The use of bioprinting as a powerful tool for tissue and organ fabrication has been a promising development in the field of biomedicine, offering unprecedented versatility in the fabrication of biologically and physiologically relevant constructs. Even though there are a plethora of commercial bioprinters available in the market, most of them are overly expensive. Thus, university facilities and independent research groups often find it difficult, if not impossible, to equip themselves with such machinery. In this Review, we analyze affordable alternatives to commercial bioprinters, which are presented by the Do-it-Yourself (DiY) community. First, we discuss the current state of these low-cost technologies, and the advances made to bridge the divergence between marketed bioprinters and DiY devices. Afterwards, the different bioprinting technologies that are most commonplace for these low-cost devices are examined. Additionally, an overview of the pioneering DiY bioprinters takes place, as well as the open-source software alternatives to control these bioprinters. Next, we analyze the different factors to take into consideration during the bioprinting workflow, such as bioinks, computer-aided models, and bioprinting parameters. Finally, we conclude with a brief assessment of current limitations and potential solutions, as well as future developments in the arena of bioprinting.

1.
J. M.
Unagolla
and
A. C.
Jayasuriya
, “
Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives
,”
Appl. Mater. Today
18
,
100479
(
2020
).
2.
D.
Choudhury
,
S.
Anand
, and
M. W.
Naing
, “
The arrival of commercial bioprinters-towards 3d bioprinting revolution!,
Int. J. Bioprinting
4
,
139
(
2018
).
3.
R.
Levato
 et al., “
Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers
,”
Biofabrication
6
,
035020
(
2014
).
4.
Agency Information Collection Activities: Submission to OMB for Review and Approval; Public Comment Request
;
National Survey of Organ Donation Attitudes and Practices
, OMB No. 0915–0290-Reinstatement With Change, 29798–29800
5.
A. B.
Dababneh
and
I. T.
Ozbolat
, “
Bioprinting technology: A current state-of-the-art review
,”
J. Manuf. Sci. Eng.
136
,
061016
(
2014
).
6.
J.
Malda
 et al., “
25th Anniversary article: Engineering hydrogels for biofabrication
,”
Adv. Mater.
25
,
5011
5028
(
2013
).
7.
Y. S.
Zhang
and
A.
Khademhosseini
, “
Advances in engineering hydrogels
,”
Science
356
,
eaaf3627
(
2017
).
8.
I.
Ozbolat
and
H.
Gudapati
, “
A review on design for bioprinting
,”
Bioprinting
3–4
,
1
14
(
2016
).
9.
L. E.
Bertassoni
 et al., “
Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
,”
Biofabrication
6
,
024105
(
2014
).
10.
S. V.
Murphy
and
A.
Atala
, “
3D bioprinting of tissues and organs
,”
Nat. Biotechnol.
32
,
773
785
(
2014
).
11.
B.
Duan
, “
State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering
,”
Ann. Biomed. Eng.
45
,
195
209
(
2017
).
13.
Global 3D Bioprinting Market
. Analysis
.
Report and Datahttps://www.reportsanddata.com/report-detail/3d-bioprinting-market.
15.
3D
Bioprinting Market
. Growing at a CAGR of 20.4%
.
MarketsandMarketshttps://www.marketsandmarkets.com/Market-Reports/3d-bioprinting-market-170201787.html.
16.
MarketsandMarkets, “3D Bioprinting Market by Component (3D Bioprinters (Microextrusion, Inkjet, Laser), Bioink (Natural, Synthetic, Hybrid)), Material (Hydrogel, Living Cells), Application (Skin, Drug Research), End user (Biopharma, Academia) – Global Forecast to 2024,” 3D Bioprinting Market (
2019
).
17.
M. P.
Chhaya
,
F. P. W.
Melchels
,
B. M.
Holzapfel
,
J. G.
Baldwin
, and
D. W.
Hutmacher
, “
Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing
,”
Biomaterials
52
,
551
560
(
2015
).
18.
M. P.
Walzik
 et al., “
A portable low-cost long-term live-cell imaging platform for biomedical research and education
,”
Biosens. Bioelectron.
64
,
639
649
(
2015
).
19.
M. R.
Shukla
,
A. S.
Singh
,
K.
Piunno
,
P. K.
Saxena
, and
A. M. P.
Jones
, “
Application of 3D printing to prototype and develop novel plant tissue culture systems
,”
Plant Methods
13
,
6
(
2017
).
20.
M. A.
Schmitt
,
O.
Friedrich
, and
D. F.
Gilbert
, “
Portoporator©: A portable low-cost electroporation device for gene transfer to cultured cells in biotechnology, biomedical research and education
,”
Biosens. Bioelectron.
131
,
95
103
(
2019
).
21.
M.
Wolf
and
S.
McQuitty
, “
Understanding the do-it-yourself consumer: DIY motivations and outcomes
,”
AMS Rev.
