Since its first successful isolation over a decade ago, academic and industrial interest has triggered the steady progress of the commercialization of graphene, as evidenced by a wealth of graphene-related patents, products, institutes, and startups. Among currently available graphene materials, graphene films derived from chemical vapor deposition (CVD) techniques, with fine controllability and uniformity, have been proven to be a promising candidate for various applications, with exciting demonstrations in electronics, optoelectronics, sensors, and filtering membrane. In this review, recent progress toward the commercialization of CVD films is summarized, covering the state-of-the-art methods for controllable synthesis, up-scale technologies for mass production, and demonstrations in potential commercial applications, which will propel the successful commercialization of graphene films by transforming the laboratory-scale advances. Moreover, a brief summary of the current market of CVD graphene films is provided with regarding to the commercial graphene products and production equipment. Finally, a perspective on the critical challenges and future direction of CVD graphene films will be presented.

1.
K. S.
Novoselov
,
V. I.
Fal'ko
,
L.
Colombo
,
P. R.
Gellert
,
M. G.
Schwab
, and
K.
Kim
, “
A roadmap for graphene
,”
Nature
490
(
7419
),
192
200
(
2012
).
2.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
, “
Two-dimensional gas of massless Dirac fermions in graphene
,”
Nature
438
(
7065
),
197
200
(
2005
).
3.
A. K.
Geim
, “
Random walk to graphene (Nobel lecture)
,”
Angew. Chem., Int. Ed.
50
(
31
),
6966
6985
(
2011
).
4.
S.
Bae
,
H.
Kim
,
Y.
Lee
,
X.
Xu
,
J. S.
Park
,
Y.
Zheng
,
J.
Balakrishnan
,
T.
Lei
,
H. R.
Kim
,
Y. I.
Song
,
Y. J.
Kim
,
K. S.
Kim
,
B.
Ozyilmaz
,
J. H.
Ahn
,
B. H.
Hong
, and
S.
Iijima
, “
Roll-to-roll production of 30-in. graphene films for transparent electrodes
,”
Nat. Nanotechnol.
5
(
8
),
574
578
(
2010
).
5.
F.
Bonaccorso
,
L.
Colombo
,
G.
Yu
,
M.
Stoller
,
V.
Tozzini
,
A. C.
Ferrari
,
R. S.
Ruoff
, and
V.
Pellegrini
, “
Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
,”
Science
347
(
6217
),
124651
(
2015
).
6.
Y.
Shao
,
J.
Wang
,
H.
Wu
,
J.
Liu
,
I. A.
Aksay
, and
Y.
Lin
, “
Graphene based electrochemical sensors and biosensors: A review
,”
Electroanalysis
22
(
10
),
1027
1036
(
2010
).
7.
S.
Böhm
, “
Graphene against corrosion
,”
Nat. Nanotechnol.
9
(
10
),
741
742
(
2014
).
8.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
(
7699
),
43
50
(
2018
).
9.
L.
Chen
,
G.
Shi
,
J.
Shen
,
B.
Peng
,
B.
Zhang
,
Y.
Wang
,
F.
Bian
,
J.
Wang
,
D.
Li
,
Z.
Qian
,
G.
Xu
,
G.
Liu
,
J.
Zeng
,
L.
Zhang
,
Y.
Yang
,
G.
Zhou
,
M.
Wu
,
W.
Jin
,
J.
Li
, and
H.
Fang
, “
Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
,”
Nature
550
(
7676
),
380
383
(
2017
).
10.
Y.
Zhu
,
H.
Ji
,
H.-M.
Cheng
, and
R. S.
Ruoff
, “
Mass production and industrial applications of graphene materials
,”
Nat. Sci. Rev.
5
(
1
),
90
101
(
2018
).
11.
See https://www.youtube.com/watch?v=NIO3BRQQFmM for “
Graphene Technology [Eng]
.”
12.
A. P.
Kauling
,
A. T.
Seefeldt
,
D. P.
Pisoni
,
R. C.
Pradeep
,
R.
Bentini
,
R. V. B.
Oliveira
,
K. S.
Novoselov
, and
A. H.
Castro Neto
, “
The worldwide graphene flake production
,”
Adv. Mater.
30
(
44
),
1803784
(
2018
).
13.
K. R.
Paton
,
E.
Varrla
,
C.
Backes
,
R. J.
Smith
,
U.
Khan
,
A.
O'Neill
,
C.
Boland
,
M.
Lotya
,
O. M.
Istrate
,
P.
King
,
T.
Higgins
,
S.
Barwich
,
P.
May
,
P.
Puczkarski
,
I.
Ahmed
,
M.
Moebius
,
H.
Pettersson
,
E.
Long
,
J.
Coelho
,
S. E.
O'Brien
,
E. K.
McGuire
,
B. M.
Sanchez
,
G. S.
Duesberg
,
N.
McEvoy
,
T. J.
Pennycook
,
C.
Downing
,
A.
Crossley
,
V.
Nicolosi
, and
J. N.
Coleman
, “
Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids
,”
Nat. Mater.
13
(
6
),
624
630
(
2014
).
14.
D.
Voiry
,
J.
Yang
,
J.
Kupferberg
,
R.
Fullon
,
C.
Lee
,
H. Y.
Jeong
,
H. S.
Shin
, and
M.
Chhowalla
, “
High-quality graphene via microwave reduction of solution-exfoliated graphene oxide
,”
Science
353
(
6306
),
1413
1416
(
2016
).
15.
X. S.
Li
,
W. W.
Cai
,
J. H.
An
,
S.
Kim
,
J.
Nah
,
D. X.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
, “
Large-area synthesis of high-quality and uniform graphene films on copper foils
,”
Science
324
(
5932
),
1312
1314
(
2009
).
16.
G. H.
Lee
,
R. C.
Cooper
,
S. J.
An
,
S.
Lee
,
A.
van der Zande
,
N.
Petrone
,
A. G.
Hammerberg
,
C.
Lee
,
B.
Crawford
,
W.
Oliver
,
J. W.
Kysar
, and
J.
Hone
, “
High-strength chemical-vapor-deposited graphene and grain boundaries
,”
Science
340
(
6136
),
1073
1076
(
2013
).
17.
K.
Pan
,
Y.
Fan
,
T.
Leng
,
J.
Li
,
Z.
Xin
,
J.
Zhang
,
L.
Hao
,
J.
Gallop
,
K. S.
Novoselov
, and
Z.
Hu
, “
Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications
,”
Nat. Commun.
9
(
1
),
5197
(
2018
).
18.
J. C.
Zhang
,
L.
Lin
,
K. C.
Jia
,
L. Z.
Sun
,
H. L.
Peng
, and
Z. F.
Liu
, “
Controlled growth of single-crystal graphene films
,”
Adv. Mater.
32
(
1
),
1903266
(
2020
).
19.
X.
Wang
,
Q.
Yuan
,
J.
Li
, and
F.
Ding
, “
The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth
,”
Nanoscale
9
(
32
),
11584
11589
(
2017
).
20.
M.
Treier
,
C. A.
Pignedoli
,
T.
Laino
,
R.
Rieger
,
K.
Mullen
,
D.
Passerone
, and
R.
Fasel
, “
Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes
,”
Nat. Chem.
3
(
1
),
61
67
(
2011
).
21.
W.
Zhang
,
P.
Wu
,
Z.
Li
, and
J.
Yang
, “
First-principles thermodynamics of graphene growth on Cu surfaces
,”
J. Phys. Chem. C
115
(
36
),
17782
17787
(
2011
).
22.
R. G.
Van Wesep
,
H.
Chen
,
W.
Zhu
, and
Z.
Zhang
, “
Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111)
,”
J. Chem. Phys.
134
(
17
),
171105
(
2011
).
23.
Q.
Yuan
,
J.
Gao
,
H.
Shu
,
J.
Zhao
,
X.
Chen
, and
F.
Ding
, “
Magic carbon clusters in the chemical vapor deposition growth of graphene
,”
J. Am. Chem. Soc.
134
(
6
),
2970
2975
(
2012
).
24.
H.
Kim
,
C.
Mattevi
,
M. R.
Calvo
,
J. C.
Oberg
,
L.
Artiglia
,
S.
Agnoli
,
C. F.
Hirjibehedin
,
M.
Chhowalla
, and
E.
Saiz
, “
Activation energy paths for graphene nucleation and growth on Cu
,”
ACS Nano
6
(
4
),
3614
3623
(
2012
).
25.
S.
Bhaviripudi
,
X.
Jia
,
M. S.
Dresselhaus
, and
J.
Kong
, “
Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst
,”
Nano Lett.
10
(
10
),
4128
4133
(
2010
).
