Even though the quantized interaction between light and matter in the photoelectric effect is considered one of the cornerstones in the development of quantum mechanics, it was long thought impossible to directly observe the quantized nature of light itself. The advent of light-intensity autocorrelation techniques in the 1950s, first developed to study the size of stars, changed little in this perception, until true single-photon correlation spectroscopy from trapped ions was proven to be possible in the late 1970s: Photons from a single quantum emitter tend to arrive in bunches, but each light quantum is spaced apart in time—it is antibunched. Initially considered only as the workhorse of atomic quantum optics, over the past two decades, photon correlation techniques have become a standard in fields as diverse as quantum-information processing, biological imaging, polymer physics, and materials science, in general. The technique is particularly useful for probing materials that are specifically designed to emit or absorb light in optoelectronic devices, such as light-emitting diodes, solar cells, or lasers. The central question in such studies is how large a mesoscopic piece of material can become and still behave as an atom-like source of single photons. What interactions may arise between multiple excitations within a material, and what sort of dark states may give rise to intermittency in the stream of photons? We review the many different classes of optoelectronic materials for which photon-correlation spectroscopy has proven to offer useful insight into excited-state dynamics, ranging from molecular, over semiconductor to metallic nanostructures. The technique is particularly suited to probing mesoscopic aggregates of organic semiconductors since each single molecule acts as a quantum emitter itself.

1.
R.
Hanbury Brown
and
R. Q.
Twiss
, “
A new type of interferometer for use in radio astronomy
,”
Philos. Mag. J. Sci.
45
,
663
(
1954
).
2.
R.
Hanbury Brown
and
R. Q.
Twiss
, “
Correlation between photons in two coherent beams of light
,”
Nature
177
,
27
(
1956
).
3.
R.
Hanbury Brown
and
R. Q.
Twiss
, “
A test of a new type of stellar interferometer on sirius
,”
Nature
178
,
1046
(
1956
).
4.
A.
Michelson
and
E. W.
Morley
, “
On the relative motion of the earth and the Luminiferous aether
,”
Philos. Mag.
24
,
449
(
1887
).
5.
B. P.
Abbott
and
e
al
, “
Observation of gravitational waves from a binary black hole merger
,”
Phys. Rev. Lett.
116
,
061102
(
2016
).
6.
M.
Orrit
, “
Photon statistics in single molecule experiments
,”
Single Mol.
3
,
255
(
2002
).
7.
A.
Einstein
,
B.
Podolsky
, and
N.
Rosen
, “
Can quantum-mechanical description of physical reality be considered complete?
,”
Phys. Rev.
47
,
777
(
1935
).
8.
A.
Zeilinger
, “
Fundamentals of quantum information
,”
Phys. World
11
,
35
(
1998
).
9.
T.
Basché
,
S.
Kummer
, and
C.
Bräuchle
, “
Direct spectroscopic observation of quantum jumps of a single-molecule
,”
Nature
373
,
132
(
1995
).
10.
A. V.
Aggarwal
,
A.
Thiessen
,
A.
Idelson
,
D.
Kalle
,
D.
Würsch
,
T.
Stangl
,
F.
Steiner
,
S. S.
Jester
,
J.
Vogelsang
,
S.
Höger
, and
J. M.
Lupton
, “
Fluctuating exciton localization in giant pi-conjugated spoked-wheel macrocycles
,”
Nat. Chem.
5
,
964
(
2013
).
11.
H. P.
Lu
and
X. S.
Xie
, “
Single-molecule spectral fluctuations at room temperature
,”
Nature
385
,
143
(
1997
).
12.
M.
Cotlet
,
S.
Masuo
,
G. B.
Luo
,
J.
Hofkens
,
M.
Van der Auweraer
,
J.
Verhoeven
,
K.
Müllen
,
X. L. S.
Xie
, and
F.
De Schryver
, “
Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
14343
(
2004
).
13.
T.
Basché
,
W. E.
Moerner
,
M.
Orrit
, and
H.
Talon
, “
Photon antibunching in the fluorescence of a single dye molecule trapped in a solid
,”
Phys. Rev. Lett.
69
,
1516
(
1992
).
14.
P.
Tinnefeld
,
C.
Müller
, and
M.
Sauer
, “
Time-varying photon probability distribution of individual molecules at room temperature
,”
Chem. Phys. Lett.
345
,
252
(
2001
).
15.
K. D.
Weston
,
M.
Dyck
,
P.
Tinnefeld
,
C.
Müller
,
D. P.
Herten
, and
M.
Sauer
, “
Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons
,”
Anal. Chem.
74
,
5342
(
2002
).
16.
R.
Verberk
and
M.
Orrit
, “
Photon statistics in the fluorescence of single molecules and nanocrystals: Correlation functions versus distributions of on- and off-times
,”
J. Chem. Phys.
119
,
2214
(
2003
).
17.
F.
Steiner
,
J. M.
Lupton
, and
J.
Vogelsang
, “
Role of triplet-state shelving in organic photovoltaics: Single-chain aggregates of poly(3-hexylthiophene) versus mesoscopic multichain aggregates
,”
J. Am. Chem. Soc.
139
,
9787
(
2017
).
18.
Y.
He
and
E.
Barkai
, “
Super- and sub-Poissonian photon statistics for single molecule spectroscopy
,”
J. Chem. Phys.
122
,
184703
(
2005
).
19.
X.
Brokmann
,
M.
Bawendi
,
L.
Coolen
, and
J. P.
Hermier
, “
Photon-correlation Fourier spectroscopy
,”
Opt. Express
14
,
6333
(
2006
).
20.
H.
Utzat
,
W. W.
Sun
,
A. E. K.
Kaplan
,
F.
Krieg
,
M.
Ginterseder
,
B.
Spokoyny
,
N. D.
Klein
,
K. E.
Shulenberger
,
C. F.
Perkinson
,
M. V.
Kovalenko
, and
M. G.
Bawendi
, “
Coherent single-photon emission from colloidal lead halide perovskite quantum dots
,”
Science
363
,
1068
(
2019
).
21.
J. C.
Bergquist
,
R. G.
Hulet
,
W. M.
Itano
, and
D. J.
Wineland
, “
Observation of quantum jumps in a single atom
,”
Phys. Rev. Lett.
57
,
1699
(
1986
).
22.
R. J.
Cook
and
H. J.
Kimble
, “
Possibility of direct observation of quantum jumps
,”
Phys. Rev. Lett.
54
,
1023
(
1985
).
23.
T.
Sauter
,
W.
Neuhauser
,
R.
Blatt
, and
P. E.
Toschek
, “
Observation of quantum jumps
,”
Phys. Rev. Lett.
57
,
1696
(
1986
).
24.
C. G.
Hübner
,
A.
Renn
,
I.
Renge
, and
U. P.
Wild
, “
Direct observation of the triplet lifetime quenching of single dye molecules by molecular oxygen
,”
J. Chem. Phys.
115
,
9619
(
2001
).
25.
F.
Schindler
,
J. M.
Lupton
,
J.
Feldmann
, and
U.
Scherf
, “
Controlled fluorescence bursts from conjugated polymers induced by triplet quenching
,”
Adv. Mater.
16
,
653
(
2004
).
26.
J.
Bernard
,
L.
Fleury
,
H.
Talon
, and
M.
Orrit
, “
Photon bunching in the fluorescence from single molecules - a probe for intersystem crossing
,”
J. Chem. Phys.
98
,
850
(
1993
).
27.
M.
Kuno
,
D. P.
Fromm
,
H. F.
Hamann
,
A.
Gallagher
, and
D. J.
Nesbitt
, “
Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior
,”
J. Chem. Phys.
112
,
3117
(
2000
).
28.
M.
Lippitz
,
F.
Kulzer
, and
M.
Orrit
, “
Statistical evaluation of single nano-object fluorescence
,”
Chem. Phys. Chem.
6
,
770
(
2005
).
29.
R.
Verberk
,
A. M.
van Oijen
, and
M.
Orrit
, “
Simple model for the power-law blinking of single semiconductor nanocrystals
,”
Phys. Rev. B
66
,
233202
(
2002
).
30.
J.
Houel
,
Q. T.
Doan
,
T.
Cajgfinger
,
G.
Ledoux
,
D.
Amans
,
A.
Aubret
,
A.
Dominjon
,
S.
