Understanding the formation of core-shell nanomaterials is decisive for controlling their growth, structure, and morphology, which is particularly important in catalysis. As a promising material for photo catalysis application, Pd-Pt core-shell nanoparticles (NPs) have been in the spotlight for many years owing to their catalytic performance typically superior to that of pure Pt nanoparticles. The generation of ultra-thin Pt skins of only a few atomic layers on Pd nanoparticles has turned out to be extremely difficult because Pt tends to form islands during deposition instead of a continuous shell. Therefore, understanding the atomic mechanisms of shell formation is critical for atomic-scale design and control of the platinum shell. Here, by using in situ graphene-based liquid cell scanning transmission electron microscopy (STEM), the growth mechanisms of the Pt shell on Pd nanocubes (NCs) are studied in aqueous solution at the atomic level. Pd-Pt core-shell NPs are formed via two distinct mechanisms: (i) at low concentration of Pt atoms, an ultra-thin skin of only a few atomic layers is formed via atom-by-atom deposition and (ii) at higher concentration of Pt atoms, inhomogeneous islands and thick shells are formed via attachment of Pt clusters. Our study provides a route to control core-shell growth and helps us to understand the exact atomic mechanisms of Pt shell growth on Pd seeds.

1.
L.
Bu
,
N.
Zhang
,
S.
Guo
,
X.
Zhang
,
J.
Li
,
J.
Yao
,
T.
Wu
,
G.
Lu
,
J. Y.
Ma
,
D.
Su
, and
X.
Huang
,
Science
354
,
1410
(
2016
).
2.
R. S.
Ghosh
,
T. T.
Le
,
T.
Terlier
,
J. D.
Rimer
,
M. P.
Harold
, and
D.
Wang
,
ACS Catal.
10
,
3604
(
2020
).
3.
W.
Luc
,
C.
Collins
,
S.
Wang
,
H.
Xin
,
K.
He
,
Y.
Kang
, and
F.
Jiao
,
J. Am. Chem. Soc.
139
,
1885
(
2017
).
4.
K. D.
Gilroy
,
A.
Ruditskiy
,
H. C.
Peng
,
D.
Qin
, and
Y.
Xia
,
Chem. Rev.
116
,
10414
(
2016
).
5.
X.
Zhu
,
X.
Zhuo
,
Q.
Li
,
Z.
Yang
, and
J.
Wang
,
Adv. Funct. Mater.
26
,
341
(
2016
).
6.
M.
Mayer
,
L.
Scarabelli
,
K.
March
,
T.
Altantzis
,
M.
Tebbe
,
M.
Kociak
,
S.
Bals
,
F. J. G. D.
Abajo
,
A.
Fery
, and
L. M.
Liz-Marzán
,
Nano Lett.
15
,
5427
(
2015
).
7.
C.
Chen
,
Y.
Kang
,
Z.
Huo
,
Z.
Zhu
,
W.
Huang
,
H.
Xin
,
J. D.
Snyder
,
D.
Li
,
J. A.
Herron
,
M.
Mavrikakis
,
M.
Chi
,
K. L.
More
,
Y.
Li
,
N. M.
Markovic
,
G. A.
Somorjai
,
P.
Yang
, and
V. R.
Stamenkovic
,
Science
343
,
1339
(
2014
).
8.
L.
Kuai
,
S.
Wang
, and
B.
Geng
,
Chem Commun.
47
,
6093
(
2011
).
9.
B. C. H.
Steele
and
A.
Heinzel
,
Nature
414
,
345
(
2001
).
10.
S.
Guo
,
S.
Zhang
, and
S.
Sun
,
Angew. Chem., Int. Ed.
52
,
8526
(
2013
).
12.
Y.
Liu
,
D.
Gokcen
,
U.
Bertocci
, and
T. P.
Moffat
,
Science
338
,
1327
(
2012
).
13.
C.
Gao
,
Z.
Lu
,
Y.
Liu
,
Q.
Zhang
,
M.
Chi
,
Q.
Cheng
, and
Y.
Yin
,
Angew. Chem. Int. Ed.
51
,
5629
(
2012
).
14.
S.
Xie
,
S.-I.
Choi
,
N.
Lu
,
L. T.
Roling
,
J. A.
Herron
,
L.
Zhang
,
J.
Park
,
J.
Wang
,
M. J.
Kim
,
Z.
Xie
, and
M.
Mavrikakis
,
Nano Lett.