26.
C.
Hu
,
H.
Li
,
S.
Zhang
, and
W.
Li
, “
A molecular-level analysis of gas-phase reactions in chemical vapor deposition of carbon from methane using a detailed kinetic model
,”
J. Mater. Sci.
51
(
8
),
3897
3906
(
2016
).
27.
Z.
Li
,
W.
Zhang
,
X.
Fan
,
P.
Wu
,
C.
Zeng
,
Z.
Li
,
X.
Zhai
,
J.
Yang
, and
J.
Hou
, “
Graphene thickness control via gas-phase dynamics in chemical vapor deposition
,”
J. Phys. Chem. C
116
(
19
),
10557
10562
(
2012
).
28.
A. M.
Lewis
,
B.
Derby
, and
I. A.
Kinloch
, “
Influence of gas phase equilibria on the chemical vapor deposition of graphene
,”
ACS Nano
7
(
4
),
3104
3117
(
2013
).
29.
L.
Sun
,
L.
Lin
,
J.
Zhang
,
H.
Wang
,
H.
Peng
, and
Z.
Liu
, “
Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source
,”
Nano Res.
10
(
2
),
355
363
(
2017
).
30.
J.
Zhang
,
L.
Sun
,
K.
Jia
,
X.
Liu
,
T.
Cheng
,
H.
Peng
,
L.
Lin
, and
Z.
Liu
, “
New growth frontier: Superclean graphene
,”
ACS Nano
14
(
9
),
10796
10803
(
2020
).
31.
L.
Lin
,
B.
Deng
,
J.
Sun
,
H.
Peng
, and
Z.
Liu
, “
Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene
,”
Chem. Rev.
118
(
18
),
9281
9343
(
2018
).
32.
L.
Lin
,
H.
Peng
, and
Z.
Liu
, “
Synthesis challenges for graphene industry
,”
Nat. Mater.
18
(
6
),
520
524
(
2019
).
33.
B.
Deng
,
Z.
Pang
,
S.
Chen
,
X.
Li
,
C.
Meng
,
J.
Li
,
M.
Liu
,
J.
Wu
,
Y.
Qi
,
W.
Dang
,
H.
Yang
,
Y.
Zhang
,
J.
Zhang
,
N.
Kang
,
H.
Xu
,
Q.
Fu
,
X.
Qiu
,
P.
Gao
,
Y.
Wei
,
Z.
Liu
, and
H.
Peng
, “
Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates
,”
ACS Nano
11
(
12
),
12337
12345
(
2017
).
34.
J. H.
Lee
,
E. K.
Lee
,
W. J.
Joo
,
Y.
Jang
,
B. S.
Kim
,
J. Y.
Lim
,
S. H.
Choi
,
S. J.
Ahn
,
J. R.
Ahn
,
M. H.
Park
,
C. W.
Yang
,
B. L.
Choi
,
S. W.
Hwang
, and
D.
Whang
, “
Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium
,”
Science
344
(
6181
),
286
289
(
2014
).
35.
L.
Brown
,
E. B.
Lochocki
,
J.
Avila
,
C. J.
Kim
,
Y.
Ogawa
,
R. W.
Havener
,
D. K.
Kim
,
E. J.
Monkman
,
D. E.
Shai
,
H. I.
Wei
,
M. P.
Levendorf
,
M.
Asensio
,
K. M.
Shen
, and
J.
Park
, “
Polycrystalline graphene with single crystalline electronic structure
,”
Nano Lett.
14
(
10
),
5706
5711
(
2014
).
36.
Y.
Hao
,
M. S.
Bharathi
,
L.
Wang
,
Y.
Liu
,
H.
Chen
,
S.
Nie
,
X.
Wang
,
H.
Chou
,
C.
Tan
,
B.
Fallahazad
,
H.
Ramanarayan
,
C. W.
Magnuson
,
E.
Tutuc
,
B. I.
Yakobson
,
K. F.
McCarty
,
Y.-W.
Zhang
,
P.
Kim
,
J.
Hone
,
L.
Colombo
, and
R. S.
Ruoff
, “
The role of surface oxygen in the growth of large single-crystal graphene on copper
,”
Science
342
(
6159
),
720
723
(
2013
).
37.
T.
Wu
,
X.
Zhang
,
Q.
Yuan
,
J.
Xue
,
G.
Lu
,
Z.
Liu
,
H.
Wang
,
H.
Wang
,
F.
Ding
,
Q.
Yu
,
X.
Xie
, and
M.
Jiang
, “
Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys
,”
Nat. Mater.
15
(
1
),
43
47
(
2016
).
38.
X.
Xu
,
Z.
Zhang
,
J.
Dong
,
D.
Yi
,
J.
Niu
,
M.
Wu
,
L.
Lin
,
R.
Yin
,
M.
Li
,
J.
Zhou
,
S.
Wang
,
J.
Sun
,
X.
Duan
,
P.
Gao
,
Y.
Jiang
,
X.
Wu
,
H.
Peng
,
R. S.
Ruoff
,
Z.
Liu
,
D.
Yu
,
E.
Wang
,
F.
Ding
, and
K.
Liu
, “
Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil
,”
Sci. Bull.
62
(
15
),
1074
1080
(
2017
).
39.
M.
Huang
,
P. V.
Bakharev
,
Z. J.
Wang
,
M.
Biswal
,
Z.
Yang
,
S.
Jin
,
B.
Wang
,
H. J.
Park
,
Y.
Li
,
D.
Qu
,
Y.
Kwon
,
X.
Chen
,
S. H.
Lee
,
M. G.
Willinger
,
W. J.
Yoo
,
Z.
Lee
, and
R. S.
Ruoff
, “
Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil
,”
Nat. Nanotechnol.
15
(
4
),
289
295
(
2020
).
40.
L.
Lin
,
J.
Zhang
,
H.
Su
,
J.
Li
,
L.
Sun
,
Z.
Wang
,
F.
Xu
,
C.
Liu
,
S.
Lopatin
,
Y.
Zhu
,
K.
Jia
,
S.
Chen
,
D.
Rui
,
J.
Sun
,
R.
Xue
,
P.
Gao
,
N.
Kang
,
Y.
Han
,
H. Q.
Xu
,
Y.
Cao
,
K. S.
Novoselov
,
Z.
Tian
,
B.
Ren
,
H.
Peng
, and
Z.
Liu
, “
Towards super-clean graphene
,”
Nat. Commun.
10
(
1
),
1912
(
2019
).
41.
C.
Liu
,
X.
Xu
,
L.
Qiu
,
M.
Wu
,
R.
Qiao
,
L.
Wang
,
J.
Wang
,
J.
Niu
,
J.
Liang
,
X.
Zhou
,
Z.
Zhang
,
M.
Peng
,
P.
Gao
,
W.
Wang
,
X.
Bai
,
D.
Ma
,
Y.
Jiang
,
X.
Wu
,
D.
Yu
,
E.
Wang
,
J.
Xiong
,
F.
Ding
, and
K.
Liu
, “
Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides
,”
Nat. Chem.
11
(
8
),
730
736
(
2019
).
42.
L.
Lin
,
J.
Li
,
Q.
Yuan
,
Q.
Li
,
J.
Zhang
,
L.
Sun
,
D.
Rui
,
Z.
Chen
,
K.
Jia
,
M.
Wang
,
Y.
Zhang
,
M. H.
Rummeli
,
N.
Kang
,
H. Q.
Xu
,
F.
Ding
,
H.
Peng
, and
Z.
Liu
, “
Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains
,”
Sci. Adv.
5
(
8
),
eaaw8337
(
2019
).
43.
V. L.
Nguyen
,
D. J.
Perello
,
S.
Lee
,
C. T.
Nai
,
B. G.
Shin
,
J. G.
Kim
,
H. Y.
Park
,
H. Y.
Jeong
,
J.
Zhao
,
Q. A.
Vu
,
S. H.
Lee
,
K. P.
Loh
,
S. Y.
Jeong
, and
Y. H.
Lee
, “
Wafer-scale single-crystalline AB-stacked bilayer graphene
,”
Adv. Mater.
28
(
37
),
8177
8183
(
2016
).
44.
X.
Zhang
,
T.
Wu
,
Q.
Jiang
,
H.
Wang
,
H.
Zhu
,
Z.
Chen
,
R.
Jiang
,
T.
Niu
,
Z.
Li
,
Y.
Zhang
,
Z.
Qiu
,
G.
Yu
,
A.
Li
,
S.
Qiao
,
H.
Wang
,
Q.
Yu
, and
X.
Xie
, “
Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition
,”
Small
15
(
22
),
1805395
(
2019
).
45.