Ferriol
,
R.
Barbier
,
M.
Nasilowski
,
E.
Lhuillier
,
B.
Dubertret
,
C.
Dujardin
, and
F.
Kulzer
, “
Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking
,”
ACS Nano
9
,
886
(
2015
).
31.
S. A.
Empedocles
and
M. G.
Bawendi
, “
Quantum-confined stark effect in single CdSe nanocrystallite quantum dots
,”
Science
278
,
2114
(
1997
).
32.
J.
Müller
,
J. M.
Lupton
,
P. G.
Lagoudakis
,
F.
Schindler
,
R.
Koeppe
,
A. L.
Rogach
,
J.
Feldmann
,
D. V.
Talapin
, and
H.
Weller
, “
Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement
,”
Nano Lett.
5
,
2044
(
2005
).
33.
C.
Galland
,
Y.
Ghosh
,
A.
Steinbruck
,
M.
Sykora
,
J. A.
Hollingsworth
,
V. I.
Klimov
, and
H.
Htoon
, “
Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots
,”
Nature
479
,
203
(
2011
).
34.
K. J.
van Schooten
,
C.
Boehme
, and
J. M.
Lupton
, “
Coherent magnetic resonance of nanocrystal quantum-dot luminescence as a window to blinking mechanisms
,”
Chem. Phys. Chem.
15
,
1737
(
2014
).
35.
J.
Müller
,
J. M.
Lupton
,
A. L.
Rogach
,
J.
Feldmann
,
D. V.
Talapin
, and
H.
Weller
, “
Air-induced fluorescence bursts from single semiconductor nanocrystals
,”
Appl. Phys. Lett.
85
,
381
(
2004
).
36.
F.
Cichos
,
C.
von Borczyskowski
, and
M.
Orrit
, “
Power-law intermittency of single emitters
,”
Curr. Op. Coll. Int. Sci.
12
,
272
(
2007
).
37.
C.
Santori
,
D.
Fattal
,
J.
Vuckovic
,
G. S.
Solomon
,
E.
Waks
, and
Y.
Yamamoto
, “
Submicrosecond correlations in photoluminescence from InAs quantum dots
,”
Phys. Rev. B
69
,
205324
(
2004
).
38.
M.
Davanco
,
C. S.
Hellberg
,
S.
Ates
,
A.
Badolato
, and
K.
Srinivasan
, “
Multiple time scale blinking in InAs quantum dot single-photon sources
,”
Phys. Rev. B
89
,
161303
(
2014
).
39.
M.
Bayer
,
O.
Stern
,
P.
Hawrylak
,
S.
Fafard
, and
A.
Forchel
, “
Hidden symmetries in the energy levels of excitonic 'artificial atoms
,”
Nature
405
,
923
(
2000
).
40.
U.
Banin
,
Y. W.
Cao
,
D.
Katz
, and
O.
Millo
, “
Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots
,”
Nature
400
,
542
(
1999
).
41.
P.
Michler
,
A.
Imamoglu
,
M. D.
Mason
,
P. J.
Carson
,
G. F.
Strouse
, and
S. K.
Buratto
, “
Quantum correlation among photons from a single quantum dot at room temperature
,”
Nature
406
,
968
(
2000
).
42.
C. G.
Hübner
,
G.
Zumofen
,
A.
Renn
,
A.
Herrmann
,
K.
Müllen
, and
T.
Basché
, “
Photon antibunching and collective effects in the fluorescence of single bichromophoric molecules
,”
Phys. Rev. Lett.
91
,
093903
(
2003
).
43.
P.
Tinnefeld
,
K. D.
Weston
,
T.
Vosch
,
M.
Cotlet
,
T.
Weil
,
J.
Hofkens
,
K.
Müllen
,
F. C.
De Schryver
, and
M.
Sauer
, “
Antibunching in the emission of a single tetrachromophoric dendritic system
,”
J. Am. Chem. Soc.
124
,
14310
(
2002
).
44.
D. A.
VandenBout
,
W. T.
Yip
,
D. H.
Hu
,
D. K.
Fu
,
T. M.
Swager
, and
P. F.
Barbara
, “
Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules
,”
Science
277
,
1074
(
1997
).
45.
T. S.
Lim
,
J. C.
Hsiang
,
J. D.
White
,
J. H.
Hsu
,
Y. L.
Fan
,
K. F.
Lin
, and
W. S.
Fann
, “
Single short-chain conjugated polymer studied with optical spectroscopy: A donor-accepter system
,”
Phys. Rev. B
75
,
165204
(
2007
).
46.
T.
Huser
,
M.
Yan
, and
L. J.
Rothberg
, “
Single chain spectroscopy of conformational dependence of conjugated polymer photophysics
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
11187
(
2000
).
47.
C. W.
Hollars
,
S. M.
Lane
, and
T.
Huser
, “
Controlled non-classical photon emission from single conjugated polymer molecules
,”
Chem. Phys. Lett.
370
,
393
(
2003
).
48.
G.
Sanchez-Mosteiro
,
M.
Koopman
,
E.
van Dijk
,
J.
Hernando
,
N. F.
van Hulst
, and
M. F.
Garcia-Parajo
, “
Photon antibunching proves emission from a single subunit in the autofluorescent protein DsRed
,”
Chem. Phys. Chem.
5
,
1782
(
2004
).
49.
J.
Hofkens
,
M.
Cotlet
,
T.
Vosch
,
P.
Tinnefeld
,
K. D.
Weston
,
C.
Ego
,
A.
Grimsdale
,
K.
Müllen
,
D.
Beljonne
,
J. L.
Brédas
,
S.
Jordens
,
G.
Schweitzer
,
M.
Sauer
, and
F.
De Schryver
, “
Revealing competitive Förster-type resonance energy-transfer pathways in single bichromophoric molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
13146
(
2003
).
50.
V.
Barzda
,
V.
Gulbinas
,
R.
Kananavicius
,
V.
Cervinskas
,
H.
van Amerongen
,
R.
van Grondelle
, and
L.
Valkunas
, “
Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII
,”
Biophys. J.
80
,
2409
(
2001
).
51.
J.
Yu
,
R.
Lammi
,
A. J.
Gesquiere
, and
P. F.
Barbara
, “
Singlet-triplet and triplet-triplet interactions in conjugated polymer single molecules
,”
J. Phys. Chem. B
109
,
10025
(
2005
).
52.
B.
Fückel
,
G.
Hinze
,
F.
Nolde
,
K.
Müllen
, and
T.
Basché
, “
Quantification of the singlet-singlet annihilation times of individual bichromophoric molecules by photon coincidence measurements
,”
J. Phys. Chem. A
114
,
7671
(
2010
).
53.
J.
Hernando
,
J. P.
Hoogenboom
,
E.
van Dijk
,
J. J.
Garcia-Lopez
,
M.
Crego-Calama
,
D. N.
Reinhoudt
,
N. F.
van Hulst
, and
M. F.
Garcia-Parajo
, “
Single molecule photobleaching probes the exciton wave function in a multichromophoric system
,”
Phys. Rev. Lett.
93
,
236404
(
2004
).
54.
M. A.
Baldo
,
R. J.
Holmes
, and
S. R.
Forrest
, “
Prospects for electrically pumped organic lasers
,”
Phys. Rev. B
66
,
035321
(
2002
).
55.
W. J.
Baker
,
D. R.
McCamey
,
K. J.
van Schooten
,
J. M.
Lupton
, and
C.
Boehme
, “
Differentiation between polaron-pair and triplet-exciton polaron spin-dependent mechanisms in organic light-emitting diodes by coherent spin beating
,”
Phys. Rev. B
84
,
165205
(
2011
).
56.
A. J.
Gesquière
,
S. J.
Park
, and
P. F.
Barbara
, “
Hole-induced quenching of triplet and singlet excitons in conjugated polymers
,”
J. Am. Chem. Soc.
127
,
9556
(
2005
).
57.
J.
Schedlbauer
,
U.
Scherf
,
J.
Vogelsang
, and
J. M.
Lupton
, “
Dynamic quenching of triplet excitons in single conjugated-polymer chains
,”
J. Phys. Chem. Lett.
11
,
5192
(
2020
).
58.
C.
Hettich
,
C.
Schmitt
,
J.
Zitzmann
,
S.
Kuhn
,
I.
