Domain wall motion is in the core of many information technologies ranging from storage [Beach et al., J. Magn. Magn. Mater. 320, 1272–1281 (2008)], processing [Tatara et al., Phys. Rep. 468, 213–301 (2008)], and sensing [Ralph and Stiles, J. Magn. Magn. Mater. 320, 1190–1216 (2008)] up to novel racetrack memory architectures [Parkin et al., Science 320, 190–194 (2008)]. The finding of magnetism in two-dimensional (2D) van der Waals (vdW) materials [Huang et al., Nature 546, 270 (2017); Gong et al., Nature 546, 265–269 (2017); Guguchia et al., Sci. Adv. 4, eaat3672 (2018); Klein et al., Science 360, 1218–1222 (2018)] has offered a new frontier for the exploration and understanding of domain walls at the limit of few atom-thick layers. However, to use 2D vdW magnets for building spintronics nanodevices such as domain-wall based logic [Allwood et al., Science 309, 1688–1692 (2005); Luo et al., Nature 579, 214–218 (2020); Xu et al., Nat. Nanotechnol. 3, 97–100 (2008)], it is required to gain control of their domain wall dynamics by external driving forces such as spin-polarized currents or magnetic fields, which have so far been elusive. Here, we show that electric currents as well as magnetic fields can efficiently move domain walls in the recently discovered 2D vdW magnets CrI3 and CrBr3 at low temperatures and robust down to monolayer. We realize field- and current-driven domain wall motion with velocities up to 1020 m s−1, which are comparable to the state-of-the-art materials for domain-wall based applications [Yang et al., Nat. Nanotechnol. 10, 221–226 (2015); Woo et al., Nat. Mater. 15, 501–506 (2016); Vélez et al., Nat. Commun. 10, 4750 (2019); Siddiqui et al., Phys. Rev. Lett. 121, 057701 (2018); Ryu et al., Nat. Nanotechnol. 8, 527–533 (2013)]. Domain walls keep their coherence driven by the spin-transfer torque induced by the current and magnetic fields up to large values of about 12×109 A cm−2 and 5 T, respectively. For larger magnitudes of current or field, a transition to a hydrodynamic spin-liquid regime is observed with the emission of a periodic train of spin-wave solitons with modulational instability [Rabinovich and Trubetskov, Oscillations and Waves: In Linear and Nonlinear Systems, Mathematics and its Applications (Springer Netherlands, 2011)]. The emitted waveform achieves terahertz (THz) frequency in a wide range of fields and current densities, which opens up perspectives for reconfigurable magnonic devices. Moreover, we found that these spin-waves can transport spin angular momentum through the layers over distances as long as 10 μm without losses for the transport of spin information. Our results push the boundary of what is currently known about the dynamics of domain walls in 2D vdW ferromagnets and unveil strategies to design ultrathin, high-speed, and high-frequency spintronic devices.

1.
G. S. D.
Beach
,
M.
Tsoi
, and
J. L.
Erskine
, “
Current-induced domain wall motion
,”
J. Magn. Magn. Mater.
320
,
1272
1281
(
2008
).
2.
G.
Tatara
,
H.
Kohno
, and
J.
Shibata
, “
Microscopic approach to current-driven domain wall dynamics
,”
Phys. Rep.
468
,
213
301
(
2008
).
3.
D.
Ralph
and
M.
Stiles
, “
Spin transfer torques
,”
J. Magn. Magn. Mater.
320
,
1190
1216
(
2008
).
4.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
, “
Magnetic domain-wall racetrack memory
,”
Science
320
,
190
194
(
2008
).
5.
B.
Huang
 et al, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
(
2017
).
6.
C.
Gong
 et al, “
Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
,”
Nature
546
,
265
269
(
2017
).
7.
Z.
Guguchia
 et al, “
Magnetism in semiconducting molybdenum dichalcogenides
,”
Sci. Adv.
4
,
eaat3672
(
2018
).
8.
D. R.
Klein
 et al, “
Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling
,”
Science
360
,
1218
1222
(
2018
).
9.
D. A.
Allwood
 et al, “
Magnetic domain-wall logic
,”
Science
309
,
1688
1692
(
2005
).
10.
Z.
Luo
 et al, “
Current-driven magnetic domain-wall logic
,”
Nature
579
,
214
218
(
2020
).
11.
P.