14
,
3570
(
2014
).
15.
H. A.
Gasteiger
,
S. S.
Kocha
,
B.
Sompalli
, and
F. T.
Wagner
,
Appl. Catal. B.
56
,
9
(
2005
).
16.
H.
Zhang
,
M.
Jin
, and
Y.
Xia
,
Chem. Soc. Rev.
41
,
8035
(
2012
).
17.
E.
Toyoda
,
R.
Jinnouchi
,
T.
Ohsuna
,
T.
Hatanaka
,
T.
Aizawa
,
S.
Otani
,
Y.
Kido
, and
Y.
Morimoto
,
Angew. Chem. Int. Ed.
52
,
4137
(
2013
).
18.
R. R.
Adzic
,
J.
Zhang
,
K.
Sasaki
,
M. B.
Vukmirovic
,
M.
Shao
,
J. X.
Wang
,
A. U.
Nilekar
,
M.
Mavrikakis
,
J. A.
Valerio
, and
F.
Uribe
,
Top. Catal.
46
,
249
(
2007
).
19.
V. R.
Stamenkovic
,
B.
Fowler
,
B. S.
Mun
,
G.
Wang
,
P. N.
Ross
,
C. A.
Lucas
, and
N. M.
Markovic
,
Science
315
,
493
(
2007
).
20.
P.
Strasser
,
S.
Koh
,
T.
Anniyev
,
J.
Greeley
,
K.
More
,
C.
Yu
,
Z.
Liu
,
S.
Kaya
,
D.
Nordlund
,
H.
Ogasawara
,
M. F.
Toney
, and
A.
Nilsson
,
Nat. Chem.
2
,
454
(
2010
).
21.
J. R.
Kitchin
,
J. K.
Nørskov
,
M. A.
Barteau
, and
J. G.
Chen
,
Phys. Rev. Lett.
93
,
156801
(
2004
).
22.
B.
Lim
,
M.
Jiang
,
P. H. C.
Camargo
,
E. C.
Cho
,
J.
Tao
,
X.
Lu
,
Y.
Zhu
, and
Y.
Xia
,
Science
324
,
1302
(
2009
).
23.
J. X.
Wang
,
H.
Inada
,
L.
Wu
,
Y.
Zhu
,
Y.
Choi
,
P.
Liu
,
W.-P.
Zhou
, and
R. R. J.
Adzic
,
Am. Chem. Soc.
131
,
17298
(
2009
).
24.
X.
Wang
,
Y.
Orikasa
,
Y.
Takesue
,
H.
Inoue
,
M.
Nakamura
,
T.
Minato
,
N.
Hoshi
, and
Y.
Uchimoto
,
J. Am. Chem. Soc.
135
,
5938
(
2013
).
25.
J.
Greeley
and
J. K.
Nørskov
,
Electrochem. Acta
52
,
5829
(
2007
).
26.
C. C.
Yang
,
Z. T.
Liu
,
Y. P.
Lyu
, and
C. L.
Lee
, “
Shell-Thickness-Controlled Synthesis of Core-Shell Pd@Pt Nanocubes and Tuning of Their Oxygen Reduction Activities
,”
J. Electrochem. Soc.
164
,
112
(
2017
).
27.
X.
Wang
,
S. I.
Choi
,
L. T.
Roling
,
M.
Luo
,
C.
Ma
,
L.
Zhang
,
M.
Chi
,
J.
Liu
,
Z.
Xie
,
J. A.
Herron
,
M.
Mavrikakis
, and
Y.
Xia
,
Nat Commun.
6
,
7594
(
2015
).
28.
A.
De Clercq
,
W.
Dachraoui
,
O.
Margeat
,
K.
Pelzer
,
C. R.
Henry
, and
S.
Giorgio
,
J. Phys. Chem. Lett.
5
,
2126
(
2015
).
29.
B.
Song
,
K.
He
,
Y.
Yuan
,
S.
Sharifi-Asl
,
M.
Cheng
,
J.
Lu
,
W. A.
Saidi
, and
R.
Shahbazian-Yassar
,
Nanoscale.
10
,
15809
(
2018
).
30.
L.
Junjie
,
C.
Jiangchun
,
H.
Wang
,
C.
Na
,
Z.
Wang
,
L.
Guo
, and
F. L.
Deepak
,
Adv. Sci.
5
,
1700992
(
2018
).
31.
M.
Wand
,
C.