Gerhardt
, and
V.
Sandoghdar
, “
Nanometer resolution and coherent optical dipole coupling of two individual molecules
,”
Science
298
,
385
(
2002
).
59.
M.
Gross
and
S.
Haroche
, “
Super-radiance—An essay on the theory of collective spontaneous emission
,”
Phys. Rep.
93
,
301
(
1982
).
60.
H.
Fidder
,
J.
Knoester
, and
D. A.
Wiersma
, “
Superradiant emission and optical dephasing in J-aggregates
,”
Chem. Phys. Lett.
171
,
529
(
1990
).
61.
Y.
Luo
,
G.
Chen
,
Y.
Zhang
,
L.
Zhang
,
Y. J.
Yu
,
F. F.
Kong
,
X. J.
Tian
,
Y.
Zhang
,
C. X.
Shan
,
Y.
Luo
,
J. L.
Yang
,
V.
Sandoghdar
,
Z. C.
Dong
, and
J. G.
Hou
, “
Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity
,”
Phys. Rev. Lett.
122
,
233901
(
2019
).
62.
G.
Raino
,
M. A.
Becker
,
M. I.
Bodnarchuk
,
R. F.
Mahrt
,
M. V.
Kovalenko
, and
T.
Stoferle
, “
Superfluorescence from lead halide perovskite quantum dot superlattices
,”
Nature
563
,
671
(
2018
).
63.
G.
Raino
,
H.
Utzat
,
M. G.
Bawendi
, and
M. V.
Kovalenko
, “
Superradiant emission from self-assembled light emitters: From molecules to quantum dots
,”
MRS Bull.
45
,
841
(
2020
).
64.
C.
Bradac
,
M. T.
Johnsson
,
M.
van Breugel
,
B.
Baragiola
,
R.
Martin
,
M. L.
Juan
,
G. K.
Brennen
, and
T.
Volz
, “
Room-temperature spontaneous superradiance from single diamond nanocrystals
,”
Nat. Commun.
8
,
1205
(
2017
).
65.
D. P.
Waters
,
G.
Joshi
,
M.
Kavand
,
M. E.
Limes
,
H.
Malissa
,
P. L.
Burn
,
J. M.
Lupton
, and
C.
Boehme
, “
The spin-Dicke effect in OLED magnetoresistance
,”
Nat. Phys.
11
,
910
(
2015
).
66.
S.
Jamali
,
V. V.
Mkhitaryan
,
H.
Malissa
,
A.
Nahlawi
,
H.
Popli
,
T.
Gruenbaum
,
S.
Bange
,
S.
Milster
,
D. M.
Stoltzfus
,
A. E.
Leung
,
T. A.
Darwish
,
P. L.
Burn
,
J. M.
Lupton
, and
C.
Boehme
, “
Floquet spin states in OLEDs
,”
Nat. Commun.
12
,
465
(
2021
).
67.
M.
Kavand
,
D.
Baird
,
K.
van Schooten
,
H.
Malissa
,
J. M.
Lupton
, and
C.
Boehme
, “
Discrimination between spin-dependent charge transport and spin-dependent recombination in pi-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance
,”
Phys. Rev. B
94
,
075209
(
2016
).
68.
E. L.
Elson
and
D.
Magde
, “
Fluorescence correlation spectroscopy. 1. Conceptual basis and theory
,”
Biopolymers
13
,
1
(
1974
).
69.
D.
Magde
,
E. L.
Elson
, and
W. W.
Webb
, “
Fluorescence correlation spectroscopy. 2. Experimental realization
,”
Biopolymers
13
,
29
(
1974
).
70.
S. R.
Aragon
and
R.
Pecora
, “
Fluorescence correlation spectroscopy as a probe of molecular-dynamics
,”
J. Chem. Phys.
64
,
1791
(
1976
).
71.
E.
Haustein
and
P.
Schwille
, “
Fluorescence correlation spectroscopy: Novel variations of an established technique
,”
Annu. Rev. Biophys.
36
,
151
(
2007
).
72.
R.
Rigler
,
U.
Mets
,
J.
Widengren
, and
P.
Kask
, “
Fluorescence correlation spectroscopy with high count rate and low-background—Analysis of translational diffusion
,”
Eur. Biophys. J.
22
,
169
(
1993
).
73.
M.
Eigen
and
R.
Rigler
, “
Sorting single molecules - application to diagnostics and evolutionary biotechnology
,”
Proc. Natl. Acad. Sci. U. S. A.
91
,
5740
(
1994
).
74.
J.
Widengren
,
U.
Mets
, and
R.
Rigler
, “
Fluorescence correlation spectroscopy of triplet-states in solution—A theoretical and experimental-study
,”
J. Phys. Chem.
99
,
13368
(
1995
).
75.
S.
Verbrugge
,
L. C.
Kapitein
, and
E. J. G.
Peterman
, “
Kinesin moving through the spotlight: Single-motor fluorescence microscopy with submillisecond time resolution
,”
Biophys. J.
92
,
2536
(
2007
).
76.
A.
Sharma
,
J.
Enderlein
, and
M.
Kumbhakar
, “
Photon antibunching in complex intermolecular fluorescence quenching kinetics
,”
J. Phys. Chem. Lett.
7
,
3137
(
2016
).
77.
A.
Sharma
,
J.
Enderlein
, and
M.
Kumbhakar
, “
Photon antibunching reveals static and dynamic quenching interaction of tryptophan with atto-655
,”
J. Phys. Chem. Lett.
8
,
5821
(
2017
).
78.
T.
Kondo
,
W. J.
Chen
, and
G. S.
Schlau-Cohen
, “
Single-molecule fluorescence spectroscopy of photosynthetic systems
,”
Chem. Rev.
117
,
860
(
2017
).
79.
E. H.
Synge
, “
XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region
,”
Philos. Mag. J. Sci.
6
,
356
(
1928
).
80.
S. W.
Hell
, “
Far-field optical nanoscopy
,”
Science
316
,
1153
(
2007
).
81.
M.
Bates
,
B.
Huang
, and
X. W.
Zhuang
, “
Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes
,”
Curr. Op. Chem. Biol.
12
,
505
(
2008
).
82.
P.
Dedecker
,
C.
Flors
,
J. I.
Hotta
,
H.
Uji-I
, and
J.
Hofkens
, “
3D nanoscopy: Bringing biological nanostructures into sharp focus
,”
Angew. Chem. Int. Ed.
46
,
8330
(
2007
).
83.
T. J.
Gould
and
S. T.
Hess
, “
Nanoscale biological fluorescence imaging: Breaking the diffraction barrier
,”
Methods Cell Biol.
89
,
329
(
2008
).
84.
B.
Huang
,
M.
Bates
, and
X. W.
Zhuang
, “
Super-resolution fluorescence microscopy
,”
Annu. Rev. Biochem.
78
,
993
(
2009
).
85.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
, “
Imaging intracellular fluorescent proteins at nanometer resolution
,”
Science
313
,
1642
(
2006
).
86.
C.
Eggeling
,
C.
Ringemann
,
R.
Medda
,
G.
Schwarzmann
,
K.
Sandhoff
,
S.
Polyakova
,
V. N.
Belov
,
B.
Hein
,
C.
von Middendorff
,
A.
Schönle
, and
S. W.
Hell
, “
Direct observation of the nanoscale dynamics of membrane lipids in a living cell
,”
Nature
457
,
1159
(
2009
).
87.
O.
Krichevsky
and
G.
Bonnet
, “
Fluorescence correlation spectroscopy: The technique and its applications
,”
Rep. Prog. Phys.
65
,
251
(
2002
).
88.
J. M.
Cui
,
F. W.
Sun
,
X. D.
Chen
,
Z. J.
Gong
, and
G. C.
Guo
, “
Quantum statistical imaging of particles without restriction of the diffraction limit
,”
Phys. Rev. Lett.
110
,
153901
(
2013
).
89.
O.
Schwartz
,
J. M.
Levitt
,
R.
Tenne
,
S.
Itzhakov
,
Z.
Deutsch
, and
D.
Oron
, “
Superresolution microscopy with quantum emitters
,”
Nano Lett.
13
,
5832
(
2013
).
90.
R.
Tenne
,
U.
Rossman
,
B.
Rephael
,
Y.
Israel
,
A.
Krupinski-Ptaszek
,
R.