G.
Yuan
,
D.
Lin
,
Y.
Wang
,
X.
Huang
,
W.
Chen
,
X.
Xie
,
J.
Zong
,
Q. Q.
Yuan
,
H.
Zheng
,
D.
Wang
,
J.
Xu
,
S. C.
Li
,
Y.
Zhang
,
J.
Sun
,
X.
Xi
, and
L.
Gao
, “
Proton-assisted growth of ultra-flat graphene films
,”
Nature
577
(
7789
),
204
208
(
2020
).
46.
V. L.
Nguyen
,
D. L.
Duong
,
S. H.
Lee
,
J.
Avila
,
G.
Han
,
Y.-M.
Kim
,
M. C.
Asensio
,
S.-Y.
Jeong
, and
Y. H.
Lee
, “
Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation
,”
Nat. Nanotechnol.
15
(
10
),
861
867
(
2020
).
47.
P. Y.
Huang
,
C. S.
Ruiz-Vargas
,
A. M.
van der Zande
,
W. S.
Whitney
,
M. P.
Levendorf
,
J. W.
Kevek
,
S.
Garg
,
J. S.
Alden
,
C. J.
Hustedt
,
Y.
Zhu
,
J.
Park
,
P. L.
McEuen
, and
D. A.
Muller
, “
Grains and grain boundaries in single-layer graphene atomic patchwork quilts
,”
Nature
469
(
7330
),
389
392
(
2011
).
48.
Q.
Yu
,
L. A.
Jauregui
,
W.
Wu
,
R.
Colby
,
J.
Tian
,
Z.
Su
,
H.
Cao
,
Z.
Liu
,
D.
Pandey
,
D.
Wei
,
T. F.
Chung
,
P.
Peng
,
N. P.
Guisinger
,
E. A.
Stach
,
J.
Bao
,
S. S.
Pei
, and
Y. P.
Chen
, “
Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition
,”
Nat. Mater.
10
(
6
),
443
449
(
2011
).
49.
H. I.
Rasool
,
C.
Ophus
,
W. S.
Klug
,
A.
Zettl
, and
J. K.
Gimzewski
, “
Measurement of the intrinsic strength of crystalline and polycrystalline graphene
,”
Nat. Commun.
4
,
2811
(
2013
).
50.
T.
Ma
,
Z.
Liu
,
J.
Wen
,
Y.
Gao
,
X.
Ren
,
H.
Chen
,
C.
Jin
,
X. L.
Ma
,
N.
Xu
,
H. M.
Cheng
, and
W.
Ren
, “
Tailoring the thermal and electrical transport properties of graphene films by grain size engineering
,”
Nat. Commun.
8
,
14486
(
2017
).
51.
D. L.
Duong
,
G. H.
Han
,
S. M.
Lee
,
F.
Gunes
,
E. S.
Kim
,
S. T.
Kim
,
H.
Kim
,
Q. H.
Ta
,
K. P.
So
,
S. J.
Yoon
,
S. J.
Chae
,
Y. W.
Jo
,
M. H.
Park
,
S. H.
Chae
,
S. C.
Lim
,
J. Y.
Choi
, and
Y. H.
Lee
, “
Probing graphene grain boundaries with optical microscopy
,”
Nature
490
(
7419
),
235
239
(
2012
).
52.
H.
Zhou
,
W. J.
Yu
,
L.
Liu
,
R.
Cheng
,
Y.
Chen
,
X.
Huang
,
Y.
Liu
,
Y.
Wang
,
Y.
Huang
, and
X.
Duan
, “ ”
Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene
,”
Nat. Commun.
4
,
2096
(
2013
).
53.
Z.
Yan
,
J.
Lin
,
Z.
Peng
,
Z.
Sun
,
Y.
Zhu
,
L.
Li
,
C.
Xiang
,
E. L.
Samuel
,
C.
Kittrell
, and
J. M.
Tour
, “
Toward the synthesis of wafer-scale single-crystal graphene on copper foils
,”
ACS Nano
6
(
10
),
9110
9117
(
2012
).
54.
I. V.
Vlassiouk
,
Y.
Stehle
,
P. R.
Pudasaini
,
R. R.
Unocic
,
P. D.
Rack
,
A. P.
Baddorf
,
I. N.
Ivanov
,
N. V.
Lavrik
,
F.
List
,
N.
Gupta
,
K. V.
Bets
,
B. I.
Yakobson
, and
S. N.
Smirnov
, “
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
,”
Nat. Mater.
17
,
318
322
(
2018
).
55.
V. L.
Nguyen
,
B. G.
Shin
,
D. L.
Duong
,
S. T.
Kim
,
D.
Perello
,
Y. J.
Lim
,
Q. H.
Yuan
,
F.
Ding
,
H. Y.
Jeong
,
H. S.
Shin
,
S. M.
Lee
,
S. H.
Chae
,
Q. A.
Vu
,
S. H.
Lee
, and
Y. H.
Lee
, “
Seamless stitching of graphene domains on polished copper (111) foil
,”
Adv. Mater.
27
(
8
),
1376
1382
(
2015
).
56.
S.
Jin
,
M.
Huang
,
Y.
Kwon
,
L.
Zhang
,
B. W.
Li
,
S.
Oh
,
J.
Dong
,
D.
Luo
,
M.
Biswal
,
B. V.
Cunning
,
P. V.
Bakharev
,
I.
Moon
,
W. J.
Yoo
,
D. C.
Camacho-Mojica
,
Y. J.
Kim
,
S. H.
Lee
,
B.
Wang
,
W. K.
Seong
,
M.
Saxena
,
F.
Ding
,
H. J.
Shin
, and
R. S.
Ruoff
, “
Colossal grain growth yields single-crystal metal foils by contact-free annealing
,”
Science
362
(
6418
),
1021
1025
(
2018
).
57.
J.
Zhang
,
K.
Jia
,
L.
Lin
,
W.
Zhao
,
T. Q. A.
Huy
,
L.
Sun
,
T.
Li
,
Z.
Li
,
X.
Liu
,
L.
Zheng
,
R.
Xue
,
J.
Gao
,
Z.
Luo
,
M. H.
Rummeli
,
Q.
Yuan
,
H.
Peng
, and
Z.
Liu
, “
Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide
,”
Angew. Chem. Int. Edit.
58
(
41
),
14446
14451
(
2019
).
58.
K.
Jia
,
J.
Zhang
,
L.
Lin
,
Z.
Li
,
J.
Gao
,
L.
Sun
,
R.
Xue
,
J.
Li
,
N.
Kang
,
Z.
Luo
,
M. H.
Rummeli
,
H.
Peng
, and
Z.
Liu
, “
Copper-containing carbon feedstock for growing superclean graphene
,”
J. Am. Chem. Soc.
141
(
19
),
7670
7674
(
2019
).
59.
L.
Sun
,
L.
Lin
,
Z.
Wang
,
D.
Rui
,
Z.
Yu
,
J.
Zhang
,
Y.
Li
,
X.
Liu
,
K.
Jia
,
K.
Wang
,
L.
Zheng
,
B.
Deng
,
T.
Ma
,
N.
Kang
,
H.
Xu
,
K. S.
Novoselov
,
H.
Peng
, and
Z.
Liu
, “
A force-engineered lint roller for superclean graphene
,”
Adv. Mater.
31
(
43
),
1902978
(
2019
).
60.
W.
Zhu
,
T.
Low
,
V.
Perebeinos
,
A. A.
Bol
,
Y.
Zhu
,
H.
Yan
,
J.
Tersoff
, and
P.
Avouris
, “
Structure and electronic transport in graphene wrinkles
,”
Nano Lett.
12
(
7
),
3431
3436
(
2012
).
61.
M. S.
Bronsgeest
,
N.
Bendiab
,
S.
Mathur
,
A.
Kimouche
,
H. T.
Johnson
,
J.
Coraus
, and
P.
Pochet
, “
Strain relaxation in CVD graphene: Wrinkling with shear lag
,”
Nano Lett.
15
(
8
),
5098
5104
(
2015
).
62.
B. W.
Li
,
D.
Luo
,
L.
Zhu
,
X.
Zhang
,
S.
Jin
,
M.
Huang
,
F.
Ding
, and
R. S.
Ruoff
, “
Orientation-dependent strain relaxation and chemical functionalization of graphene on a Cu(111) foil
,”
Adv. Mater.
30
(
10
),
1706504
(
2018
).
63.
B.
Deng
,
Z.
Liu
, and
H.
Peng
, “
Toward mass production of CVD graphene films
,”
Adv. Mater.
31
(
9
),
1800996
(
2019
).
64.
Y.-P.
