Y.
Wu
,
J. K.
Yim
,
J.
Liang
,
Z.
Shao
,
M.
Qi
,
J.
Zhong
,
Z.
Luo
,
X.
Yan
,
M.
Zhang
, and
X.
Wang
, “
Insect-scale fast moving and ultrarobust soft robot
,”
Sci. Rob.
4
,
eaax1594
(
2019
).
13.
J.
Cao
,
L.
Qin
,
J.
Liu
,
Q.
Ren
,
C. C.
Foo
,
H.
Wang
,
H. P.
Lee
, and
J.
Zhu
, “
Untethered soft robot capable of stable locomotion using soft electrostatic actuators
,”
Extreme Mech. Lett.
21
,
9
16
(
2018
).
14.
C.
Majidi
, “
Soft robotics: A perspective-current trends and prospects for the future
,”
Soft Rob.
1
,
5
11
(
2014
).
15.
Y.
Hao
,
Z.
Gong
,
Z.
Xie
,
S.
Guan
,
X.
Yang
,
Z.
Ren
,
T.
Wang
, and
L.
Wen
, “
Universal soft pneumatic robotic gripper with variable effective length
,” in
35th Chinese Control Conference (CCC)
(
IEEE
,
2016
), pp.
6109
6114
.
16.
Y.
Li
and
M.
Hashimoto
, “
Design and prototyping of a novel lightweight walking assist wear using PVC gel soft actuators
,”
Sens. Actuators A Phys.
239
,
26
44
(
2016
).
17.
C.-P.
Chou
and
B.
Hannaford
, “
Measurement and modeling of McKibben pneumatic artificial muscles
,”
IEEE Trans. Rob. Autom.
12
,
90
102
(
1996
).
18.
B.
Tondu
and
P.
Lopez
, “
Modeling and control of McKibben artificial muscle robot actuators
,”
IEEE Control Syst. Mag.
20
,
15
38
(
2000
).
19.
S. D.
Thomalla
and
J. D.
Van de Ven
, “
Modeling and implementation of the McKibben actuator in hydraulic systems
,”
IEEE Trans. Rob.
34
,
1593
1602
(
2018
).
20.
G.
Gu
,
D.
Wang
,
L.
Ge
, and
X.
Zhu
, “
Analytical modeling and design of generalized pneu-net soft actuators with three-dimensional deformations
,”
Soft Rob.
8
,
462
477
(
2020
).
21.
J.
Jung
,
M.
Park
,
D.
Kim
, and
Y.-L.
Park
, “
Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators
,”
IEEE Rob. Autom. Lett.
5
,
2333
2340
(
2020
).
22.
F.
Ilievski
,
A. D.
Mazzeo
,
R. F.
Shepherd
,
X.
Chen
, and
G. M.
Whitesides
, “
Soft robotics for chemists
,”
Angew. Chem.
123
,
1930
1935
(
2011
).
23.
R. V.
Martinez
,
J. L.
Branch
,
C. R.
Fish
,
L.
Jin
,
R. F.
Shepherd
,
R. M.
Nunes
,
Z.
Suo
, and
G. M.
Whitesides
, “
Robotic tentacles with three-dimensional mobility based on flexible elastomers
,”
Adv. Mater.
25
,
205
212
(
2013
).
24.
R. F.
Shepherd
,
F.
Ilievski
,
W.
Choi
,
S. A.
Morin
,
A. A.
Stokes
,
A. D.
Mazzeo
,
X.
Chen
,
M.
Wang
, and
G. M.
Whitesides
, “
Multigait soft robot
,”
Proc. Natl. Acad. Sci.
108
,
20400
20403
(
2011
).
25.
M. T.
Tolley
,
R. F.
Shepherd
,
B.
Mosadegh
,
K. C.
Galloway
,
M.
Wehner
,
M.
Karpelson
,
R. J.
Wood
, and
G. M.
Whitesides
, “
A resilient, untethered soft robot
,”
Soft Rob.
1
,
213
223
(
2014
).
26.
R. F.
Shepherd
,
A. A.
Stokes
,
J.
Freake
,
J.
Barber
,
P. W.
Snyder
,
A. D.
Mazzeo
,
L.
Cademartiri
,
S. A.
Morin
, and
G. M.
Whitesides
, “
Using explosions to power a soft robot
,”
Angew. Chem. Int. Ed.
52
,
2892
2896
(
2013
).
27.
P.
Polygerinos
,
S.