Lapkiewicz
,
Y.
Silberberg
, and
D.
Oron
, “
Super-resolution enhancement by quantum image scanning microscopy
,”
Nat. Photonics
13
,
116
(
2019
).
91.
T.
Ha
and
P.
Tinnefeld
, “
Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging
,”
Annu. Rev. Phys. Chem.
63
,
595
(
2012
).
92.
B.
Lounis
and
M.
Orrit
, “
Single-photon sources
,”
Rep. Prog. Phys.
68
,
1129
(
2005
).
93.
H. J.
Kimble
,
M.
Dagenais
, and
L.
Mandel
, “
Photon anti-bunching in resonance fluorescence
,”
Phys. Rev. Lett.
39
,
691
(
1977
).
94.
F.
Diedrich
and
H.
Walther
, “
Nonclassical radiation of a single stored ion
,”
Phys. Rev. Lett.
58
,
203
(
1987
).
95.
R.
Short
and
L.
Mandel
, “
Observation of sub-Poissonian photon statistics
,”
Phys. Rev. Lett.
51
,
384
(
1983
).
96.
W. P.
Ambrose
,
P. M.
Goodwin
,
J.
Enderlein
,
D. J.
Semin
,
J. C.
Martin
, and
R. A.
Keller
, “
Fluorescence photon antibunching from single molecules on a surface
,”
Chem. Phys. Lett.
269
,
365
(
1997
).
97.
L.
Fleury
,
J. M.
Segura
,
G.
Zumofen
,
B.
Hecht
, and
U. P.
Wild
, “
Nonclassical photon statistics in single-molecule fluorescence at room temperature
,”
Phys. Rev. Lett.
84
,
1148
(
2000
).
98.
B.
Lounis
and
W. E.
Moerner
, “
Single photons on demand from a single molecule at room temperature
,”
Nature
407
,
491
(
2000
).
99.
J.
Kim
,
O.
Benson
,
H.
Kan
, and
Y.
Yamamoto
, “
A single-photon turnstile device
,”
Nature
397
,
500
(
1999
).
100.
P.
Michler
,
A.
Kiraz
,
C.
Becher
,
W. V.
Schoenfeld
,
P. M.
Petroff
,
L. D.
Zhang
,
E.
Hu
, and
A.
Imamoglu
, “
A quantum dot single-photon turnstile device
,”
Science
290
,
2282
(
2000
).
101.
C.
Kurtsiefer
,
S.
Mayer
,
P.
Zarda
, and
H.
Weinfurter
, “
Stable solid-state source of single photons
,”
Phys. Rev. Lett.
85
,
290
(
2000
).
102.
A.
Högele
,
C.
Galland
,
M.
Winger
, and
A.
Imamoglu
, “
Photon antibunching in the photoluminescence spectra of a single carbon nanotube
,”
Phys. Rev. Lett.
100
,
217401
(
2008
).
103.
T.
Endo
,
J.
Ishi-Hayase
, and
H.
Maki
, “
Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature
,”
Appl. Phys. Lett.
106
,
113106
(
2015
).
104.
Z. L.
Yuan
,
B. E.
Kardynal
,
R. M.
Stevenson
,
A. J.
Shields
,
C. J.
Lobo
,
K.
Cooper
,
N. S.
Beattie
,
D. A.
Ritchie
, and
M.
Pepper
, “
Electrically driven single-photon source
,”
Science
295
,
102
(
2002
).
105.
A. J.
Shields
, “
Semiconductor quantum light sources
,”
Nat. Photonics
1
,
215
(
2007
).
106.
N.
Mizuochi
,
T.
Makino
,
H.
Kato
,
D.
Takeuchi
,
M.
Ogura
,
H.
Okushi
,
M.
Nothaft
,
P.
Neumann
,
A.
Gali
,
F.
Jelezko
,
J.
Wrachtrup
, and
S.
Yamasaki
, “
Electrically driven single-photon source at room temperature in diamond
,”
Nat. Photonics
6
,
299
(
2012
).
107.
A.
Lohrmann
,
S.
Pezzagna
,
I.
Dobrinets
,
P.
Spinicelli
,
V.
Jacques
,
J. F.
Roch
,
J.
Meijer
, and
A. M.
Zaitsev
, “
Diamond based light-emitting diode for visible single-photon emission at room temperature
,”
Appl. Phys. Lett.
99
,
251106
(
2011
).
108.
W.
Quitsch
,
T.
Kummell
,
A.
Gust
,
C.
Kruse
,
D.
Hommel
, and
G.
Bacher
, “
Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200 K
,”
Appl. Phys. Lett.
105
,
091102
(
2014
).
109.
X.
He
,
H.
Htoon
,
S. K.
Doorn
,
W. H. P.
Pernice
,
F.
Pyatkov
,
R.
Krupke
,
A.
Jeantet
,
Y.
Chassagneux
, and
C.
Voisin
, “
Carbon nanotubes as emerging quantum-light sources
,”
Nat. Mater.
17
,
663
(
2018
).
110.
S.
Khasminskaya
,
F.
Pyatkov
,
K.
Slowik
,
S.
Ferrari
,
O.
Kahl
,
V.
Kovalyuk
,
P.
Rath
,
A.
Vetter
,
F.
Hennrich
,
M. M.
Kappes
,
G.
Gol'tsman
,
A.
Korneev
,
C.
Rockstuhl
,
R.
Krupke
, and
W. H. P.
Pernice
, “
Fully integrated quantum photonic circuit with an electrically driven light source
,”
Nat. Photonics
10
,
727
(
2016
).
111.
X.
Lin
,
X. L.
Dai
,
C. D.
Pu
,
Y. Z.
Deng
,
Y.
Niu
,
L. M.
Tong
,
W.
Fang
,
Y. Z.
Jin
, and
X. G.
Peng
, “
Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature
,”
Nat. Commun.
8
,
1132
(
2017
).
112.
M.
Nothaft
,
S.
Hohla
,
F.
Jelezko
,
N.
Fruhauf
,
J.
Pflaum
, and
J.
Wrachtrup
, “
Electrically driven photon antibunching from a single molecule at room temperature
,”
Nat. Commun.
3
,
628
(
2012
).
113.
J. L.
O'Brien
, “
Optical quantum computing
,”
Science
318
,
1567
(
2007
).
114.
D. Q.
Wang
,
H.
Kelkar
,
D.
Martin-Cano
,
D.
Rattenbacher
,
A.
Shkarin
,
T.
Utikal
,
S.
Götzinger
, and
V.
Sandoghdar
, “
Turning a molecule into a coherent two-level quantum system
,”
Nat. Phys.
15
,
483
(
2019
).
115.
M.
Assmann
,
F.
Veit
,
M.
Bayer
,
C.
Gies
,
F.
Jahnke
,
S.
Reitzenstein
,
S.
Höfling
,
L.
Worschech
, and
A.
Forchel
, “
Ultrafast tracking of second-order photon correlations in the emission of quantum-dot microresonator lasers
,”
Phys. Rev. B
81
,
165314
(
2010
).
116.
M.
Assmann
,
F.
Veit
,
M.
Bayer
,
M.
van der Poel
, and
J. M.
Hvam
, “
Higher-order photon bunching in a semiconductor microcavity
,”
Science
325
,
297
(
2009
).
117.
F.
Jahnke
,
C.
Gies
,
M.
Assmann
,
M.
Bayer
,
H. A. M.
Leymann
,
A.
Foerster
,
J.
Wiersig
,
C.
Schneider
,
M.
Kamp
, and
S.
Höfling
, “
Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers
,”
Nat. Commun.
7
,
11540
(
2016
).
118.
T.
Kazimierczuk
,
J.
Schmutzler
,
M.
Assmann
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
, and
M.
Bayer
, “
Photon-statistics excitation spectroscopy of a quantum-dot micropillar laser
,”
Phys. Rev. Lett.
115
,
027401
(
2015
).
119.
J.
Wiersig
,
C.
Gies
,
F.
Jahnke
,
M.
Assmann
,
T.
Berstermann
,
M.
Bayer
,
C.
Kistner
,
S.
Reitzenstein
,
C.
Schneider
,
S.
Höfling
,
A.
Forchel
,
C.
Kruse
,
J.
Kalden
, and
D.