1
,
154
170
(
2011
).
22.
E.
Malone
and
H.
Lipson
, “
Fab@Home: The personal desktop fabricator kit
,”
Rapid Prototyp. J.
13
,
245
255
(
2007
).
23.
J. I.
Lipton
 et al., “
Fab@ home model 2: Towards ubiquitous personal fabrication devices
,”
Solid Freeform Fabrciation Symposium
(
2009
).
24.
Lipton
,
Jeffrey I.
 et al. Fab@Home. Creative Machines Lab-Columbia Universityhttps://www.creativemachineslab.com/fabhome.html.
25.
N.
Cubo
,
M.
Garcia
,
J. F.
del Cañizo
,
D.
Velasco
, and
J. L.
Jorcano
, “
3D bioprinting of functional human skin: Production and in vivo analysis
,”
Biofabrication
9
,
015006
(
2016
).
26.
A. B.
Owczarczak
,
S. O.
Shuford
,
S. T.
Wood
,
S.
Deitch
, and
D.
Dean
, “
Creating transient cell membrane pores using a standard inkjet printer
,”
J. Vis. Exp.
16
,
3681
(
2012
).
27.
L. P.
Silva
, “
Current trends and challenges in biofabrication using biomaterials and nanomaterials: Future perspectives for 3D/4D bioprinting
,” in
3D and 4D Printing in Biomedical Applications
. edited by
M.
Maniruzzaman
(
Wiley Online Library
,
2018
), pp.
373
421
.
28.
J.
Lee
,
K. E.
Kim
,
S.
Bang
,
I.
Noh
, and
C.
Lee
, “
A desktop multi-material 3D bio-printing system with open-source hardware and software
,”
Int. J. Precis. Eng. Manuf.
18
,
605
612
(
2017
).
29.
M.
Kahl
,
M.
Gertig
,
P.
Hoyer
,
O.
Friedrich
, and
D. F.
Gilbert
, “
Ultra-low-cost 3D bioprinting: Modification and application of an off-the-shelf desktop 3D-printer for biofabrication
,”
Front. Bioeng. Biotechnol.
7
,
184
(
2019
).
30.
K.
Pusch
,
T. J.
Hinton
, and
A. W.
Feinberg
, “
Large volume syringe pump extruder for desktop 3D printers
,”
HardwareX
3
,
49
61
(
2018
).
31.
R. E.
Fitzsimmons
 et al., “
Generating vascular channels within hydrogel constructs using an economical open-source 3D bioprinter and thermoreversible gels
,”
Bioprinting
9
,
7
18
(
2018
).
32.
T. A.
Goldstein
 et al., “
Feasibility of bioprinting with a modified desktop 3D printer
,”
Tissue Eng. Part C Methods
22
,
1071
1076
(
2016
).
33.
J. A.
Reid
 et al., “
Accessible bioprinting: Adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation
,”
Biofabrication
8
,
025017
(
2016
).
34.
C.
McElheny
,
D.
Hayes
, and
R.
Devireddy
, “
Design and fabrication of a low-cost three-dimensional bioprinter
,”
J. Med. Devices
11
,
041001
(
2017
).
35.
D.
Schneidereit
,
L.
Kraus
,
J. C.
Meier
,
O.
Friedrich
, and
D. F.
Gilbert
, “
Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy
,”
Biosens. Bioelectron.
92
,
472
481
(
2017
).
36.
B.
Delalat
 et al., “
3D printed lattices as an activation and expansion platform for T cell therapy
,”
Biomaterials
140
,
58
68
(
2017
).
37.
T.
Landrain
,
M.
Meyer
,
A. M.
Perez
, and
R.
Sussan
, “
Do-it-yourself biology: Challenges and promises for an open science and technology movement
,”
Syst. Synth. Biol.
7
,
115
126
(
2013
).
38.
G.
Seyfried
,
L.
Pei
, and
M.
Schmidt
, “
European do‐it‐yourself (DIY) biology: Beyond the hope, hype and horror
,”
Bioessays
36
,
548
551
(
2014
).
39.
N. A.
Sears
,
D. R.
Seshadri
,
P. S.
Dhavalikar
, and
E.
Cosgriff-Hernandez
, “
A review of three-dimensional printing in tissue engineering
,”
Tissue Eng. Part B Rev.
22
,
298
310
(
2016
).
40.
R.
Langer
and
J. P.
Vacanti
, “
Tissue engineering
,”
Science
260
,
920
926
(
1993
).
41.
S.
Bose
,
S.
Vahabzadeh
, and
A.
Bandyopadhyay
, “
Bone tissue engineering using 3D printing
,”
Mater. Today
16
,
496
504
(
2013
).
42.
D. W.
Hutmacher
, “
Scaffolds in tissue engineering bone and cartilage
,”
Biomaterials
21
,
2529
2543
(
2000
).
43.
P.