Hsieh
,
C.-H.
Shih
,
Y.-J.
Chiu
, and
M.
Hofmann
, “
High-throughput graphene synthesis in gapless stacks
,”
Chem. Mater.
28
(
1
),
40
43
(
2016
).
65.
J.
Xu
,
J.
Hu
,
Q.
Li
,
R.
Wang
,
W.
Li
,
Y.
Guo
,
Y.
Zhu
,
F.
Liu
,
Z.
Ullah
,
G.
Dong
,
Z.
Zeng
, and
L.
Liu
, “
Fast batch production of high-quality graphene films in a sealed thermal molecular movement system
,”
Small
13
(
27
),
1700651
(
2017
).
66.
Y.
Li
,
L.
Sun
,
Z.
Chang
,
H.
Liu
,
Y.
Wang
,
Y.
Liang
,
B.
Chen
,
Q.
Ding
,
Z.
Zhao
,
R.
Wang
,
Y.
Wei
,
H.
Peng
,
L.
Lin
, and
Z.
Liu
, “
Large single-crystal Cu foils with high-index facets by strain-engineered anomalous grain growth
,”
Adv. Mater.
32
(
29
),
2002034
(
2020
).
67.
X.
Xu
,
Z.
Zhang
,
L.
Qiu
,
J.
Zhuang
,
L.
Zhang
,
H.
Wang
,
C.
Liao
,
H.
Song
,
R.
Qiao
,
P.
Gao
,
Z.
Hu
,
L.
Liao
,
D.
Yu
,
E.
Wang
,
F.
Ding
,
H.
Peng
, and
K.
Liu
, “
Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply
,”
Nat. Nanotechnol.
11
(
11
),
930
935
(
2016
).
68.
Y.
Zhang
,
D.
Huang
,
Y.
Duan
,
H.
Chen
,
L.
Tang
,
M.
Shi
,
Z.
Li
, and
H.
Shi
, “
Batch production of uniform graphene films via controlling gas-phase dynamics in confined space
,”
Nanotechnology
32
(
10
),
105603
(
2021
).
69.
H.
Wang
,
X.
Xu
,
J.
Li
,
L.
Lin
,
L.
Sun
,
X.
Sun
,
S.
Zhao
,
C.
Tan
,
C.
Chen
,
W.
Dang
,
H.
Ren
,
J.
Zhang
,
B.
Deng
,
A. L.
Koh
,
L.
Liao
,
N.
Kang
,
Y.
Chen
,
H.
Xu
,
F.
Ding
,
K.
Liu
,
H.
Peng
, and
Z.
Liu
, “
Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow
,”
Adv. Mater.
28
(
40
),
8968
8974
(
2016
).
70.
Y.
Wang
,
F.
Qing
,
Y.
Jia
,
Y.
Duan
,
C.
Shen
,
Y.
Hou
,
Y.
Niu
,
H.
Shi
, and
X.
Li
, “
Synthesis of large-area graphene films on rolled-up Cu foils by a ‘breathing’ method
,”
Chem. Eng. J.
405
,
127014
(
2021
).
71.
B.
Deng
,
P.-C.
Hsu
,
G.
Chen
,
B. N.
Chandrashekar
,
L.
Liao
,
Z.
Ayitimuda
,
J.
Wu
,
Y.
Guo
,
L.
Lin
,
Y.
Zhou
,
M.
Aisijiang
,
Q.
Xie
,
Y.
Cui
,
Z.
Liu
, and
H.
Peng
, “
Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes
,”
Nano Lett.
15
(
6
),
4206
4213
(
2015
).
72.
E. S.
Polsen
,
D. Q.
McNerny
,
B.
Viswanath
,
S. W.
Pattinson
, and
A. J.
Hart
, “
High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor
,”
Sci. Rep.
5
,
10257
(
2015
).
73.
I.
Jo
,
S.
Park
,
D.
Kim
,
J. S.
Moon
,
W. B.
Park
,
T. H.
Kim
,
J. H.
Kang
,
W.
Lee
,
Y.
Kim
,
D. N.
Lee
,
S.-P.
Cho
,
H.
Choi
,
I.
Kang
,
J. H.
Park
,
J. S.
Lee
, and
B. H.
Hong
, “
Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films
,”
2D Mater.
5
(
2
),
024002
(
2018
).
74.
D. J.
Kim
,
C.-W.
Lee
,
Y.
Suh
,
H.
Jeong
,
I.
Jo
,
J.
Moon
,
M.
Park
,
Y. S.
Woo
, and
B. H.
Hong
, “
Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis
,”
2D Mater.
7
(
4
),
045014
(
2020
).
75.
T.
Kobayashi
,
M.
Bando
,
N.
Kimura
,
K.
Shimizu
,
K.
Kadono
,
N.
Umezu
,
K.
Miyahara
,
S.
Hayazaki
,
S.
Nagai
,
Y.
Mizuguchi
,
Y.
Murakami
, and
D.
Hobara
, “
Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process
,”
Appl. Phys. Lett.
102
(
2
),
023112
(
2013
).
76.
B. N.
Chandrashekar
,
B.
Deng
,
A. S.
Smitha
,
Y.
Chen
,
C.
Tan
,
H.
Zhang
,
H.
Peng
, and
Z.
Liu
, “
Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator
,”
Adv. Mater.
27
(
35
),
5210
5216
(
2015
).
77.
M. M.
Tavakoli
,
G.
Azzellino
,
M.
Hempel
,
A. Y.
Lu
,
F. J.
Martin‐Martinez
,
J.
Zhao
,
J.
Yeo
,
T.
Palacios
,
M. J.
Buehler
, and
J.
Kong
, “
Synergistic roll
to
roll transfer and doping of CVD‐graphene using parylene for ambient‐stable and ultra‐lightweight photovoltaics
,”
Adv. Funct. Mater.
30
(
31
),
2001924
(
2020
).
78.
X.
Sun
,
L.
Lin
,
L.
Sun
,
J.
Zhang
,
D.
Rui
,
J.
Li
,
M.
Wang
,
C.
Tan
,
N.
Kang
,
D.
Wei
,
H. Q.
Xu
,
H.
Peng
, and
Z.
Liu
, “
Low-temperature and rapid growth of large single-crystalline graphene with ethane
,”
Small
14
(
3
),
1702916
(
2018
).
79.
S.-M.
Kim
,
J.-H.
Kim
,
K.-S.
Kim
,
Y.
Hwangbo
,
J.-H.
Yoon
,
E.-K.
Lee
,
J.
Ryu
,
H.-J.
Lee
,
S.
Cho
, and
S.-M.
Lee
, “
Synthesis of CVD-graphene on rapidly heated copper foils
,”
Nanoscale
6
(
9
),
4728
4734
(
2014
).
80.
T. H.
Bointon
,
M. D.
Barnes
,
S.
Russo
, and
M. F.
Craciun
, “
High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition
,”
Adv. Mater.
27
(
28
),
4200
4206
(
2015
).
81.
H.
Arjmandi-Tash
,
N.
Lebedev
,
P. M. G. v
Deursen
, and
J.
Arts
, “
Hybrid cold and hot-wall reaction chamber for the rapid synthesis of uniform graphene
,”
Carbon
118
,
438
442
(
2017
).
82.
J.
Ryu
,
Y.
Kim
,
D.
Won
,
N.
Kim
,
J. S.
Park
,
E.-K.
Lee
,
D.
Cho
,
S.-P.
Cho
,
S. J.
Kim
,
G. H.
Ryu
,
H.-A. S.
Shin
,
Z.
Lee
,
B. H.
Hong
, and
S.
Cho
, “
Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition
,”
ACS Nano
8
(
1
),
950
956
(
2014
).
83.
R.
Piner
,
H.
Li
,
X.
Kong
,
L.
Tao
,
IrN.
Kholmanov
,
H.
Ji
,
W. H.
Lee
,
J. W.
Suk
,
J.
Ye
,
Y.
Hao
,
S.
Chen
,
C. W.
Magnuson
,
A. F.
Ismach
,
D.
Akinwande
, and
R. S.
Ruoff
, “
Graphene synthesis via magnetic inductive heating of copper substrates
,”
ACS Nano
7
(
9
),
7495
7499
(
2013
).
84.
K.
Jia
,
H.
Ci
,
J.
Zhang
,
Z.
Sun
,
Z.
Ma
,
Y.
Zhu
,
S.
Liu
,
J.
Liu
,
L.
Sun
,
X.
Liu
,
J.
Sun
,
W.
Yin
,
H.
Peng
,
L.
Lin
, and
Z.
Liu
, “
Superclean growth of graphene using a cold-wall chemical vapor deposition approach
,”
Angew. Chem., Int. Ed.