Park
, and
T. J.
Woehl
,
Chem. Mater.
30
,
7727
(
2018
).
32.
M. H.
Nielsen
,
D.
Li
,
H.
Zhang
,
S.
Aloni
,
T. Y. J.
Han
,
C.
Frandsen
,
J.
Seto
,
J. F.
Banfield
,
H.
Cölfen
, and
J. J.
De Yoreo
,
Microsc. Microanal.
20
,
425
(
2014
).
33.
W.
Wie
,
H.
Zhang
,
W.
Wang
,
M.
Dong
,
M.
Nie
,
L.
Sun
, and
F.
Xu
,
ACS Appl. Mater. Interfaces
11
,
24478
(
2019
).
34.
T. Y.
Ahn
,
S. P.
Hong
,
S.
Kim
, and
Y. W.
Kim
,
RSC Adv.
5
,
82342
(
2015
).
35.
J. Y.
Cheong
,
J. H.
Chang
,
S. J.
Kim
,
C.
Kim
,
H. K.
Seo
,
J. W.
Shin
,
J. M.
Yuk
,
J. Y.
Lee
, and
D.
Kim
,
Microsc. Microanal.
23
,
1107
(
2017
).
36.
E.
Javon
,
M.
Gaceur
,
W.
Dachraoui
,
O.
Margeat
,
J.
Ackermann
,
M. I.
Saba
,
P.
Delugas
,
A.
Mattoni
,
S.
Bals
, and
G.
Van Tendeloo
,
ACS Nano
5
,
3685
(
2015
).
37.
E.
Sutter
,
P.
Sutter
,
A. V.
Tkachenko
,
R.
Krahne
,
J.
de Graaf
,
M.
Arciniegas
, and
L.
Manna
,
Nat. Commun.
7
,
11213
(
2016
).
38.
M. A.
Touve
,
A. S.
Carlini
, and
N. C.
Giannesch
,
Nat. Commun.
10
,
4837
(
2019
).
39.
H.
Wang
,
B.
Li
,
Y. J.
Kim
,
O. H.
Kwon
,
S.
Granick
, and
P.
App
,
Science
117
,
1283
(
2020
).
40.
D.
Elgrabli
,
W.
Dachraoui
,
C.
Ménard-Moyon
,
X. J.
Liu
,
D.
Bégin
,
S.
Bégin-Colin
,
A.
Bianco
,
F.
Gazeau
, and
D.
Alloyeau
,
ACS Nano
10
,
10113
(
2015
).
G. Z.
Zhu
,
S. Y. J.
Prabhudev
,
C. M.
Gabardo
,
G. A.
Botton
, and
L.
Soleymani
,
J. Phys. Chem. C.
118
,
22111
(
2018
).
41.
V.
Beermann
,
M. E.
Holtz
,
E.
Padgett
,
J. F.
de Araujo
,
D. A.
Muller
, and
P.
Strasser
,
Energy Environ. Sci.
12
,
2476
(
2019
).
42.
M. R.
Hauwiller
,
J. C.
Ondry
, and
A. P.
Alivisatos
,
J. Visual. Exp.
135
,
53757665
(
2018
).
43.
S.
Pu
,
C.
Gong
, and
A.
Robertson
,
R. Soc. Open Sci.
7
,
191204
(
2020
).
44.
W.
Dachraoui
,
D.
Keller
,
T. R.
Henninen
,
O. J.
Ashton
, and
R.
Erni
,
Nano Lett.
21
,
2861
(
2021
).
45.
C.
Wang
,
T.
Shokuhfar
, and
R. F.
Klie
,
Adv. Mater.
28
,
7716
(
2016
).
46.
P. D.
Nellist
and
S. J.
Pennycook
,
Adv. Imag. Electron Phys.
113
,
147
(
2000
).
47.
J. T. L.
Gamler
,
A.
Leonardi
,
X.
Sang
,
K. M.
Koczkur
,
R. R.
Unocic
,
M.
Enge
, and
S. E.
Skrabalak
,
Nanoscale Adv.
2
,
1105
(
2020
).
48.
J.
Chung
and
L.
Rabenberg
,
Ultramicroscopy
108
,
1595
(
2008
).
49.
M. J.
Hÿtch
,
E.
Snoeck
, and
R.
Kilaas
,
Ultramicroscopy
74
,
131
(
1998
).

Supplementary Material

You do not currently have access to this content.