Hommel
, “
Direct observation of correlations between individual photon emission events of a microcavity laser
,”
Nature
460
,
245
(
2009
).
120.
V. V.
Temnov
and
U.
Woggon
, “
Photon statistics in the cooperative spontaneous emission
,”
Opt. Express
17
,
5774
(
2009
).
121.
M.
Klaas
,
E.
Schlottmann
,
H.
Flayac
,
F. P.
Laussy
,
F.
Gericke
,
M.
Schmidt
,
M.
von Helversen
,
J.
Beyer
,
S.
Brodbeck
,
H.
Suchomel
,
S.
Höfling
,
S.
Reitzenstein
, and
C.
Schneider
, “
Photon-number-resolved measurement of an exciton-polariton condensate
,”
Phys. Rev. Lett.
121
,
047401
(
2018
).
122.
J.
Kasprzak
,
M.
Richard
,
S.
Kundermann
,
A.
Baas
,
P.
Jeambrun
,
J. M. J.
Keeling
,
F. M.
Marchetti
,
M. H.
Szymanska
,
R.
Andre
,
J. L.
Staehli
,
V.
Savona
,
P. B.
Littlewood
,
B.
Deveaud
, and
L. S.
Dang
, “
Bose-Einstein condensation of exciton polaritons
,”
Nature
443
,
409
(
2006
).
123.
J. D.
Plumhof
,
T.
Stöferle
,
L. J.
Mai
,
U.
Scherf
, and
R. F.
Mahrt
, “
Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer
,”
Nat. Mater.
13
,
247
(
2014
).
124.
J.
Schmitt
,
T.
Damm
,
D.
Dung
,
C.
Wahl
,
F.
Vewinger
,
J.
Klaers
, and
M.
Weitz
, “
Spontaneous symmetry breaking and phase coherence of a photon Bose-Einstein condensate coupled to a reservoir
,”
Phys. Rev. Lett.
116
,
033604
(
2016
).
125.
J.
Klaers
,
J.
Schmitt
,
F.
Vewinger
, and
M.
Weitz
, “
Bose-Einstein condensation of photons in an optical microcavity
,”
Nature
468
,
545
(
2010
).
126.
F.
Kulzer
,
T.
Xia
, and
M.
Orrit
, “
Single molecules as optical nanoprobes for soft and complex matter
,”
Angew. Chem. Int. Ed.
49
,
854
(
2010
).
127.
J.
Vogelsang
,
J.
Brazard
,
T.
Adachi
,
J. C.
Bolinger
, and
P. F.
Barbara
, “
Watching the annealing process one polymer chain at a time
,”
Angew. Chem. Int. Ed.
50
,
2257
(
2011
).
128.
T. B.
Bonne
,
K.
Ludtke
,
R.
Jordan
, and
C. M.
Papadakis
, “
Effect of polymer architecture of amphiphilic poly(2-oxazoline) copolymers on the aggregation and aggregate structure
,”
Macromol. Chem. Phys.
208
,
1402
(
2007
).
129.
D. P.
Wang
,
Y.
Yuan
,
Y.
Mardiyati
,
C.
Bubeck
, and
K.
Koynov
, “
From single chains to aggregates, how conjugated polymers behave in dilute solutions
,”
Macromolecules
46
,
6217
(
2013
).
130.
D.
Schaeffel
,
R. H.
Staff
,
H. J.
Butt
,
K.
Landfester
,
D.
Crespy
, and
K.
Koynov
, “
Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation
,”
Nano Lett.
12
,
6012
(
2012
).
131.
I.
Ghosh
,
T.
Ghosh
,
J. I.
Bardagi
, and
B.
König
, “
Reduction of aryl halides by consecutive visible light-induced electron transfer processes
,”
Science
346
,
725
(
2014
).
132.
I.
Ghosh
,
L.
Marzo
,
A.
Das
,
R.
Shaikh
, and
B.
König
, “
Visible light mediated photoredox catalytic arylation reactions
,”
Acc. Chem. Res.
49
,
1566
(
2016
).
133.
N. A.
Romero
and
D. A.
Nicewicz
, “
Organic photoredox catalysis
,”
Chem. Rev.
116
,
10075
(
2016
).
134.
T.
Adachi
,
J.
Vogelsang
, and
J. M.
Lupton
, “
Unraveling the electronic heterogeneity of charge traps in conjugated polymers by single-molecule spectroscopy
,”
J. Phys. Chem. Lett.
5
,
573
(
2014
).
135.
T.
Christ
,
F.
Kulzer
,
P.
Bordat
, and
T.
Basché
, “
Watching the photo-oxidation of a single aromatic hydrocarbon molecule
,”
Angew. Chem. Int. Ed.
40
,
4192
(
2001
).
136.
M.
Vester
,
T.
Staut
,
J.
Enderlein
, and
G.
Jung
, “
Photon antibunching in a cyclic chemical reaction scheme
,”
J. Phys. Chem. Lett.
6
,
1149
(
2015
).
137.
J.
Haimerl
,
I.
Ghosh
,
B.
König
,
J.
Vogelsang
, and
J. M.
Lupton
, “
Single-molecule photoredox catalysis
,”
Chem. Sci.
10
,
681
(
2019
).
138.
J. M.
Haimerl
,
I.
Ghosh
,
B.
Koenig
,
J. M.
Lupton
, and
J.
Vogelsang
, “
Chemical photocatalysis with Rhodamine 6G: Investigation of photoreduction by simultaneous fluorescence correlation spectroscopy and fluorescence lifetime measurements
,”
J. Phys. Chem. B
122
,
10728
(
2018
).
139.
D.
Gosztola
,
M. P.
Niemczyk
,
W.
Svec
,
A. S.
Lukas
, and
M. R.
Wasielewski
, “
Excited doublet states of electrochemically generated aromatic imide and diimide radical anions
,”
J. Phys. Chem. A
104
,
6545
(
2000
).
140.
M.
Marchini
,
G.
Bergamini
,
P. G.
Cozzi
,
P.
Ceroni
, and
V.
Balzani
, “
Photoredox catalysis: The need to elucidate the photochemical mechanism
,”
Angew. Chem. Int. Ed.
56
,
12820
(
2017
).
141.
J.
Schedlbauer
,
P.
Wilhelm
,
L.
Grabenhorst
,
M. E.
Federl
,
B.
Lalkens
,
F.
Hinderer
,
U.
Scherf
,
S.
Höger
,
P.
Tinnefeld
,
S.
Bange
,
J.
Vogelsang
, and
J. M.
Lupton
, “
Ultrafast single-molecule fluorescence measured by femtosecond double-pulse excitation photon antibunching
,”
Nano Lett.
20
,
1074
(
2020
).
142.
K.
Becker
,
P. G.
Lagoudakis
,
G.
Gaefke
,
S.
Höger
, and
J. M.
Lupton
, “
Exciton accumulation in pi-conjugated wires encapsulated by light-harvesting macrocycles
,”
Angew. Chem. Int. Ed.
46
,
3450
(
2007
).
143.
K.
Becker
,
G.
Gaefke
,
J.
Rolffs
,
S.
Höger
, and
J. M.
Lupton
, “
Quantitative mass determination of conjugated polymers for single molecule conformation analysis: Enhancing rigidity with macrocycles
,”
Chem. Commun.
46
,
4686
(
2010
).
144.
R. P.
Feynman
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
1964
), Vol.
32
.
145.
W. L.
Barnes
, “
Fluorescence near interfaces: The role of photonic mode density
,”
J. Mod. Opt.
45
,
661
(
1998
).
146.
J. R.
Lakowicz
, “
Radiative decay engineering: Biophysical and biomedical applications
,”
Anal. Biochem.
298
,
1
(
2001
).
147.
J.-S.
Huang
,
T.
Feichtner
,
P.
Biagioni
, and
B.
Hecht
, “
Impedance matching and emission properties of nanoantennas in an optical nanocircuit
,”
Nano Lett.
9
,
1897
(
2009
).
148.
A.
Kinkhabwala
,
Z. F.
Yu
,
S. H.
Fan
,
Y.
Avlasevich
,
K.
Müllen
, and
W. E.
Moerner
, “
Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
,”
Nat. Photonics
3
,
654
(
2009
).
149.
T. B.
Hoang
,
G. M.
Akselrod
, and
M. H.
Mikkelsen
, “
Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities
,”
Nano Lett.