59
(
39
),
17214
17218
(
2020
).
85.
L.
Tao
,
J.
Lee
,
H.
Chou
,
M.
Holt
,
R. S.
Ruoff
, and
D.
Akinwande
, “
Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films
,”
ACS Nano
6
(
3
),
2319
2325
(
2012
).
86.
V.
Miseikis
,
D.
Convertino
,
N.
Mishra
,
M.
Gemmi
,
T.
Mashoff
,
S.
Heun
,
N.
Haghighian
,
F.
Bisio
,
M.
Canepa
, and
V.
Piazza
, “
Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor
,”
2D Mater.
2
(
1
),
014006
(
2015
).
87.
O. J.
Burton
,
F. C.
Massabuau
,
V. P.
Veigang-Radulescu
,
B.
Brennan
,
A. J.
Pollard
, and
S.
Hofmann
, “
Integrated wafer scale growth of single crystal metal films and high quality graphene
,”
ACS Nano
14
(
10
),
13593
13601
(
2020
).
88.
N.
Mishra
,
S.
Forti
,
F.
Fabbri
,
L.
Martini
,
C.
McAleese
,
B. R.
Conran
,
P. R.
Whelan
,
A.
Shivayogimath
,
B. S.
Jessen
,
L.
Buß
,
J.
Falta
,
I.
Aliaj
,
S.
Roddaro
,
J. I.
Flege
,
P.
Bøggild
,
K. B. K.
Teo
, and
C.
Coletti
, “
Wafer‐scale synthesis of graphene on sapphire: Toward fab‐compatible graphene
,”
Small
15
,
1904906
(
2019
).
89.
M.
Li
,
D.
Liu
,
D.
Wei
,
X.
Song
,
D.
Wei
, and
A. T. S.
Wee
, “
Controllable synthesis of graphene by plasma-enhanced chemical vapor deposition and its related applications
,”
Adv. Sci.
3
(
11
),
1600003
(
2016
).
90.
T.
Terasawa
and
K.
Saiki
, “
Growth of graphene on Cu by plasma enhanced chemical vapor deposition
,”
Carbon
50
(
3
),
869
874
(
2012
).
91.
L.
Guo
,
Z.
Zhang
,
H.
Sun
,
D.
Dai
,
J.
Cui
,
M.
Li
,
Y.
Xu
,
M.
Xu
,
Y.
Du
,
N.
Jiang
,
F.
Huang
, and
C.-T.
Lin
, “
Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD
,”
Carbon
129
,
456
461
(
2018
).
92.
M.
Wang
,
M.
Tang
,
S.
Chen
,
H.
Ci
,
K.
Wang
,
L.
Shi
,
L.
Lin
,
H.
Ren
,
J.
Shan
,
P.
Gao
,
Z.
Liu
, and
H.
Peng
, “
Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery
,”
Adv. Mater.
29
(
47
),
1703882
(
2017
).
93.
D.
Wei
,
L.
Peng
,
M.
Li
,
H.
Mao
,
T.
Niu
,
C.
Han
,
W.
Chen
, and
A. T. S.
Wee
, “
Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition
,”
ACS Nano
9
(
1
),
164
171
(
2015
).
94.
J.
Sun
,
Y.
Chen
,
X.
Cai
,
B.
Ma
,
Z.
Chen
,
M. K.
Priydarshi
,
K.
Chen
,
T.
Gao
,
X.
Song
,
Q.
Ji
,
X.
Guo
,
D.
Zou
,
Y.
Zhang
, and
Z.
Liu
, “
Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes
,”
Nano Res.
8
(
11
),
3496
3504
(
2015
).
95.
H.
Ci
,
H.
Chang
,
R.
Wang
,
T.
Wei
,
Y.
Wang
,
Z.
Chen
,
Y.
Sun
,
Z.
Dou
,
Z.
Liu
,
J.
Li
,
P.
Gao
, and
Z.
Liu
, “
Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer
,”
Adv. Mater.
31
(
29
),
1901624
(
2019
).
96.
L.
Jiang
,
T.
Yang
,
F.
Liu
,
J.
Dong
,
Z.
Yao
,
C.
Shen
,
S.
Deng
,
N.
Xu
,
Y.
Liu
, and
H.-J.
Gao
, “
Vertically standing graphene for high-performance field emitters
,”
Adv. Mater.
25
(
2
),
250
255
(
2013
).
97.
D.
Herrebout
,
A.
Bogaerts
,
M.
Yan
,
R.
Gijbels
,
W.
Goedheer
, and
E.
Dekempeneer
, “
One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers
,”
J. Appl. Phys.
90
(
2
),
570
579
(
2001
).
98.
Y.
Sun
,
L.
Yang
,
K.
Xia
,
H.
Liu
,
D.
Han
,
Y.
Zhang
, and
J.
Zhang
, “
Snowing' graphene using microwave ovens
,”
Adv. Mater.
30
,
1803189
(
2018
).
99.
J.
Zhao
,
M.
Shaygan
,
J.
Eckert
,
M.
Meyyappan
, and
M. H.
Rummeli
, “
A growth mechanism for free-standing vertical graphene
,”
Nano Lett.
14
(
6
),
3064
3071
(
2014
).
100.
M.
Zhu
,
J.
Wang
,
B. C.
Holloway
,
R. A.
Outlaw
,
X.
Zhao
,
K.
Hou
,
V.
Shutthanandan
, and
D. M.
Manos
, “
A mechanism for carbon nanosheet formation
,”
Carbon
45
(
11
),
2229
2234
(
2007
).
101.
T.
Yamada
,
M.
Ishihara
,
J.
Kim
,
M.
Hasegawa
, and
S.
Iijima
, “
A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature
,”
Carbon
50
(
7
),
2615
2619
(
2012
).
102.
Y. S.
Kim
,
J. H.
Lee
,
Y. D.
Kim
,
S. K.
Jerng
,
K.
Joo
,
E.
Kim
,
J.
Jung
,
E.
Yoon
,
Y. D.
Park
,
S.
Seo
, and
S. H.
Chun
, “
Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition
,”
Nanoscale
5
(
3
),
1221
1226
(
2013
).
103.
D. A.
Boyd
,
W. H.
Lin
,
C. C.
Hsu
,
M. L.
Teague
,
C. C.
Chen
,
Y. Y.
Lo
,
W. Y.
Chan
,
W. B.
Su
,
T. C.
Cheng
,
C. S.
Chang
,
C. I.
Wu
, and
N. C.
Yeh
, “
Single-step deposition of high-mobility graphene at reduced temperatures
,”
Nat. Commun.
6
,
6620
(
2015
).
104.
L.
Cui
,
Y.
Huan
,
J.
Shan
,
B.
Liu
,
J.
Liu
,
H.
Xie
,
F.
Zhou
,
P.
Gao
,
Y.
Zhang
, and
Z.
Liu
, “
Highly conductive nitrogen-doped vertically oriented graphene toward versatile electrode-related applications
,”
ACS Nano
14
(
11
),
15327
15335
(
2020
).
105.
S.
Xu
,
S.
Wang
,
Z.
Chen
,
Y.
Sun
,
Z.
Gao
,
H.
Zhang
, and
J.
Zhang
, “
Electric‐field‐assisted growth of vertical graphene arrays and the application in thermal interface materials
,”
Adv. Funct. Mater.
30
(
34
),
2003302
(
2020
).
106.
M.
Wang
,
H.
Yang
,
K.
Wang
,
S.
Chen
,
H.
Ci
,
L.
Shi
,
J.
Shan
,
S.
Xu
,
Q.
Wu
,
C.
Wang
,
M.
Tang
,
P.
Gao
,
Z.
Liu
, and
H.
Peng
, “
Quantitative analyses of the interfacial properties of current collectors at the mesoscopic level in lithium ion batteries by using hierarchical graphene
,”
Nano Lett.
20
(
3
),
2175
2182
(
2020
).
107.
F.
Qing
,
Y.
Zhang
,
Y.
Niu
,
R.
Stehle
,
Y.
Chen
, and
X.
Li
, “
Towards large-scale graphene transfer
,”
Nanoscale
12
(
20
),
10890
10911
(
2020
).
108.
J. D.
Wood
,
G. P.
Doidge
,
E. A.
Carrion
,
J. C.
Koepke
,
J. A.
Kaitz
,
I.
Datye
,
A.
Behnam
,
J.
Hewaparakrama
,
B.
Aruin
,
Y.
Chen
,
H.
Dong
,
R. T.
Haasch
,
J. W.
Lyding
, and
E.