Lyne
,
Z.
Wang
,
L. F.
Nicolini
,
B.
Mosadegh
,
G. M.
Whitesides
, and
C. J.
Walsh
, “
Towards a soft pneumatic glove for hand rehabilitation
,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IEEE
,
2013
), pp.
1512
1517
.
28.
K. M.
de Payrebrune
and
O. M.
O'Reilly
, “
On constitutive relations for a rod-based model of a pneu-net bending actuator
,”
Extreme Mech. Lett.
8
,
38
46
(
2016
).
29.
C.
Majidi
,
R. F.
Shepherd
,
R. K.
Kramer
,
G. M.
Whitesides
, and
R. J.
Wood
, “
Influence of surface traction on soft robot undulation
,”
Int. J. Rob. Res.
32
,
1577
1584
(
2013
).
30.
P.
Polygerinos
,
Z.
Wang
,
J. T.
Overvelde
,
K. C.
Galloway
,
R. J.
Wood
,
K.
Bertoldi
, and
C. J.
Walsh
, “
Modeling of soft fiber-reinforced bending actuators
,”
IEEE Trans. Rob.
31
,
778
789
(
2015
).
31.
C. B.
Teeple
,
T. N.
Koutros
,
M. A.
Graule
, and
R. J.
Wood
, “
Multi-segment soft robotic fingers enable robust precision grasping
,”
Int. J. Rob. Res.
39
(
14
),
1647
1667
(
2020
).
32.
S. Y.
Kim
,
R.
Baines
,
J.
Booth
,
N.
Vasios
,
K.
Bertoldi
, and
R.
Kramer-Bottiglio
, “
Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae
,”
Nat. Commun.
10
,
3464
(
2019
).
33.
F.
Connolly
,
C. J.
Walsh
, and
K.
Bertoldi
, “
Automatic design of fiber-reinforced soft actuators for trajectory matching
,”
Proc. Natl. Acad. Sci.
114
,
51
56
(
2017
).
34.
J.
Bishop-Moser
and
S.
Kota
, “
Design and modeling of generalized fiber-reinforced pneumatic soft actuators
,”
IEEE Trans. Rob.
31
,
536
545
(
2015
).
35.
K. C.
Galloway
,
P.
Polygerinos
,
C. J.
Walsh
, and
R. J.
Wood
, “
Mechanically programmable bend radius for fiber-reinforced soft actuators
,” in
16th International Conference on Advanced Robotics (ICAR)
(
IEEE
,
2013
), pp.
1
6
.
36.
Z.
Gong
,
X.
Fang
,
X.
Chen
,
J.
Cheng
,
Z.
Xie
,
J.
Liu
,
B.
Chen
,
H.
Yang
,
S.
Kong
, and
Y.
Hao
, “
A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments
,”
Int. J. Rob. Res.
40
,
449
469
(
2020
).
37.
F.
Renda
,
M.
Giorelli
,
M.
Calisti
,
M.
Cianchetti
, and
C.
Laschi
, “
Dynamic model of a multibending soft robot arm driven by cables
,”
IEEE Trans. Rob.
30
,
1109
1122
(
2014
).
38.
G.
Runge
,
M.
Wiese
,
L.
Günther
, and
A.
Raatz
, “
A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics
,” in
3rd International Conference on Control, Automation and Robotics (ICCAR)
(
IEEE
,
2017
), pp.
7
14
.
39.
L.
Ge
,
L.
Dong
,
D.
Wang
,
Q.
Ge
, and
G.
Gu
, “
A digital light processing 3d printer for fast and high-precision fabrication of soft pneumatic actuators
,”
Sens. Actuators A Phys.
273
,
285
292
(
2018
).
40.
F.
Connolly
,
P.
Polygerinos
,
C. J.
Walsh
, and
K.
Bertoldi
, “
Mechanical programming of soft actuators by varying fiber angle
,”
Soft Rob.
2
,
26
32
(
2015
).
41.
D.
Drotman
,
S.
Jadhav
,
M.
Karimi
,
P.
de Zonia
, and
M. T.
Tolley
, “
3d printed soft actuators for a legged robot capable of navigating unstructured terrain
,” in
IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2017
), pp.
5532
5538
.
42.
F.
Kassianidis
, “
Boundary-value problems for transversely isotropic hyperelastic solids
,” Ph.D. thesis (University of Glasgow, 2007).

Supplementary Material

You do not currently have access to this content.