16
,
270
(
2016
).
150.
T.
Haug
,
P.
Klemm
,
S.
Bange
, and
J. M.
Lupton
, “
Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films
,”
Phys. Rev. Lett.
115
,
067403
(
2015
).
151.
L.
Roloff
,
P.
Klemm
,
I.
Gronwald
,
R.
Huber
,
J. M.
Lupton
, and
S.
Bange
, “
Light emission from gold nanoparticles under ultrafast near-infrared excitation: Thermal radiation, inelastic light scattering, or multiphoton luminescence?
,”
Nano Lett.
17
,
7914
(
2017
).
152.
C.
Poellmann
,
P.
Steinleitner
,
U.
Leierseder
,
P.
Nagler
,
G.
Plechinger
,
M.
Porer
,
R.
Bratschitsch
,
C.
Schüller
,
T.
Korn
, and
R.
Huber
, “
Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2
,”
Nat. Mater.
14
,
889
(
2015
).
153.
G. J.
Hedley
,
T.
Schröder
,
F.
Steiner
,
T.
Eder
,
F.
Hofmann
,
S.
Bange
,
D.
Laux
,
S.
Höger
,
P.
Tinnefeld
,
J. M.
Lupton
, and
J.
Vogelsang
, “
Picosecond time-resolved antibunching measures nanoscale exciton motion and the true number of chromophores
,”
Nat. Commun.
12
,
1327
(
2021
).
154.
A.
Rundquist
,
M.
Bajcsy
,
A.
Majumdar
,
T.
Sarmiento
,
K.
Fischer
,
K. G.
Lagoudakis
,
S.
Buckley
,
A. Y.
Piggott
, and
J.
Vuckovic
, “
Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity
,”
Phys. Rev. A
90
,
023846
(
2014
).
155.
D.
Amgar
,
G. L.
Yang
,
R.
Tenne
, and
D.
Oron
, “
Higher-order photon correlation as a tool to study exciton dynamics in quasi-2D nanoplatelets
,”
Nano Lett.
19
,
8741
(
2019
).
156.
H.
Ta
,
J.
Wolfrum
, and
D. P.
Herten
, “
An extended scheme for counting fluorescent molecules by photon-antibunching
,”
Laser Phys.
20
,
119
(
2010
).
157.
A.
Kurz
,
J. J.
Schmied
,
K. S.
Grussmayer
,
P.
Holzmeister
,
P.
Tinnefeld
, and
D. P.
Herten
, “
Counting fluorescent dye molecules on DNA origami by means of photon statistics
,”
Small
9
,
4061
(
2013
).
158.
K. S.
Grussmayer
,
A.
Kurz
, and
D. P.
Herten
, “
Single-molecule studies on the label number distribution of fluorescent markers
,”
Chem. Phys. Chem.
15
,
734
(
2014
).
159.
K. S.
Grussmayer
,
F.
Steiner
,
J. M.
Lupton
,
D.-P.
Herten
, and
J.
Vogelsang
, “
Differentiation between shallow and deep charge trap states on single poly(3-hexylthiophene) chains through fluorescence photon statistics
,”
Chem. Phys. Chem.
16
,
3578
(
2015
).
160.
S.
Tretiak
,
A.
Saxena
,
R. L.
Martin
, and
A. R.
Bishop
, “
Conformational dynamics of photoexcited conjugated molecules
,”
Phys. Rev. Lett.
89
,
097402
(
2002
).
161.
A.
Thiessen
,
D.
Würsch
,
S. S.
Jester
,
A. V.
Aggarwal
,
A.
Idelson
,
S.
Bange
,
J.
Vogelsang
,
S.
Höger
, and
J. M.
Lupton
, “
Exciton localization in extended pi-electron systems: Comparison of linear and cyclic structures
,”
J. Phys. Chem. B
119
,
9949
(
2015
).
162.
D.
Würsch
,
F. J.
Hofmann
,
T.
Eder
,
A. V.
Aggarwal
,
A.
Idelson
,
S.
Höger
,
J. M.
Lupton
, and
J.
Vogelsang
, “
Molecular water lilies: Orienting single molecules in a polymer film by solvent vapor annealing
,”
J. Phys. Chem. Lett.
7
,
4451
(
2016
).
163.
J. M.
Lupton
, “
Chromophores in conjugated polymers—All straight?
,”
Chem. Phys. Chem.
13
,
901
(
2012
).
164.
J. R.
Mannouch
,
W.
Barford
, and
S.
Al-Assam
, “
Ultra-fast relaxation, decoherence, and localization of photoexcited states in pi-conjugated polymers
,”
J. Chem. Phys.
148
,
034901
(
2018
).
165.
G. D.
Scholes
, “
Long-range resonance energy transfer in molecular systems
,”
Annu. Rev. Phys. Chem.
54
,
57
(
2003
).
166.
P.
Wilhelm
,
J.
Vogelsang
,
S.
Höger
, and
J. M.
Lupton
, “
Homo-FRET in pi-conjugated polygons: Intermediate-strength dipole-dipole coupling makes energy transfer reversible
,”
Nano Lett.
19
,
5483
(
2019
).
167.
P.
Wilhelm
,
J.
Schedlbauer
,
F.
Hinderer
,
D.
Hennen
,
S.
Höger
,
J.
Vogelsang
, and
J. M.
Lupton
, “
Molecular excitonic seesaws
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E3626
(
2018
).
168.
Z.
Deutsch
,
O.
Schwartz
,
R.
Tenne
,
R.
Popovitz-Biro
, and
D.
Oron
, “
Two-color antibunching from band-gap engineered colloidal semiconductor nanocrystals
,”
Nano Lett.
12
,
2948
(
2012
).
169.
S.
Liu
,
N. J.
Borys
,
S.
Sapra
,
A.
Eychmueller
, and
J. M.
Lupton
, “
Localization and dynamics of long-lived excitations in colloidal semiconductor nanocrystals with dual quantum confinement
,”
Chem. Phys. Chem.
16
,
1663
(
2015
).
170.
D. V.
Talapin
,
R.
Koeppe
,
S.
Götzinger
,
A.
Kornowski
,
J. M.
Lupton
,
A. L.
Rogach
,
O.
Benson
,
J.
Feldmann
, and
H.
Weller
, “
Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality
,”
Nano Lett.
3
,
1677
(
2003
).
171.
N. J.
Borys
,
M. J.
Walter
,
J.
Huang
,
D. V.
Talapin
, and
J. M.
Lupton
, “
The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals
,”
Science
330
,
1371
(
2010
).
172.
L.
Manna
,
D. J.
Milliron
,
A.
Meisel
,
E. C.
Scher
, and
A. P.
Alivisatos
, “
Controlled growth of tetrapod-branched inorganic nanocrystals
,”
Nat. Mater.
2
,
382
(
2003
).
173.
V. I.
Klimov
,
A. A.
Mikhailovsky
,
D. W.
McBranch
,
C. A.
Leatherdale
, and
M. G.
Bawendi
, “
Quantization of multiparticle Auger rates in semiconductor quantum dots
,”
Science
287
,
1011
(
2000
).
174.
V. I.
Klimov
,
A. A.
Mikhailovsky
,
S.
Xu
,
A.
Malko
,
J. A.
Hollingsworth
,
C. A.
Leatherdale
,
H. J.
Eisler
, and
M. G.
Bawendi
, “
Optical gain and stimulated emission in nanocrystal quantum dots
,”
Science
290
,
314
(
2000
).
175.
R. D.
Schaller
,
V. M.
Agranovich
, and
V. I.
Klimov
, “
High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states
,”
Nat. Phys.
1
,
189
(
2005
).
176.
J. B.
Sambur
,
T.
Novet
, and
B. A.
Parkinson
, “
Multiple exciton collection in a sensitized photovoltaic system
,”
Science
330
,
63
(
2010
).
177.
O. E.
Semonin
,
J. M.
Luther
,
S.
Choi
,
H. Y.
Chen
,
J. B.
Gao
,
A. J.
Nozik
, and
M. C.
Beard
, “
Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell
,”
Science
334
,
1530
(
2011
).
178.
R. M.
Kraus
,
P. G.
Lagoudakis
,
J.
Müller
,
A. L.
Rogach
,
J. M.
Lupton
,
J.
Feldmann
,
D. V.
Talapin
, and
H.