Xu
 et al, “
An all-metallic logic gate based on current-driven domain wall motion
,”
Nat. Nanotechnol.
3
,
97
100
(
2008
).
12.
S.-H.
Yang
,
K.-S.
Ryu
, and
S.
Parkin
, “
Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets
,”
Nat. Nanotechnol.
10
,
221
226
(
2015
).
13.
S.
Woo
 et al, “
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
,”
Nat. Mater.
15
,
501
506
(
2016
).
14.
S.
Vélez
 et al, “
High-speed domain wall racetracks in a magnetic insulator
,”
Nat. Commun.
10
,
4750
(
2019
).
15.
S. A.
Siddiqui
,
J.
Han
,
J. T.
Finley
,
C. A.
Ross
, and
L.
Liu
, “
Current-induced domain wall motion in a compensated ferrimagnet
,”
Phys. Rev. Lett.
121
,
057701
(
2018
).
16.
K.-S.
Ryu
,
L.
Thomas
,
S.-H.
Yang
, and
S.
Parkin
, “
Chiral spin torque at magnetic domain walls
,”
Nat. Nanotechnol.
8
,
527
533
(
2013
).
17.
M.
Rabinovich
and
D.
Trubetskov
,
Oscillations and Waves: in Linear and Nonlinear Systems, Mathematics and its Applications
(
Springer Netherlands
,
2011
).
18.
S.
Parkin
and
S.-H.
Yang
, “
Memory on the racetrack
,”
Nat. Nanotechnol.
10
,
195
198
(
2015
).
19.
V.
Baltz
 et al, “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
20.
R. P.
Cowburn
and
M. E.
Welland
, “
Room temperature magnetic quantum cellular automata
,”
Science
287
,
1466
1468
(
2000
).
21.
D. A.
Allwood
 et al, “
Submicrometer ferromagnetic NOT gate and shift register
,”
Science
296
,
2003
2006
(
2002
).
22.
M.
Diegel
,
S.
Glathe
,
R.
Mattheis
,
M.
Scherzinger
, and
E.
Halder
, “
A new four bit magnetic domain wall based multiturn counter
,”
IEEE Trans. Magn.
45
,
3792
3795
(
2009
).
23.
H. H.
Kim
 et al, “
One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure
,”
Nano Lett.
18
,
4885
4890
(
2018
).
24.
D.
Ghazaryan
 et al, “
Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3
,”
Nat. Electron.
1
,
344
349
(
2018
).
25.
F.
Cantos-Prieto
 et al, “
Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets
,”
Nano Lett.
21
,
3379
3385
(
2021
).
26.
C.
Chappert
,
A.
Fert
, and
F. N.
Van Dau
, “
The emergence of spin electronics in data storage
,”
Nat. Mater.
6
,
813
823
(
2007
).
27.
A.
Manchon
 et al, “
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
,”
Rev. Mod. Phys.
91
,
035004
(
2019
).
28.
V.
Gupta
 et al, “
Manipulation of the van der Waals magnet Cr2Ge2Te6 by spin–orbit torques
,”
Nano Lett.
20
,
7482
7488
(
2020
).
29.
X.
Wang
 et al, “
Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2
,”
Sci. Adv.
5
,
eaaw8904
(
2019
).
30.
D. A.
Wahab
 et al, “
Quantum rescaling, domain metastability, and hybrid domain-walls in 2D CrI3 magnets
,”
Adv. Mater.
33
,
2004138
(
2021
).
31.
Q.-C.
Sun
 et al, “
Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging
,”
Nat. Commun.
12
,
1989
(
2021
).
32.
A.
Kartsev
,
M.
Augustin
,
R. F. L.
Evans
,
K. S.
Novoselov
, and
E. J. G.
Santos
, “
Biquadratic exchange interactions in two-dimensional magnets
,”
npj Comput. Mater.
6
,
150
(
2020
).
33.
D.
Soriano
,
M. I.
Katsnelson
, and
J.
Fernández-Rossier
, “
Magnetic two-dimensional chromium trihalides: A theoretical perspective
,”
Nano Lett.
20
,
6225
6234
(
2020
).
34.
L.
Chen
 et al, “
Topological spin excitations in honeycomb ferromagnet
CrI3,”
Phys. Rev. X
8
,
041028
(
2018
).
35.
A. R.
Wildes
,
M. E.
Zhitomirsky
,
T.
Ziman
,
D.