Lichte
,
H. C.
Pape
,
T.
Pufe
,
P.
Kobbe
, and
H.
Fischer
, “
Scaffolds for bone healing: Concepts, materials and evidence
,”
Injury
42
,
569
573
(
2011
).
44.
L.
Lu
 et al., “
Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method
,”
J. Mater. Sci. Mater. Med.
23
,
2217
2226
(
2012
).
45.
L.
Elomaa
,
Y.
Kang
,
J. V.
Seppälä
, and
Y.
Yang
, “
Biodegradable photocrosslinkable poly(depsipeptide- co -ε-caprolactone) for tissue engineering: Synthesis, characterization, and In vitro evaluation
,”
J. Polym. Sci. Part Polym. Chem.
52
,
3307
3315
(
2014
).
46.
L.
Elomaa
 et al., “
Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography
,”
J. Mater. Chem. B
3
,
8348
8358
(
2015
).
47.
K.
Yue
 et al., “
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
,”
Biomaterials
73
,
254
271
(
2015
).
48.
H.
Sun
,
Y.
Jia
,
H.
Dong
,
D.
Dong
, and
J.
Zheng
, “
Combining additive manufacturing with microfluidics: An emerging method for developing novel organs-on-chips
,”
Curr. Opin. Chem. Eng.
28
,
1
9
(
2020
).
49.
ArtiVasc 3D.
Fraunhoferhttps://www.artivasc.eu/.
50.
Human Organs-on-Chips
. Wyss Institutehttps://wyss.harvard.edu/technology/human-organs-on-chips/.
52.
Picariello
, P. Purchase F42 Standards. ASTM International[email protected].
53.
I. T.
Ozbolat
and
M.
Hospodiuk
, “
Current advances and future perspectives in extrusion-based bioprinting
,”
Biomaterials
76
,
321
343
(
2016
).
54.
F.
Pati
,
J.
Jang
,
J. W.
Lee
, and
D.-W.
Cho
, “
Extrusion bioprinting
,”
Essentials 3D Biofabrication Translation
7
,
123
152
(
2015
).
55.
L.
Horváth
 et al., “
Engineering an in vitro air-blood barrier by 3D bioprinting
,”
Sci. Rep.
5
,
7974
(
2015
).
56.
C. R.
Almeida
 et al., “
Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation
,”
Acta Biomater.
10
,
613
622
(
2014
).
57.
J. H. Y.
Chung
 et al., “
Bio-ink properties and printability for extrusion printing living cells
,”
Biomater. Sci.
1
,
763
(
2013
).
58.
S.
Khalil
and
W.
Sun
, “
Bioprinting endothelial cells with alginate for 3D tissue constructs
,”
J. Biomech. Eng.
131
,
111002
(
2009
).
59.
S. V.
Murphy
,
A.
Skardal
, and
A.
Atala
, “
Evaluation of hydrogels for bio-printing applications
,”
J. Biomed. Mater. Res. A
101A
,
272
284
(
2013
).
60.
F.
Pati
 et al., “
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
,”
Nat. Commun.
5
,
3935
(
2014
).
61.
A. N.
Mehesz
 et al., “
Scalable robotic biofabrication of tissue spheroids
,”
Biofabrication
3
,
025002
(
2011
).
62.
T.
Boland
,
V.
Mironov
,
A.
Gutowska
,
E. A.
Roth
, and
R. R.
Markwald
, “
Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels
,”
Anat. Rec.
272A
,
497
502
(
2003
).
63.
V.
Mironov
 et al., “
Organ printing: Tissue spheroids as building blocks
,”
Biomaterials
30
,
2164
2174
(
2009
).
64.
B.
Duan
,
L. A.
Hockaday
,
K. H.
Kang
, and
J. T.
Butcher
, “
3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
,”
J. Biomed. Mater. Res. A
101A
,
1255
1264
(
2013
).
65.
R.
Chang
,
J.
Nam
, and
W.
Sun
, “
Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing
,”
Tissue Eng. Part A
14
,
41
48
(
2008
).
66.
P. S.
Maher
,
R. P.
Keatch
,
K.
Donnelly
,
R. E.
Mackay
, and
J. Z.
Paxton
, “
Construction of 3D biological matrices using rapid prototyping technology
,”
Rapid Prototyp. J.
15
,
204
210
(
2009
).
67.
D. F.
Duarte Campos
 et al., “
Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid
,”
Biofabrication
5
,
015003
(
2012
).
68.
B.
Derby
, “
Printing and prototyping of tissues and scaffolds
,”
Science
338
,
921
926
(
2012
).
69.
C.
Yu
 et al., “
Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications
,”
Chem. Rev.
120
,
10695
10743
(
2020
).
70.
H.
Quan
 et al., “
Photo-curing 3D printing technique and its challenges
,”
Bioact. Mater.
5
,
110
115
(
2020
).
71.