Pop
, “
Annealing free, clean graphene transfer using alternative polymer scaffolds
,”
Nanotechnology
26
(
5
),
055302
(
2015
).
109.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J.-H.
Ahn
,
P.
Kim
,
J.-Y.
Choi
, and
B. H.
Hong
, “
Large-scale pattern growth of graphene films for stretchable transparent electrodes
,”
Nature
457
(
7230
),
706
710
(
2009
).
110.
S. J.
Kim
,
T.
Choi
,
B.
Lee
,
S.
Lee
,
K.
Choi
,
J. B.
Park
,
J. M.
Yoo
,
Y. S.
Choi
,
J.
Ryu
,
P.
Kim
,
J.
Hone
, and
B. H.
Hong
, “
Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films
,”
Nano Lett.
15
(
5
),
3236
3240
(
2015
).
111.
T.-A.
Chen
,
C.-P.
Chuu
,
C.-C.
Tseng
,
C.-K.
Wen
,
H.-S. P.
Wong
,
S.
Pan
,
R.
Li
,
T.-A.
Chao
,
W.-C.
Chueh
,
Y.
Zhang
,
Q.
Fu
,
B. I.
Yakobson
,
W.-H.
Chang
, and
L.-J.
Li
, “
Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)
,”
Nature
579
(
7798
),
219
223
(
2020
).
112.
L.
Gao
,
W.
Ren
,
H.
Xu
,
L.
Jin
,
Z.
Wang
,
T.
Ma
,
L.-P.
Ma
,
Z.
Zhang
,
Q.
Fu
,
L.-M.
Peng
,
X.
Bao
, and
H.-M.
Chen
, “
Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum
,”
Nat. Commun.
3
(
1
),
699
(
2012
).
113.
S.
Gorantla
,
A.
Bachmatiuk
,
J.
Hwang
,
H. A.
Alsalman
,
J. Y.
Kwak
,
T.
Seyller
,
J.
Eckert
,
M. G.
Spencer
, and
M. H.
Rümmeli
, “
A universal transfer route for graphene
,”
Nanoscale
6
(
2
),
889
896
(
2014
).
114.
Z.
Zhang
,
J.
Du
,
D.
Zhang
,
H.
Sun
,
L.
Yin
,
L.
Ma
,
J.
Chen
,
D.
Ma
,
H.-M.
Chen
, and
W.
Ren
, “
Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes
,”
Nat. Commun.
8
(
1
),
14560
(
2017
).
115.
W. S.
Leong
,
H.
Wang
,
J.
Yeo
,
F. J.
Martin-Martinez
,
A.
Zubair
,
P.-C.
Shen
,
Y.
Mao
,
T.
Palacios
,
M. J.
Buehler
,
J.-Y.
Hong
, and
J.
Kong
, “
Paraffin-enabled graphene transfer
,”
Nat. Commun.
10
(
1
),
867
(
2019
).
116.
J.
Zhang
,
L.
Lin
,
L.
Sun
,
Y.
Huang
,
A. L.
Koh
,
W.
Dang
,
J.
Yin
,
M.
Wang
,
C.
Tan
,
T.
Li
,
Z.
Tan
,
Z.
Liu
, and
H.
Peng
, “
Clean transfer of large graphene single crystals for high‐intactness suspended membranes and liquid cells
,”
Adv. Mater.
29
(
26
),
1700639
(
2017
).
117.
L.
Gao
,
G.-X.
Ni
,
Y.
Liu
,
B.
Liu
,
A. H. C.
Neto
, and
K. P.
Loh
, “
Face-to-face transfer of wafer-scale graphene films
,”
Nature
505
(
7482
),
190
194
(
2014
).
118.
J.
Kim
,
H.
Park
,
J. B.
Hannon
,
S. W.
Bedell
,
K.
Fogel
,
D. K.
Sadana
, and
C.
Dimitrakopoulos
, “
Layer-resolved graphene transfer via engineered strain layers
,”
Science
342
(
6160
),
833
836
(
2013
).
119.
M.
Chhowalla
,
D.
Jena
, and
H.
Zhang
, “
Two-dimensional semiconductors for transistors
,”
Nat. Rev. Mater.
1
(
11
),
16052
(
2016
).
120.
G.
Fiori
,
F.
Bonaccorso
,
G.
Iannaccone
,
T.
Palacios
,
D.
Neumaier
,
A.
Seabaugh
,
S. K.
Banerjee
, and
L.
Colombo
, “
Electronics based on two-dimensional materials
,”
Nat. Nanotechnol.
9
(
10
),
768
779
(
2014
).
121.
I.
Ferain
,
C. A.
Colinge
, and
J.-P.
Colinge
, “
Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors
,”
Nature
479
(
7373
),
310
315
(
2011
).
122.
D.
Akinwande
,
C.
Huyghebaert
,
C. H.
Wang
,
M. I.
Serna
,
S.
Goossens
,
L. J.
Li
,
H. P.
Wong
, and
F. H. L.
Koppens
, “
Graphene and two-dimensional materials for silicon technology
,”
Nature
573
(
7775
),
507
518
(
2019
).
123.
C. D.
English
,
G.
Shine
,
V. E.
Dorgan
,
K. C.
Saraswat
, and
E.
Pop
, “
Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition
,”
Nano Lett.
16
(
6
),
3824
3830
(
2016
).
124.
T.
George
,
M. S.
Islam
,
A. K.
Dutta
,
J.
Kang
,
W.
Cao
,
X.
Xie
,
D.
Sarkar
,
W.
Liu
, and
K.
Banerjee
, “
Graphene and beyond-graphene 2D crystals for next-generation green electronics
,” in
Micro- and Nanotechnology Sensors, Systems, and Applications VI
(
J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, and K. Banerjee
,
2014
).
125.
S.
Dang
,
O.
Amin
,
B.
Shihada
, and
M.-S.
Alouini
, “
What should 6G be
,”
Nat. Electron.
3
(
1
),
20
29
(
2020
).
126.
Y.
Wu
,
Y. M.
Lin
,
A. A.
Bol
,
K. A.
Jenkins
,
F.
Xia
,
D. B.
Farmer
,
Y.
Zhu
, and
P.
Avouris
, “
High-frequency, scaled graphene transistors on diamond-like carbon
,”
Nature
472
(
7341
),
74
78
(
2011
).
127.
K.
Kim
,
J. Y.
Choi
,
T.
Kim
,
S. H.
Cho
, and
H. J.
Chung
, “
A role for graphene in silicon-based semiconductor devices
,”
Nature
479
(
7373
),
338
344
(
2011
).
128.
R.
Cheng
,
J.
Bai
,
L.
Liao
,
H.
Zhou
,
Y.
Chen
,
L.
Liu
,
Y. C.
Lin
,
S.
Jiang
,
Y.
Huang
, and
X.
Duan
, “
High-frequency self-aligned graphene transistors with transferred gate stacks
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
29
),
11588
11592
(
2012
).
129.
L.
Liao
,
J.
Bai
,
R.
Cheng
,
Y. C.
Lin
,
S.
Jiang
,
Y.
Qu
,
Y.
Huang
, and
X.
Duan
, “
Sub-100 nm channel length graphene transistors
,”
Nano Lett.
10
(
10
),
3952
3956
(
2010
).
130.
Y.
Wu
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
D. B.
Farmer
,
Y.
Zhu
,
A. A.
Bol
,
C.
Dimitrakopoulos
,
W.
Zhu
,
F.
Xia
,
P.
Avouris
, and
Y. M.
Lin
, “
State-of-the-art graphene high-frequency electronics
,”
Nano Lett.
12
(
6
),
3062
3067
(
2012
).
131.
M.
Tian
,
B.
Hu
,
H.
Yang
,
C.
Tang
,
M.
Wang
,
Q.
Gao
,
X.
Xiong
,
Z.
Zhang
,
T.
Li
,
X.
Li
,
C.
Gu
, and
Y.
Wu
, “
Wafer scale mapping and statistical analysis of radio frequency characteristics in highly uniform CVD graphene transistors
,”
Adv. Electron. Mater.
5
(
4
),
1800711
(
2019
).
132.
Y.
Wu
,
X.
Zou
,
M.
Sun
,
Z.
Cao
,
X.
Wang
,
S.
Huo
,
J.
Zhou
,
Y.
Yang
,
X.
Yu
,
Y.
Kong
,
G.
Yu
,
L.
Liao
, and
T.
Chen
, “
200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors
,”
ACS Appl. Mater. Interfaces
8
(
39
),
25645
25649
(
2016
).
133.
D.
Jariwala
,
T. J.
Marks
, and
M. C.
Hersam
, “
Mixed-dimensional van der Waals heterostructures
,”
Nat. Mater.