Lançon
, and
H. C.
Walker
, “
Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS3
,”
J. Appl. Phys.
127
,
223903
(
2020
).
36.
M.
Augustin
,
S.
Jenkins
,
R. F. L.
Evans
,
K. S.
Novoselov
, and
E. J. G.
Santos
, “
Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3
,”
Nat. Commun.
12
,
185
(
2021
).
37.
L. N.
Kapoor
 et al, “
Observation of standing spin waves in a van der Waals magnetic material
,”
Adv. Mater.
33
,
2005105
(
2021
).
38.
M.
Abramchuk
 et al, “
Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry
,”
Adv. Mater.
30
,
1801325
(
2018
).
39.
S.
Jiang
,
L.
Li
,
Z.
Wang
,
K. F.
Mak
, and
J.
Shan
, “
Controlling magnetism in 2D CrI3 by electrostatic doping
,”
Nat. Nanotechnol.
13
,
549
553
(
2018
).
40.
H. H.
Kim
 et al, “
Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides
,”
Proc. Natl. Acad. Sci.
116
,
11131
11136
(
2019
).
41.
A.
Hubert
and
R.
Schafer
,
Magnetic Domains: The Analysis of Magnetic Microstructures
(
Springer Science and Business Media
,
2008
).
42.
N. L.
Schryer
and
L. R.
Walker
, “
The motion of 180° domain walls in uniform dc magnetic fields
,”
J. Appl. Phys.
45
,
5406
(
1974
).
43.
P. J.
Metaxas
 et al, “
Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy
,”
Phys. Rev. Lett.
99
,
217208
(
2007
).
44.
S.
Pizzini
 et al, “
Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures
,”
Phys. Rev. Lett.
113
,
047203
(
2014
).
45.
M.
Bode
, “
Spin-polarized scanning tunnelling microscopy
,”
Rep. Prog. Phys.
66
,
523
582
(
2003
).
46.
F.
Casola
,
T.
van der Sar
, and
A.
Yacoby
, “
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
,”
Nat. Rev. Mater.
3
,
17088
(
2018
).
47.
M.
Yamanouchi
,
D.
Chiba
,
F.
Matsukura
,
T.
Dietl
, and
H.
Ohno
, “
Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As
,”
Phys. Rev. Lett.
96
,
096601
(
2006
).
48.
I. M.
Miron
 et al, “
Fast current-induced domain-wall motion controlled by the Rashba effect
,”
Nat. Mater.
10
,
419
423
(
2011
).
49.
S.
Emori
,
U.
Bauer
,
S.-M.
Ahn
,
E.
Martinez
, and
G. S. D.
Beach
, “
Current-driven dynamics of chiral ferromagnetic domain walls
,”
Nat. Mater.
12
,
611
616
(
2013
).
50.
R.
Wieser
,
E. Y.
Vedmedenko
, and
R.
Wiesendanger
, “
Domain wall motion damped by the emission of spin waves
,”
Phys. Rev. B
81
,
024405
(
2010
).
51.
S.
Zhang
and
Z.
Li
, “
Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets
,”
Phys. Rev. Lett.
93
,
127204
(
2004
).
52.
A.
Thiaville
,
Y.
Nakatani
,
J.
Miltat
, and
Y.
Suzuki
, “
Micromagnetic understanding of current-driven domain wall motion in patterned nanowires
,”
Europhys. Lett.
69
,
990
996
(
2005
).
53.
M.
Hayashi
 et al, “
Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance
,”
Phys. Rev. Lett.
96
,
197207
(
2006
).
54.
X. S.
Wang
and
X. R.
Wang
, “
Spin wave emission in field-driven domain wall motion
,”
Phys. Rev. B
90
,
184415
(
2014
).
55.
P.
Lederer
and
D. L.
Mills
, “
Possible experimental test of the band theory of magnetism
,”
Phys. Rev.
148
,
542
547
(
1966
).
56.
V.
Vlaminck
and
M.
Bailleul
, “
Current-induced spin-wave Doppler shift
,”
Science
322
,
410
413
(
2008
).
57.
M.
Zhu
,
C. L.
Dennis
, and
R. D.
McMichael
, “
Temperature dependence of magnetization drift velocity and current polarization in Ni80Fe20 by spin-wave Doppler measurements
,”
Phys. Rev. B
81
,
140407
(
2010
).
58.
K.
Sekiguchi
 et al, “
Time-domain measurement of current-induced spin wave dynamics
,”
Phys. Rev. Lett.