C. M.
Spadaccini
, “
Additive manufacturing and processing of architected materials
,”
MRS Bull.
44
,
782
788
(
2019
).
72.
Y.
He
,
Z.
Gu
,
M.
Xie
,
J.
Fu
, and
H.
Lin
, “
Why choose 3D bioprinting? Part II: Methods and bioprinters
,”
Bio-Des. Manuf.
3
,
1
4
(
2020
).
73.
M. E.
Prendergast
and
J. A.
Burdick
, “
Recent advances in enabling technologies in 3D printing for precision medicine
,”
Adv. Mater.
32
,
1902516
(
2020
).
74.
Y.-S.
Lin
,
Y.-Z.
Lin
,
Y.-Y.
Zhang
, and
C.-J.
Yang
, “
Simulating an intelligent printing control for a digital light processing (DLP) 3D printer
,” in
2018 IEEE International Conference on Applied System Invention (ICASI)
(IEEE,
2018
), pp.
429
432
.
75.
P. J.
Bártolo
, “
Stereolithographic processes
,” in
Stereolithography
, edited by
P. J.
Bártolo
(
Springer
,
2011
), pp.
1
36
.
76.
D.
Loterie
,
P.
Delrot
, and
C.
Moser
, “
High-resolution tomographic volumetric additive manufacturing
,”
Nat. Commun.
11
,
852
(
2020
).
77.
R.
Zhang
and
N.
Larsen
, “
Stereolithographic hydrogel printing of 3D microfluidic cell culture chips
,”
Roy. Soc. Chem.
17
,
4273
4282
(
2017
).
78.
C.
Schmidleithner
and
D. M.
Kalaskar
, “
Stereolithography
,” in
3D Printing
, edited by
D.
Cvetković
(
IntechOpen
,
London, UK
,
2018
), pp.
1
22
.
79.
H.
Tetsuka
and
S. R.
Shin
, “
Materials and technical innovations in 3D printing in biomedical applications
,”
J. Mater. Chem. B
8
,
2930
2950
(
2020
).
80.
E.
Garreta
 et al., “
Tissue engineering by decellularization and 3D bioprinting
,”
Mater. Today
20
,
166
178
(
2017
).
81.
J.
Li
,
M.
Chen
,
X.
Fan
, and
H.
Zhou
, “
Recent advances in bioprinting techniques: Approaches, applications and future prospects
,”
J. Transl. Med.
14
,
271
(
2016
).
82.
B.
Grigoryan
 et al., “
Development, characterization, and applications of multi-material stereolithography bioprinting
,”
Sci. Rep.
11
,
3171
(
2021
).
83.
H.
Gojzewski
 et al., “
Layer-by-layer printing of photopolymers in 3D: How weak is the interface?,
ACS Appl. Mater. Interfaces
12
,
8908
8914
(
2020
).
84.
A. K.
Miri
 et al., “
Bioprinters for organs-on-chips
,”
Biofabrication
11
,
042002
(
2019
).
85.
C.
Kengla
,
S. J.
Lee
,
J. J.
Yoo
, and
A.
Atala
, “
3-D bioprinting technologies for tissue engineering applications
,”
Rapid Prototyping Biomaterials
2020
,
269
288
.
86.
W. L.
Ng
 et al., “
Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges
,”
Biofabrication
12
,
022001
(
2020
).
87.
H.
Kumar
and
K.
Kim
, “
Stereolithography 3D Bioprinting
,” in
3D Bioprinting: Principles and Protocols
(
Springer
,
US
,
2020
), pp.
93
110
.
88.
A.
Ovsianikov
,
S.
Schlie
,
A.
Ngezahayo
,
A.
Haverich
, and
B. N.
Chichkov
, “
Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials
,”
J. Tissue Eng. Regen. Med.
1
,
443
449
(
2007
).
89.
A.
Ovsianikov
 et al., “
Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication
,”
ACS Nano
2
,
2257
2262
(
2008
).
90.
A.
Doraiswamy
 et al., “
Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices
,”
Acta Biomater.
2
,
267
275
(
2006
).
91.
R.
Raman
and
R.
Bashir
, “
Stereolithographic 3D bioprinting for biomedical applications
,”
Essentials 3D Biofabrication Translation
2015
,
89
121
.
92.
N. A.
Chartrain
,
C. B.
Williams
, and
A. R.
Whittington
, “
A review on fabricating tissue scaffolds using vat photopolymerization
,”
Acta Biomater.
74
,
90
111
(
2018
).
93.
B.
Yilmaz
,
A.
Tahmasebifar
, and
E. T.
Baran
, “
Bioprinting technologies in tissue engineering
,” in
Current Applications of Pharmaceutical Biotechnology
, edited by
A. C.
Silva
,
J. N.
Moreira
,
J. M. S.
Lobo
, and
H.
Almeida
(
Springer
,
2019
), Vol. 71, pp.