16
(
2
),
170
181
(
2017
).
134.
G.
Iannaccone
,
F.
Bonaccorso
,
L.
Colombo
, and
G.
Fiori
, “
Quantum engineering of transistors based on 2D materials heterostructures
,”
Nat. Nanotechnol.
13
(
3
),
183
191
(
2018
).
135.
H.
Yang
,
J.
Heo
,
S.
Park
,
H. J.
Song
,
D. H.
Seo
,
K. E.
Byun
,
P.
Kim
,
I.
Yoo
,
H. J.
Chung
, and
K.
Kim
, “
Graphene barristor, a triode device with a gate-controlled Schottky barrier
,”
Science
336
(
6085
),
1140
1143
(
2012
).
136.
W.
Mehr
,
J.
Dabrowski
,
J. C.
Scheytt
,
G.
Lippert
,
Y.-H.
Xie
,
M. C.
Lemme
,
M.
Ostling
, and
G.
Lupina
, “
Vertical graphene base transistor
,”
IEEE Electron Device Lett.
33
(
5
),
691
693
(
2012
).
137.
S.
Vaziri
,
A. D.
Smith
,
M.
Östling
,
G.
Lupina
,
J.
Dabrowski
,
G.
Lippert
,
W.
Mehr
,
F.
Driussi
,
S.
Venica
,
V.
Di Lecce
,
A.
Gnudi
,
M.
König
,
G.
Ruhl
,
M.
Belete
, and
M. C.
Lemme
, “
Going ballistic: Graphene hot electron transistors
,”
Solid State Commun.
224
,
64
75
(
2015
).
138.
S.
Vaziri
,
G.
Lupina
,
C.
Henkel
,
A. D.
Smith
,
M.
Ostling
,
J.
Dabrowski
,
G.
Lippert
,
W.
Mehr
, and
M. C.
Lemme
, “
A graphene-based hot electron transistor
,”
Nano Lett.
13
(
4
),
1435
1439
(
2013
).
139.
C.
Qiu
,
Z.
Zhang
,
M.
Xiao
,
Y.
Yang
,
D.
Zhong
, and
L. M.
Peng
, “
Scaling carbon nanotube complementary transistors to 5-nm gate lengths
,”
Science
355
(
6322
),
271
276
(
2017
).
140.
D.
He
,
Y.
Zhang
,
Q.
Wu
,
R.
Xu
,
H.
Nan
,
J.
Liu
,
J.
Yao
,
Z.
Wang
,
S.
Yuan
,
Y.
Li
,
Y.
Shi
,
J.
Wang
,
Z.
Ni
,
L.
He
,
F.
Miao
,
F.
Song
,
H.
Xu
,
K.
Watanabe
,
T.
Taniguchi
,
J. B.
Xu
, and
X.
Wang
, “
Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors
,”
Nat. Commun.
5
,
5162
(
2014
).
141.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M.
Peres
, and
A. K.
Geim
, “
Fine structure constant defines visual transparency of graphene
,”
Science
320
(
5881
),
1308
1308
(
2008
).
142.
M.
Liu
,
X.
Yin
,
E.
Ulinavila
,
B.
Geng
,
T.
Zentgraf
,
L.
Ju
,
F.
Wang
, and
X.
Zhang
, “
A graphene-based broadband optical modulator
,”
Nature
474
(
7349
),
64
67
(
2011
).
143.
F.
Wang
,
Y.
Zhang
,
C.
Tian
,
C.
Girit
,
A.
Zettl
,
M.
Crommie
, and
Y. R.
Shen
, “
Gate-variable optical transitions in graphene
,”
Science
320
(
5873
),
206
209
(
2008
).
144.
A.
Pospischil
,
M.
Humer
,
M. M.
Furchi
,
D.
Bachmann
,
R.
Guider
,
T.
Fromherz
, and
T.
Mueller
, “
CMOS-compatible graphene photodetector covering all optical communication bands
,”
Nat. Photonics
7
(
11
),
892
896
(
2013
).
145.
F.
Bonaccorso
,
Z.
Sun
,
T.
Hasan
, and
A. C.
Ferrari
, “
Graphene photonics and optoelectronics
,”
Nat. Photonics
4
(
9
),
611
622
(
2010
).
146.
F. H. L.
Koppens
,
T.
Mueller
,
P.
Avouris
,
A. C.
Ferrari
,
M. S.
Vitiello
, and
M.
Polini
, “
Photodetectors based on graphene, other two-dimensional materials and hybrid systems
,”
Nat. Nanotechnol.
9
(
10
),
780
793
(
2014
).
147.
F.
Xia
,
T.
Mueller
,
Y.-M.
Lin
,
A.
Valdes-Garcia
, and
P.
Avouris
, “
Ultrafast graphene photodetector
,”
Nat. Nanotechnol.
4
(
12
),
839
843
(
2009
).
148.
A.
Urich
,
K.
Unterrainer
, and
T.
Mueller
, “
Intrinsic response time of graphene photodetectors
,”
Nano Lett.
11
(
7
),
2804
2808
(
2011
).
149.
T.
Mueller
,
F.
Xia
, and
P.
Avouris
, “
Graphene photodetectors for high-speed optical communications
,”
Nat. Nanotechnol.
4
(
5
),
297
301
(
2010
).
150.
X.
Gan
,
R.-J.
Shiue
,
Y.
Gao
,
I.
Meric
,
T. F.
Heinz
,
K.
Shepard
,
J.
Hone
,
S.
Assefa
, and
D.
Englund
, “
Chip-integrated ultrafast graphene photodetector with high responsivity
,”
Nat. Photonics
7
(
11
),
883
887
(
2013
).
151.
T. J.
Echtermeyer
,
L.
Britnell
,
P. K.
Jasnos
,
A.
Lombardo
,
R. V.
Gorbachev
,
A. N.
Grigorenko
,
A. K.
Geim
,
A. C.
Ferrari
, and
K. S.
Novoselov
, “
Strong plasmonic enhancement of photovoltage in graphene
,”
Nat. Commun.
2
(
1
),
458
(
2011
).
152.
J.
Yin
,
H.
Wang
,
H.
Peng
,
Z.
Tan
,
L.
Liao
,
L.
Lin
,
X.
Sun
,
A. L.
Koh
,
Y.
Chen
,
H.
Peng
, and
Z.
Liu
, “
Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity
,”
Nat. Commun.
7
(
1
),
10699
(
2016
).
153.
G.
Konstantatos
,
M.
Badioli
,
L.
Gaudreau
,
J.
Osmond
,
M.
Bernechea
,
F. P.
Garcia de Arquer
,
F.
Gatti
, and
F. H.
Koppens
, “
Hybrid graphene-quantum dot phototransistors with ultrahigh gain
,”
Nat. Nanotechnol.
7
(
6
),
363
368
(
2012
).
154.
S.
Goossens
,
G.
Navickaite
,
C.
Monasterio
,
S.
Gupta
,
J. J.
Piqueras
,
R.
Pérez
,
G.
Burwell
,
I.
Nikitskiy
,
T.
Lasanta
,
T.
Galán
,
E.
Puma
,
A.
Centeno
,
A.
Pesquera
,
A.
Zurutuza
,
G.
Konstantatos
, and
F.
Koppens
, “
Broadband image sensor array based on graphene-CMOS integration
,”
Nat. Photonics
11
(
6
),
366
371
(
2017
).
155.
V.
Sorianello
,
M.
Midrio
,
G.
Contestabile
,
I.
Asselberghs
,
J.
Van Campenhout
,
C.
Huyghebaert
,
I.
Goykhman
,
A. K.
Ott
,
A. C.
Ferrari
, and
M.
Romagnoli
, “
Graphene-silicon phase modulators with gigahertz bandwidth
,”
Nat. Photonics
12
(
1
),
40
44
(
2017
).
156.
K.
Chen
,
X.
Zhou
,
X.
Cheng
,
R.
Qiao
,
Y.
Cheng
,
C.
Liu
,
Y.
Xie
,
W.
Yu
,
F.
Yao
,
Z.
Sun
,
F.
Wang
,
K.
Liu
, and
Z.
Liu
, “
Graphene photonic crystal fibre with strong and tunable light-matter interaction
,”
Nat. Photonics
13
(
11
),
754
759
(
2019
).
157.
J.-H.
Ahn
and
B. H.
Hong
, “
Graphene for displays that bend
,”
Nat. Nanotechnol.
9
(
10
),
737
738
(
2014
).
158.
T.-H.
Han
,
Y.
Lee
,
M.-R.
Choi
,
S.-H.
Woo
,
S.-H.
Bae
,
B. H.
Hong
,
J.-H.