Weller
, “
Interplay between auger and ionization processes in nanocrystal quantum dots
,”
J. Phys. Chem. B
109
,
18214
(
2005
).
179.
Y. S.
Park
,
Y.
Ghosh
,
Y.
Chen
,
A.
Piryatinski
,
P.
Xu
,
N. H.
Mack
,
H. L.
Wang
,
V. I.
Klimov
,
J. A.
Hollingsworth
, and
H.
Htoon
, “
Super-Poissonian statistics of photon emission from single CdSe-CdS core-shell nanocrystals coupled to metal nanostructures
,”
Phys. Rev. Lett.
110
,
117401
(
2013
).
180.
S. J.
LeBlanc
,
M. R.
McClanahan
,
M.
Jones
, and
P. J.
Moyer
, “
Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films
,”
Nano Lett.
13
,
1662
(
2013
).
181.
G.
Nair
,
J.
Zhao
, and
M. G.
Bawendi
, “
Biexciton quantum yield of single semiconductor nanocrystals from photon statistics
,”
Nano Lett.
11
,
1136
(
2011
).
182.
Y. S.
Park
,
S. J.
Guo
,
N. S.
Makarov
, and
V. I.
Klimov
, “
Room temperature single-photon emission from individual perovskite quantum dots
,”
ACS Nano
9
,
10386
(
2015
).
183.
H.
Utzat
,
K. E.
Shulenberger
,
O. B.
Achorn
,
M.
Nasilowski
,
T. S.
Sinclair
, and
M. G.
Bawendi
, “
Probing linewidths and biexciton quantum yields of single cesium lead halide nanocrystals in solution
,”
Nano Lett.
17
,
6838
(
2017
).
184.
B. D.
Mangum
,
Y.
Ghosh
,
J. A.
Hollingsworth
, and
H.
Htoon
, “
Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments
,”
Opt. Express
21
,
7419
(
2013
).
185.
E.
Benjamin
,
V. J.
Yallapragada
,
D.
Amgar
,
G. L.
Yang
,
R.
Tenne
, and
D.
Oron
, “
Temperature dependence of excitonic and biexcitonic decay rates in colloidal nanoplatelets by time-gated photon correlation
,”
J. Phys. Chem. Lett.
11
,
6513
(
2020
).
186.
S. W.
Feng
,
C. Y.
Cheng
,
C. Y.
Wei
,
J. H.
Yang
,
Y. R.
Chen
,
Y. W.
Chuang
,
Y. H.
Fan
, and
C. S.
Chuu
, “
Purification of single photons from room-temperature quantum dots
,”
Phys. Rev. Lett.
119
,
143601
(
2017
).
187.
F. J.
Hofmann
,
M. I.
Bodnarchuk
,
L.
Protesescu
,
M. V.
Koyalenko
,
J. M.
Lupton
, and
J.
Vogelsang
, “
Exciton gating and triplet deshelving in single dye molecules excited by perovskite nanocrystal FRET antennae
,”
J. Phys. Chem. Lett.
10
,
1055
(
2019
).
188.
F. J.
Hofmann
,
M. I.
Bodnarchuk
,
D. N.
Dirin
,
J.
Vogelsang
,
M. V.
Kovalenko
, and
J. M.
Lupton
, “
Energy transfer from perovskite nanocrystals to dye molecules does not occur by FRET
,”
Nano Lett.
19
,
8896
(
2019
).
189.
D. S.
English
,
E. J.
Harbron
, and
P. F.
Barbara
, “
Probing photoinduced intersystem crossing by two-color, double resonance single molecule spectroscopy
,”
J. Phys. Chem. A
104
,
9057
(
2000
).
190.
K.
Becker
,
J. M.
Lupton
,
J.
Müller
,
A. L.
Rogach
,
D. V.
Talapin
,
H.
Weller
, and
J.
Feldmann
, “
Electrical control of Förster energy transfer
,”
Nat. Mater.
5
,
777
(
2006
).
191.
D.
Soujon
,
K.
Becker
,
A. L.
Rogach
,
J.
Feldmann
,
H.
Weller
,
D. V.
Talapin
, and
J. M.
Lupton
, “
Time-resolved Forster energy transfer from individual semiconductor nanoantennae to single dye molecules
,”
J. Phys. Chem. C
111
,
11511
(
2007
).
192.
M. A.
Becker
,
R.
Vaxenburg
,
G.
Nedelcu
,
P. C.
Sercel
,
A.
Shabaev
,
M. J.
Mehl
,
J. G.
Michopoulos
,
S. G.
Lambrakos
,
N.
Bernstein
,
J. L.
Lyons
,
T.
Stoferle
,
R. F.
Mahrt
,
M. V.
Kovalenko
,
D. J.
Norris
,
G.
Raino
, and
A. L.
Efros
, “
Bright triplet excitons in caesium lead halide perovskites
,”
Nature
553
,
189
(
2018
).
193.
P.
Tamarat
,
L.
Hou
,
J. B.
Trebbia
,
A.
Swarnkar
,
L.
Biadala
,
Y.
Louyer
,
M. I.
Bodnarchuk
,
M. V.
Kovalenko
,
J.
Even
, and
B.
Lounis
, “
The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals
,”
Nat. Commun.
11
,
6001
(
2020
).
194.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
10451
(
2005
).
195.
Y. M.
He
,
G.
Clark
,
J. R.
Schaibley
,
Y.
He
,
M. C.
Chen
,
Y. J.
Wei
,
X.
Ding
,
Q.
Zhang
,
W.
Yao
,
X. D.
Xu
,
C. Y.
Lu
, and
J. W.
Pan
, “
Single quantum emitters in monolayer semiconductors
,”
Nat. Nanotechnol.
10
,
497
(
2015
).
196.
M.
Toth
and
I.
Aharonovich
, “
Single photon sources in atomically thin materials
,”
Annu. Rev. Phys. Chem.
70
,
123
(
2019
).
197.
M.
Koperski
,
K.
Nogajewski
,
A.
Arora
,
V.
Cherkez
,
P.
Mallet
,
J. Y.
Veuillen
,
J.
Marcus
,
P.
Kossacki
, and
M.
Potemski
, “
Single photon emitters in exfoliated WSe2 structures
,”
Nat. Nanotechnol.
10
,
503
(
2015
).
198.
A.
Srivastava
,
M.
Sidler
,
A. V.
Allain
,
D. S.
Lembke
,
A.
Kis
, and
A.
Imamoglu
, “
Optically active quantum dots in monolayer WSe2
,”
Nat. Nanotechnol.
10
,
491
(
2015
).
199.
P.
Tonndorf
,
R.
Schmidt
,
R.
Schneider
,
J.
Kern
,
M.
Buscema
,
G. A.
Steele
,
A.
Castellanos-Gomez
,
H. S. J.
van der Zant
,
S. M.
de Vasconcellos
, and
R.
Bratschitsch
, “
Single-photon emission from localized excitons in an atomically thin semiconductor
,”
Optica
2
,
347
(
2015
).
200.
Y. M.
He
,
O.
Iff
,
N.
Lundt
,
V.
Baumann
,
M.
Davanco
,
K.
Srinivasan
,
S.
Höfling
, and
C.
Schneider
, “
Cascaded emission of single photons from the biexciton in monolayered WSe2
,”
Nat. Commun.
7
,
13409
(
2016
).
201.
R.
Berndt
,
R. R.
Schlittler
, and
J. K.
Gimzewski
, “
Photon-emission scanning tunneling microscope
,”
J. Vac. Sci. Technol. B
9
,
573
(
1991
).
202.
J.
Lambe
and
S. L.
McCarthy
, “
Light-emission from inelastic electron-tunneling
,”
Phys. Rev. Lett.
37
,
923
(
1976
).
203.
J.
Kern
,
R.
Kullock
,
J.
Prangsma
,
M.
Emmerling
,
M.
Kamp
, and
B.
Hecht
, “
Electrically driven optical antennas
,”
Nat. Photonics
9
,
582
(
2015
).
204.
N. L.
Schneider
,
J. T.
Lu
,
M.
Brandbyge
, and
R.
Berndt
, “
Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction
,”
Phys. Rev. Lett.
109
,
186601
(
2012
).
205.
F.
Silly
and
F.
Charra
, “
Time-autocorrelation in scanning-tunneling-microscope-induced photon emission from metallic surface
,”
Appl. Phys. Lett.