279
319
.
94.
Z.
Wang
,
N.
Martin
,
D.
Hini
,
B.
Mills
, and
K.
Kim
, “
Rapid fabrication of multilayer microfluidic devices using the liquid crystal display-based stereolithography 3D printing system
,”
3D Print. Addit. Manuf.
4
,
156
164
(
2017
).
95.
M.
Mohamed
 et al., “
Rapid and inexpensive fabrication of multi-depth microfluidic device using high-resolution LCD stereolithographic 3D printing
,”
J. Manuf. Mater. Process
3
,
26
(
2019
).
96.
B. E.
Kelly
 et al., “
Volumetric additive manufacturing via tomographic reconstruction
,”
Science
363
,
1075
1079
(
2019
).
97.
C. C.
Cook
 et al., “
Highly tunable thiol‐ene photoresins for volumetric additive manufacturing
,”
Adv. Mater.
32
,
2003376
(
2020
).
98.
B.
Zhang
 et al., “
Strengths, weaknesses, and applications of computational axial lithography in tissue engineering: Comments on B. E. Kelly
 et al
., Volumetric additive manufacturing via tomographic reconstruction
,”
Sci.
363
,
1075
1079
(
2019
). Bio-Des. Manuf.3, 5–6 (2020).
99.
H.
Gudapati
,
M.
Dey
, and
I.
Ozbolat
, “
A comprehensive review on droplet-based bioprinting: Past, present and future
,”
Biomaterials
102
,
20
42
(
2016
).
100.
Z.
Gu
,
J.
Fu
,
H.
Lin
, and
Y.
He
, “
Development of 3D bioprinting: From printing methods to biomedical applications
,”
Asian J. Pharm. Sci.
15
,
529
557
(
2020
).
101.
U.
Demirci
, “
Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology
,”
J. Microelectromech. Syst.
15
,
957
966
(
2006
).
102.
W. L.
Ng
,
J. M.
Lee
,
W. Y.
Yeong
, and
M.
Win Naing
, “
Microvalve-based bioprinting – process, bio-inks and applications
,”
Biomater. Sci.
5
,
632
647
(
2017
).
103.
Ž.
Kačarević
 et al., “
An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects
,”
Mater.
11
,
2199
(
2018
).
104.
X.
Cui
,
T.
Boland
,
D. D.
D'Lima
, and
M. K.
Lotz
, “
Thermal inkjet printing in tissue engineering and regenerative medicine
,”
Recent Pat. Drug Deliv. Formul.
6
,
149
155
(
2012
).
105.
Y. K.
Kim
,
J. A.
Park
,
W. H.
Yoon
,
J.
Kim
, and
S.
Jung
, “
Drop-on-demand inkjet-based cell printing with 30-μm nozzle diameter for cell-level accuracy
,”
Biomicrofluidics
10
,
064110
(
2016
).
106.
X.
Yu
,
Y.
Wu
,
Y.
Li
,
Z.
Yang
, and
Y.
Ma
, “
The formation of satellite droplets in micro-devices due to the rupture of neck filament
,”
Chem. Eng. Res. Des.
153
,
435
442
(
2020
).
107.
The Top 10 Bioprinters.
3D Printing Industry
https://3dprintingindustry.com/news/top-10-bioprinters-55699/.
108.
Z.
Wang
 et al., “
A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks
,”
Biofabrication
7
,
045009
(
2015
).
109.
E. S.
Bishop
 et al., “
3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends
,”
Genes Dis.
4
,
185
195
(
2017
).
110.
Computed-axial-lithography/CAL-software
.
GitHub
https://github.com/computed-axial-lithography/CAL-software.
111.
M.
Hospodiuk
,
M.
Dey
,
D.
Sosnoski
, and
I. T.
Ozbolat
, “
The bioink: A comprehensive review on bioprintable materials
,”
Biotechnol. Adv.
35
,
217
239
(
2017
).
112.
H. C.
Ott
 et al., “
Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart
,”
Nat. Med.
14
,
213
221
(
2008
).
113.
J.
Malda
and
C. G.
Frondoza
, “
Microcarriers in the engineering of cartilage and bone
,”
Trends Biotechnol.
24
,
299
304
(
2006
).
114.
A. E. B.
Turner
and
L. E.
Flynn
, “
Design and characterization of tissue-specific extracellular matrix-derived microcarriers
,”
Tissue Eng. Part C Methods
18
,
186
197
(
2012
).
115.
D. M.
Dean
,
A. P.
Napolitano
,
J.
Youssef
, and
J. R.
Morgan
, “
Rods, tori, and honeycombs: The directed self‐assembly of microtissues with prescribed microscale geometries
,”
FASEB J.
21
,
4005
4012
(
2007
).
116.
C. M.
Livoti
and
J. R.
Morgan
, “
Self-assembly and tissue fusion of toroid-shaped minimal building units
,”
Tissue Eng. Part A
16
,
2051
2061
(
2010
).