Ahn
, and
T.-W.
Lee
, “
Extremely efficient flexible organic light-emitting diodes with modified graphene anode
,”
Nat. Photonics
6
(
2
),
105
(
2012
).
159.
H.
Kim
,
S. H.
Bae
,
T. H.
Han
,
K. G.
Lim
,
J. H.
Ahn
, and
T. W.
Lee
, “
Organic solar cells using CVD-grown graphene electrodes
,”
Nanotechnology
25
(
1
),
014012
(
2014
).
160.
P.
You
,
Z.
Liu
,
Q.
Tai
,
S.
Liu
, and
F.
Yan
, “
Efficient semitransparent perovskite solar cells with graphene electrodes
,”
Adv. Mater.
27
(
24
),
3632
3638
(
2015
).
161.
R.
Yin
,
Z.
Xu
,
M.
Mei
,
Z.
Chen
,
K.
Wang
,
Y.
Liu
,
T.
Tang
,
M. K.
Priydarshi
,
X.
Meng
, and
S.
Zhao
, “
Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram
,”
Nat. Commun.
9
(
1
),
2334
(
2018
).
162.
J.
Qiu
,
T.
Yu
,
W.
Zhang
,
Z.
Zhao
,
Y.
Zhang
,
G.
Ye
,
Y.
Zhao
,
X.
Du
,
X.
Liu
,
L.
Yang
,
L.
Zhang
,
S.
Qi
,
Q.
Tan
,
X.
Guo
,
G.
Li
,
S.
Guo
,
H.
Sun
,
D.
Wei
, and
N.
Liu
, “
A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection
,”
ACS Mater. Lett.
2
(
8
),
999
1007
(
2020
).
163.
D.
Kuzum
,
H.
Takano
,
E.
Shim
,
J. C.
Reed
,
H.
Juul
,
A. G.
Richardson
,
J.
de Vries
,
H.
Bink
,
M. A.
Dichter
,
T. H.
Lucas
,
D. A.
Coulter
,
E.
Cubukcu
, and
B.
Litt
, “
Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging
,”
Nat. Commun.
5
,
5259
(
2014
).
164.
M.
Morales-Masis
,
S. D.
Wolf
,
R.
Woods-Robinson
,
J. W.
Ager
, and
C.
Ballif
, “
Transparent electrodes for efficient optoelectronics
,”
Adv. Electron. Mater.
3
(
5
),
1600529
(
2017
).
165.
L. P.
Ma
,
Z.
Wu
,
L.
Yin
,
D.
Zhang
,
S.
Dong
,
Q.
Zhang
,
M. L.
Chen
,
W.
Ma
,
Z.
Zhang
,
J.
Du
,
D. M.
Sun
,
K.
Liu
,
X.
Duan
,
D.
Ma
,
H. M.
Cheng
, and
W.
Ren
, “
Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
42
),
25991
25998
(
2020
).
166.
H.
Jang
,
Y. J.
Park
,
X.
Chen
,
T.
Das
,
M. S.
Kim
, and
J. H.
Ahn
, “
Graphene-based flexible and stretchable electronics
,”
Adv. Mater.
28
(
22
),
4184
4202
(
2016
).
167.
S.
Won
,
Y.
Hwangbo
,
S. K.
Lee
,
K. S.
Kim
,
K. S.
Kim
,
S. M.
Lee
,
H. J.
Lee
,
J. H.
Ahn
,
J. H.
Kim
, and
S. B.
Lee
, “
Double-layer CVD graphene as stretchable transparent electrodes
,”
Nanoscale
6
(
11
),
6057
6064
(
2014
).
168.
N.
Liu
,
A.
Chortos
,
T.
Lei
,
L.
Jin
,
T. R.
Kim
,
W. G.
Bae
,
C.
Zhu
,
S.
Wang
,
R.
Pfattner
,
X.
Chen
,
R.
Sinclair
, and
Z.
Bao
, “
Ultratransparent and stretchable graphene electrodes
,”
Sci. Adv.
3
(
9
),
e1700159
(
2017
).
169.
Q.
Sun
,
D. H.
Kim
,
S. S.
Park
,
N. Y.
Lee
,
Y.
Zhang
,
J. H.
Lee
,
K.
Cho
, and
J. H.
Cho
, “
Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors
,”
Adv. Mater.
26
(
27
),
4735
4740
(
2014
).
170.
S. H.
Shin
,
S.
Ji
,
S.
Choi
,
K. H.
Pyo
,
B. W.
An
,
J.
Park
,
J.
Kim
,
J.
Kim
,
K.
Lee
, and
S. Y.
Kwon
, “
Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges
,”
Nat. Commun.
8
(
1
),
14950
(
2017
).
171.
S. H.
Jung
,
Y. M.
Seo
,
T.
Gu
,
W.
Jang
,
S. G.
Kang
,
Y.
Hyeon
,
S. H.
Hyun
,
J. H.
Lee
, and
D.
Whang
, “
Super-Nernstian pH sensor based on anomalous charge transfer doping of defect-engineered graphene
,”
Nano Lett.
21
(
1
),
34
42
(
2021
).
172.
Y. H.
Kwak
,
D. S.
Choi
,
Y. N.
Kim
,
H.
Kim
,
D. H.
Yoon
,
S. S.
Ahn
,
J. W.
Yang
,
W. S.
Yang
, and
S.
Seo
, “
Flexible glucose sensor using CVD-grown graphene-based field effect transistor
,”
Biosens. Bioelectron.
37
(
1
),
82
87
(
2012
).
173.
S.
Xu
,
J.
Zhan
,
B.
Man
,
S.
Jiang
,
W.
Yue
,
S.
Gao
,
C.
Guo
,
H.
Liu
,
Z.
Li
,
J.
Wang
, and
Y.
Zhou
, “
Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor
,”
Nat. Commun.
8
,
14902
(
2017
).
174.
M. S.
Mannoor
,
H.
Tao
,
J. D.
Clayton
,
A.
Sengupta
,
D. L.
Kaplan
,
R. R.
Naik
,
N.
Verma
,
F. G.
Omenetto
, and
M. C.
McAlpine
, “
Graphene-based wireless bacteria detection on tooth enamel
,”
Nat. Commun.
3
,
763
(
2012
).
175.
G.
Xu
,
J.
Abbott
,
L.
Qin
,
K. Y.
Yeung
,
Y.
Song
,
H.
Yoon
,
J.
Kong
, and
D.
Ham
, “
Electrophoretic and field-effect graphene for all-electrical DNA array technology
,”
Nat. Commun.
5
,
4866
(
2014
).
176.
R.
Hajian
,
S.
Balderston
,
T.
Tran
,
T.
deBoer
,
J.
Etienne
,
M.
Sandhu
,
N. A.
Wauford
,
J. Y.
Chung
,
J.
Nokes
,
M.
Athaiya
,
J.
Paredes
,
R.
Peytavi
,
B.
Goldsmith
,
N.
Murthy
,
I. M.
Conboy
, and
K.
Aran
, “
Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor
,”
Nat. Biomed. Eng.
3
(
6
),
427
437
(
2019
).
177.
P. Z.
Sun
,
Q.
Yang
,
W. J.
Kuang
,
Y. V.
Stebunov
,
W. Q.
Xiong
,
J.
Yu
,
R. R.
Nair
,
M. I.
Katsnelson
,
S. J.
Yuan
,
I. V.
Grigorieva
,
M.
Lozada-Hidalgo
,
F. C.
Wang
, and
A. K.
Geim
, “
Limits on gas impermeability of graphene
,”
Nature
579
(
7798
),
229
232
(
2020
).
178.
M.
Lozadahidalgo
,
S.
Hu
,
O. P.
Marshall
,
A.
Mishchenko
,
A. N.
Grigorenko
,
R. A. W.
Dryfe
,
B.
Radha
,
I. V.
Grigorieva
, and
A. K.
Geim
, “
Sieving hydrogen isotopes through two dimensional crystals
,”
Science
351
(
6268
),
68
70
(
2016
).
179.
M.
Lozada-Hidalgo
,
S.
Zhang
,
S.
Hu
,
A.
Esfandiar
,
I. V.
Grigorieva
, and
A. K.
Geim
, “
Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping
,”
Nat. Commun.
8
,
15215
(
2017
).
180.
Y.
An
,
A. F.
Oliveira
,
T.
Brumme
,
A.
Kuc
, and
T.
Heine
, “
Stone-Wales defects cause high proton permeability and isotope selectivity of single-layer graphene
,”
Adv. Mater.
32
(
37
),
2002442
(
2020
).
181.
S. P.
Surwade
,
S. N.
Smirnov
,