108
,
017203
(
2012
).
59.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
John Wiley & Sons Inc
.,
1974
).
60.
F.
Bonnefoy
 et al, “
From modulational instability to focusing dam breaks in water waves
,”
Phys. Rev. Fluids
5
,
034802
(
2020
).
61.
G.
Marcucci
 et al, “
Topological control of extreme waves
,”
Nat. Commun.
10
,
5090
(
2019
).
62.
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
, and
R.
Carretero-González
,
The Defocusing Nonlinear Schrödinger Equation
(
SIAM
,
Philadelphia
,
2015
).
63.
S. M.
Mohseni
 et al, “
Spin torque generated magnetic droplet solitons
,”
Science
339
,
1295
1298
(
2013
).
64.
E.
Iacocca
 et al, “
Spin-current-mediated rapid magnon localization and coalescence after ultrafast optical pumping of ferrimagnetic alloys
,”
Nat. Commun.
10
,
1756
(
2019
).
65.
E.
Iacocca
,
T. J.
Silva
, and
M. A.
Hoefer
, “
Breaking of Galilean invariance in the hydrodynamic formulation of ferromagnetic thin films
,”
Phys. Rev. Lett.
118
,
017203
(
2017
).
66.
S. K.
Ivanov
,
A. M.
Kamchatnov
,
T.
Congy
, and
N.
Pavloff
, “
Solution of the Riemann problem for polarization waves in a two-component Bose-Einstein condensate
,”
Phys. Rev. E
96
,
062202
(
2017
).
67.
A.
Gelash
 et al, “
Bound state soliton gas dynamics underlying the spontaneous modulational instability
,”
Phys. Rev. Lett.
123
,
234102
(
2019
).
68.
L. J.
Cornelissen
,
J.
Liu
,
R. A.
Duine
,
J. B.
Youssef
, and
B. J.
van Wees
, “
Long-distance transport of magnon spin information in a magnetic insulator at room temperature
,”
Nat. Phys.
11
,
1022
1026
(
2015
).
69.
C.
Liu
 et al, “
Long-distance propagation of short-wavelength spin waves
,”
Nat. Commun.
9
,
738
(
2018
).
70.
Y.
Kajiwara
 et al, “
Transmission of electrical signals by spin-wave interconversion in a magnetic insulator
,”
Nature
464
,
262
266
(
2010
).
71.
W.
Xing
 et al, “
Magnon transport in quasi-two-dimensional van der Waals antiferromagnets
,”
Phys. Rev. X
9
,
011026
(
2019
).
72.
A.
Bedoya-Pinto
 et al, “
Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer
,”
Science
374
(
6567
),
616
620
(
2021
).
73.
S.
Kezilebieke
 et al, “
Electronic and magnetic characterization of epitaxial CrBr3 monolayers on a superconducting substrate
,”
Adv. Mater.
33
,
2006850
(
2021
).
74.
H.
Wang
,
F.
Fan
,
S.
Zhu
, and
H.
Wu
, “
Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer
,”
Europhys. Lett.
114
,
47001
(
2016
).
75.
S.
Zhang
and
S. S.-L.
Zhang
, “
Generalization of the Landau-Lifshitz-Gilbert equation for conducting ferromagnets
,”
Phys. Rev. Lett.
102
,
086601
(
2009
).
76.
K.-W.
Kim
,
J.-H.
Moon
,
K.-J.
Lee
, and
H.-W.
Lee
, “
Prediction of giant spin motive force due to Rashba spin-orbit coupling
,”
Phys. Rev. Lett.
108
,
217202
(
2012
).
77.
M. D.
Petrović
,
U.
Bajpai
,
P.
Plecháč
, and
B. K.
Nikolić
, “
Annihilation of topological solitons in magnetism with spin-wave burst finale: Role of nonequilibrium electrons causing nonlocal damping and spin pumping over ultrabroadband frequency range
,”
Phys. Rev. B
104
,
L020407
(
2021
).
78.
T.
Weindler
 et al, “
Magnetic damping: Domain wall dynamics versus local ferromagnetic resonance
,”
Phys. Rev. Lett.
113
,
237204
(
2014
).
79.
S. S.
Dhillon
 et al, “
The 2017 terahertz science and technology roadmap
,”
J. Phys. D
50
,
043001
(
2017
).

Supplementary Material

You do not currently have access to this content.