117.
I.
Wheeldon
,
A. F.
Ahari
, and
A.
Khademhosseini
, “
Microengineering hydrogels for stem cell bioengineering and tissue regeneration
,”
J. Assoc. Lab. Autom.
15
,
440
448
(
2010
).
118.
M.
Khalil
 et al., “
Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function
,”
J. Hepatol.
34
,
68
77
(
2001
).
119.
A.
Akkouch
,
Y.
Yu
, and
I. T.
Ozbolat
, “
Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering
,”
Biofabrication
7
,
031002
(
2015
).
120.
Y.
Zhang
 et al., “
In vitro study of directly bioprinted perfusable vasculature conduits
,”
Biomater. Sci.
3
,
134
143
(
2015
).
121.
F.
Dolati
 et al., “
In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits
,”
Nanotechnol.
25
,
145101
(
2014
).
122.
P. S.
Gungor-Ozkerim
,
I.
Inci
,
Y. S.
Zhang
,
A.
Khademhosseini
, and
M. R.
Dokmeci
, “
Bioinks for 3D bioprinting: An overview
,”
Biomater. Sci.
6
,
915
946
(
2018
).
123.
G.
Ying
,
N.
Jiang
,
C.
Yu
, and
Y. S.
Zhang
, “
Three-dimensional bioprinting of gelatin methacryloyl (GelMA)
,”
Bio-Des. Manuf.
1
,
215
224
(
2018
).
124.
Introduction: 3D Printing for Biomaterials
,”
Chem. Rev.
120
,
10545
10546
(
2020
).
125.
T.
Jungst
,
W.
Smolan
,
K.
Schacht
,
T.
Scheibel
, and
J.
Groll
, “
Strategies and molecular design criteria for 3D printable hydrogels
,”
Chem. Rev.
116
,
1496
1539
(
2016
).
126.
W.
Sun
,
A.
Darling
,
B.
Starly
, and
J.
Nam
, “
Computer-aided tissue engineering: Overview, scope and challenges
,”
Biotechnol. Appl. Biochem.
39
,
29
(
2004
).
127.
S. M.
Giannitelli
,
D.
Accoto
,
M.
Trombetta
, and
A.
Rainer
, “
Current trends in the design of scaffolds for computer-aided tissue engineering
,”
Acta Biomater.
10
,
580
594
(
2014
).
128.
J. M.
Lee
and
W. Y.
Yeong
, “
Design and printing strategies in 3D bioprinting of cell-hydrogels: a review
,”
Adv. Healthc. Mater.
5
,
2856
2865
(
2016
).
129.
A.
Khoda
,
I. T.
Ozbolat
, and
B.
Koc
, “
Modeling of variational gradient porous architecture with multi-directional filament deposition in 3D scaffolds
,”
Comput.-Aided Des. Appl.
10
,
445
459
(
2013
).
130.
D. W.
Hutmacher
,
J. T.
Schantz
,
C. X. F.
Lam
,
K. C.
Tan
, and
T. C.
Lim
, “
State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
,”
J. Tissue Eng. Regen. Med.
1
,
245
260
(
2007
).
131.
M. A.
Skylar-Scott
,
J.
Mueller
,
C. W.
Visser
, and
J. A.
Lewis
, “
Voxelated soft matter via multimaterial multinozzle 3D printing
,”
Nature
575
,
330
335
(
2019
).
132.
D.
Lacroix
,
J. A.
Planell
, and
P. J.
Prendergast
, “
Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering
,”
Philos. Trans. R. Soc. Math. Phys. Eng. Sci.
367
,
1993
2009
(
2009
).
133.
A. G.
Requicha
, “
Representations for rigid solids: Theory, methods, and systems
,”
ACM Comput. Surv.
12
,
437
464
(
1980
).
134.
biotINK - the bioprinter of tomorrow
.
Hackaday.io
https://hackaday.io/project/14501-biotink-the-bioprinter-of-tomorrow.
135.
Biolinker. TU Delft/Design http://2015.igem.org/Team:TU_Delft/Design.
136.
E. M.
Spiesz
 et al., “
Three-dimensional patterning of engineered biofilms with a do-it-yourself bioprinter
,”
J. Vis. Exp.
147
,
59477
(
2019
).
137.
S. Y.
Nam
,
L. M.
Ricles
,
L. J.
Suggs
, and
S. Y.
Emelianov
, “
Imaging strategies for tissue engineering applications
,”
Tissue Eng. Part B Rev.
21
,
88
102
(
2015
).
138.
Slicer 4.10.2. 3D Slicer
https://www.slicer.org/.
139.
Welcome page Cancer Imaging Archive. The Cancer Imaging Archive (TCIA)
https://www.cancerimagingarchive.net/.
140.
I. T.
Ozbolat
and
Y.