77
,
3648
(
2000
).
206.
C. C.
Leon
,
A.
Roslawska
,
A.
Grewal
,
O.
Gunnarsson
,
K.
Kuhnke
, and
K.
Kern
, “
Photon superbunching from a generic tunnel junction
,”
Sci. Adv.
5
,
eaav4986
(
2019
).
207.
P.
Merino
,
C.
Grosse
,
A.
Roslawska
,
K.
Kuhnke
, and
K.
Kern
, “
Exciton dynamics of C-60-based single-photon emitters explored by Hanbury Brown-Twiss scanning tunnelling microscopy
,”
Nat. Commun.
6
,
8461
(
2015
).
208.
L.
Zhang
,
Y. J.
Yu
,
L. G.
Chen
,
Y.
Luo
,
B.
Yang
,
F. F.
Kong
,
G.
Chen
,
Y.
Zhang
,
Q.
Zhang
,
Y.
Luo
,
J. L.
Yang
,
Z. C.
Dong
, and
J. G.
Hou
, “
Electrically driven single-photon emission from an isolated single molecule
,”
Nat. Commun.
8
,
580
(
2017
).
209.
J. I.
Gonzalez
,
T. H.
Lee
,
M. D.
Barnes
,
Y.
Antoku
, and
R. M.
Dickson
, “
Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature
,”
Phys. Rev. Lett.
93
,
147402
(
2004
).
210.
J. I.
Gonzalez
,
T.
Vosch
, and
R. M.
Dickson
, “
Asymmetric electrode-molecule transport dynamics tracked by nanoscale electroluminescence
,”
Phys. Rev. B
74
,
064305
(
2006
).
211.
E.
Wientjes
,
J.
Renger
,
A. G.
Curto
,
R.
Cogdell
, and
N. F.
van Hulst
, “
Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching
,”
Nat. Commun.
5
,
4236
(
2014
).
212.
I.
Aharonovich
,
D.
Englund
, and
M.
Toth
, “
Solid-state single-photon emitters
,”
Nat. Photonics
10
,
631
(
2016
).
213.
X. D.
Ma
,
O.
Roslyak
,
J. G.
Duque
,
X. Y.
Pang
,
S. K.
Doorn
,
A.
Piryatinski
,
D. H.
Dunlap
, and
H.
Htoon
, “
Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes
,”
Phys. Rev. Lett.
115
,
017401
(
2015
).
214.
A.
Ishii
,
X. W.
He
,
N. F.
Hartmann
,
H.
Machiya
,
H.
Htoon
,
S. K.
Doorn
, and
Y. K.
Kato
, “
Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities
,”
Nano Lett.
18
,
3873
(
2018
).
215.
X. W.
He
,
N. F.
Hartmann
,
X. D.
Ma
,
Y.
Kim
,
R.
Ihly
,
J. L.
Blackburn
,
W. L.
Gao
,
J.
Kono
,
Y.
Yomogida
,
A.
Hirano
,
T.
Tanaka
,
H.
Kataura
,
H.
Htoon
, and
S. K.
Doorn
, “
Tunable room-temperature single-photon emission at telecom wavelengths from sp(3) defects in carbon nanotubes
,”
Nat. Photonics
11
,
577
(
2017
).
216.
F.
Hayee
,
L.
Yu
,
J. L.
Zhang
,
C. J.
Ciccarino
,
M.
Nguyen
,
A. F.
Marshall
,
I.
Aharonovich
,
J.
Vuckovic
,
P.
Narang
,
T. F.
Heinz
, and
J. A.
Dionne
, “
Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy
,”
Nat. Mater.
19
,
534
(
2020
).
217.
G.
Grosso
,
H.
Moon
,
B.
Lienhard
,
S.
Ali
,
D. K.
Efetov
,
M. M.
Furchi
,
P.
Jarillo-Herrero
,
M. J.
Ford
,
I.
Aharonovich
, and
D.
Englund
, “
Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride
,”
Nat. Commun.
8
,
705
(
2017
).
218.
S.
Castelletto
,
B. C.
Johnson
,
V.
Ivady
,
N.
Stavrias
,
T.
Umeda
,
A.
Gali
, and
T.
Ohshima
, “
A silicon carbide room-temperature single-photon source
,”
Nat. Mater.
13
,
151
(
2014
).
219.
N.
Mendelson
,
D.
Chugh
,
J. R.
Reimers
,
T. S.
Cheng
,
A.
Gottscholl
,
H.
Long
,
C. J.
Mellor
,
A.
Zettl
,
V.
Dyakonov
,
P. H.
Beton
,
S. V.
Novikov
,
C.
Jagadish
,
H. H.
Tan
,
M. J.
Ford
,
M.
Toth
,
C.
Bradac
, and
I.
Aharonovich
, “
Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride
,”
Nat. Mater.
20
,
321
(
2021
).
220.
S.
Krishnamurthy
,
A.
Singh
,
Z. J.
Hu
,
A. V.
Blake
,
Y.
Kim
,
A.
Singh
,
E. A.
Dolgopolova
,
D. J.
Williams
,
A.
Piryatinski
,
A. V.
Malko
,
H.
Htoon
,
M.
Sykora
, and
J. A.
Hollingsworth
, “
PbS/CdS quantum dot room-temperature single-emitter spectroscopy reaches the telecom O and S bands via an engineered stability
,”
ACS Nano
15
,
575
(
2021
).
221.
V.
Chandrasekaran
,
M. D.
Tessier
,
D.
Dupont
,
P.
Geiregat
,
Z.
Hens
, and
E.
Brainis
, “
Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots
,”
Nano Lett.
17
,
6104
(
2017
).
222.
X.
Liu
,
K.
Akahane
,
N. A.
Jahan
,
N.
Kobayashi
,
M.
Sasaki
,
H.
Kumano
, and
I.
Suemune
, “
Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy
,”
Appl. Phys. Lett.
103
,
061114
(
2013
).
223.
L.
Dusanowski
,
M.
Syperek
,
J.
Misiewicz
,
A.
Somers
,
S.
Hofling
,
M.
Kamp
,
J. P.
Reithmaier
, and
G.
Sek
, “
Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80K
,”
Appl. Phys. Lett.
108
,
163108
(
2016
).
224.
C.
Zinoni
,
B.
Alloing
,
C.
Monat
,
V.
Zwiller
,
L. H.
Li
,
A.
Fiore
,
L.
Lunghi
,
A.
Gerardino
,
H.
de Riedmatten
,
H.
Zbinden
, and
N.
Gisin
, “
Time-resolved and antibunching experiments on single quantum dots at 1300 nm
,”
Appl. Phys. Lett.
88
,
131102
(
2006
).
225.
B. H.
Lv
,
H. C.
Zhang
,
L. P.
Wang
,
C. F.
Zhang
,
X. Y.
Wang
,
J. Y.
Zhang
, and
M.
Xiao
, “
Photon antibunching in a cluster of giant CdSe/CdS nanocrystals
,”
Nat. Commun.
9
,
1536
(
2018
).
226.
T.
Stangl
,
P.
Wilhelm
,
K.
Remmerssen
,
S.
Höger
,
J.
Vogelsang
, and
J. M.
Lupton
, “
Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E5560
(
2015
).
227.
L. H. G.
Tizei
and
M.
Kociak
, “
Spatially resolved quantum nano-optics of single photons using an electron microscope
,”
Phys. Rev. Lett.
110
,
153604
(
2013
).
228.
D.
Press
,
S.
Götzinger
,
S.
Reitzenstein
,
C.
Hofmann
,
A.
Loffler
,
M.
Kamp
,
A.
Forchel
, and
Y.
Yamamoto
, “
Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime
,”
Phys. Rev. Lett.
98
,
117402
(
2007
).
229.
T. K.
Hsiao
,
A.
Rubino
,
Y. S.
Chung
,
S. K.
Son
,
H. T.
Hou
,
J.
Pedros
,
A.
Nasir
,
G.
Ethier-Majcher
,
M. J.
Stanley
,
R. T.
Phillips
,
T. A.
Mitchell
,
J. P.
Griffiths
,
I.
Farrer
,
D. A.
Ritchie
, and
C. J. B.
Ford
, “
Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode
,”
Nat. Commun.
11
,
917
(
2020
).