Yu
, “
Bioprinting toward organ fabrication: Challenges and future trends
,”
IEEE Trans. Biomed. Eng.
60
,
691
699
(
2013
).
141.
I. T.
Ozbolat
,
K. K.
Moncal
, and
H.
Gudapati
, “
Evaluation of bioprinter technologies
,”
Addit. Manuf.
13
,
179
200
(
2017
).
142.
Moai Collection
.
Peopoly
https://peopoly.net/collections/frontpage.
143.
S.
Kuznetsov
and
E.
Paulos
, “
Rise of the expert amateur: DIY projects, communities, and cultures
,”
Proceedings of the 6th Nordic Conference on Human-Computer Interaction Extending Boundaries - NordiCHI
10,
295
(
2010
).
145.
Build a 3D Bioprinter
.
Carnegie Mellon University
http://box5295.temp.domains/∼thrdbiop/.
147.
M.
Kesti
,
P.
Fisch
,
M.
Pensalfini
,
E.
Mazza
, and
M.
Zenobi-Wong
, “
Guidelines for standardization of bioprinting: A systematic study of process parameters and their effect on bioprinted structures
,”
BioNanoMaterials
17
,
193
204
(
2016
).
148.
R. E.
Perez
and
S. D.
Schwaitzberg
, “
Robotic surgery: Finding value in 2019 and beyond
,”
Ann. Laparosc. Endosc. Surg.
4
,
51
51
(
2019
).
149.
BioAssemblyBot 400
. Advanced Solutions https://www.advancedsolutions.com/bioassemblybot.
150.
D. J.
Horst
,
C.
Duvoisin
, and
R. D. A.
Vieira
, “
Additive manufacturing at industry 4.0: A review
,”
Int. J. Eng.
8
,
3
8
(
2018
).
151.
C.
Mandrycky
,
Z.
Wang
,
K.
Kim
, and
D.-H.
Kim
, “
3D bioprinting for engineering complex tissues
,”
Biotechnol. Adv.
34
,
422
434
(
2016
).
152.
J. H.
Sung
 et al., “
Recent advances in body-on-a-chip systems
,”
Anal. Chem.
91
,
330
351
(
2019
).
153.
G.
Ying
 et al., “
An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing
,”
Mater. Today Bio.
8
,
100074
(
2020
).
154.
M. L.
Sin
,
K. E.
Mach
,
P. K.
Wong
, and
J. C.
Liao
, “
Advances and challenges in biosensor-based diagnosis of infectious diseases
,”
Expert Rev. Mol. Diagn.
14
,
225
244
(
2014
).
155.
G.
Luka
 et al., “
Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications
,”
Sensors
15
,
30011
30031
(
2015
).
156.
J.
Kim
,
J. A.
McKee
,
J. J.
Fontenot
, and
J. P.
Jung
, “
Engineering tissue fabrication with machine intelligence: generating a blueprint for regeneration
,”
Front. Bioeng. Biotechnol.
7
,
443
(
2020
).
157.
C.
Yu
and
J.
Jiang
, “
A perspective on using machine learning in 3D bioprinting
,”
Int. J. Bioprinting
6
,
309
(
2020
).
158.
A.
Conev
 et al., “
Machine learning-guided three-dimensional printing of tissue engineering scaffolds
,”
Tissue Eng. Part A
26
,
1359
1368
(
2020
).
159.
Z.
Wan
,
P.
Zhang
,
Y.
Liu
,
L.
Lv
, and
Y.
Zhou
, “
Four-dimensional bioprinting: Current developments and applications in bone tissue engineering
,”
Acta Biomaterial
101
,
26
42
(
2020
).
160.
A.
Sydney Gladman
,
E. A.
Matsumoto
,
R. G.
Nuzzo
,
L.
Mahadevan
, and
J. A.
Lewis
, “
Biomimetic 4D printing
,”
Nat. Mater.
15
,
413
418
(
2016
).
161.
X.
Kuang
 et al., “
Advances in 4D printing: Materials and applications
,”
Adv. Funct. Mater
29
,
1805290
(
2019
).
163.
Bioprinters.
3D Biotechnology Solutions http://www.3dbiotechnologiessolutions.com/en/home/.
164.
3DPL Bioprinter - 3D bioprinting of body tissues
. 3DPL https://3dpl.co/home-page/.
165.
BioBot Basic
.
Advanced Solutions
https://www.advancedsolutions.com/biobots.
166.
Bioprinters | Biomaterials | 3D Tissues | Bioprinting Service
. Allegro 3D https://allegro3d.com/products/.
168.
170.
171.
172.
SuperFill
. Black Drop Biodrucker GmbH http://thebioprinting.com/bioprinter/superfill.
175.
176.
Lumen X DLP Bioprinter
.
CELLINKhttps://www.cellink.com/bioprinting/lumen-x/.
178.
179.
Bioprinters.
Cyfuse Biomedical https://www.cyfusebio.com/en/product/3dprinter/.
180.
Biopixlar | 3D Single-cell bioprinting
. Fluicell https://fluicell.com/products-fluicell/biopixlarplatform/.
181.
Bioprinters
. Foldink https://foldink.am/bioprinters/.
182.
3D-
Bioplotter Starter Series
. Envision Tech https://envisiontec.com/3d-printers/3d-bioplotter/starter-series/.
183.
3D-
Bioplotter Developer Series
. Envision Tech https://envisiontec.com/3d-printers/3d-bioplotter/developer-series/.
184.
3D-
Bioplotter Manufacturer Series
. Envision Tech https://envisiontec.com/3d-printers/3d-bioplotter/manufacturer-series/.
185.
Bioinstruments for Diagnostics, Tissue Engineering and Microfluidics
. GeSiM Bioinstruments and Microfluidics https://gesim-bioinstruments-microfluidics.com/bioprinter/.
186.
Bioprinting 3d printer Engine HR - High Resolution
. Hyrel3D https://www.hyrel3d.com/portfolio/engine-hr-high-resolution/.
187.
188.
Products | Life SI | Bioprinting | Argentina.
Lifesihttps://lifesi.technology/products/.
189.
Printing Systems
. Microfab http://www.microfab.com/printing-systems.
190.
MICROLIGHT3D — Laser high resolution 3D micro printing machine - μFAB3D
. http://www.microlight.fr/uFAB.html.
191.
Altraspin — Microscale 3D-printing
. Microlight http://www.microlight.fr/altraspin.html.
192.
Trivima
. Next Big Innovation Labs https://nextbiglab.com/trivima/.
193.
194.
Pensees bioprinters
. Penseeshttps://pensees.co.kr/.
195.
Technology & Products.
Phoshttps://www.phosprint.eu/technology.
196.
NGB-R Bioprinter
. Poietis https://poietis.com/bioprinters/.
197.
Readily3D.
Readily3D https://readily3d.com/.
198.
Bioreactor bmap product list
. Regemathttps://www.regemat3d.com/listado-de-productos.
199.
The Regenhu platform
. REGENHUhttps://www.regenhu.com/3dbioprinting-solutions/.
200.
Regenovo Bio-Printer
. Regenovo http://www.regenovo.cn/.
201.
Dr. Invivo 4D2.
Rokit Healthcare, INC https://rokithealthcare.com/invivo/ (
2021
).
203.
204.
205.
TissueLabs | Create organs and tissues in the lab
. TissueLabs https://www.tissuelabs.com.
206.
NanoOne Bio.
UpNano – high-resolution 3D printing https://www.upnano.at/nanoone-bio/.
207.
M.
Alizadeh-Osgouei
,
Y.
Li
, and
C.
Wen
, “
A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications
,”
Bioact. Mater.
4
,
22
36
(
2019
).
208.
I.
Donderwinkel
,
J. C. M.
van Hest
, and
N. R.
Cameron
, “
Bio-inks for 3D bioprinting: Recent advances and future prospects
,”
Polym. Chem.
8
,
4451
4471
(
2017
).
209.
S.
Derakhshanfar
 et al., “
3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances
,”
Bioact. Mater.
3
,
144
156
(
2018
).
210.
K. A.
Deo
,
K. A.
Singh
,
C. W.
Peak
,
D. L.
Alge
, and
A. K.
Gaharwar
, “
Bioprinting 101: Design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds
,”
Tissue Eng. Part A
26
,
318
338
(
2020
).
211.
Q.
Hamid
 et al., “
Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
,”
Biofabrication
3
,
034109
(
2011
).
212.
Marlin
. Marlin Firmware https://marlinfw.org/.
213.
Reprappro Overview
. Reprappro https://reprappro.me/.
214.
215.
Smoothieware.
Smoothieware Firmware http://smoothieware.org/.
216.
217.
Chitubox Software
. Chitubox https://www.chitubox.com/en/index.
218.
219.
MatterControl 3D Printing Software.
MatterHackers https://www.matterhackers.com/store/l/mattercontrol/sk/MKZGTDW6.
220.
PrusaSlicer 3D printers
. Prusa Research by Josef Průša https://www.prusa3d.com/prusaslicer/.
221.
The experts agree software matters
. Simplify3D https://www.simplify3d.com/.
222.
Monkeyprint.
Robots in the sun http://robotsinthesun.org/monkeyprint/.
223.
OctoPrint the snappy web interface for your 3D printer
. OctoPrint https://octoprint.org/.
224.
Printrun Pure Python 3d printing host software
. Printrunhttps://www.pronterface.com/.
225.
Repetier Host.
Repetier Softwarehttps://www.repetier.com/.
226.
NanoDLP Features.
NanoDLPhttps://www.nanodlp.com/nanodlp-features/.
You do not currently have access to this content.