Generating and detecting radiation in the technologically relevant range of the so-called terahertz gap (0.1–10 THz) is challenging because of a lack of efficient sources and detectors. Quantum dots in carbon nanotubes have shown great potential to build sensitive terahertz detectors, usually based on photon-assisted tunneling. A recently reported mechanism combining resonant quantum dot transitions and tunneling barrier asymmetries results in a narrow linewidth photocurrent response with a large signal-to-noise ratio under weak THz radiation. That device was sensitive to one frequency, corresponding to transitions between equidistant quantized states. In this work we show, using numerical simulations together with scanning tunneling spectroscopy studies of a defect-induced metallic zigzag single-walled carbon nanotube quantum dot, that breaking simultaneously various symmetries in metallic nanotube quantum dots of arbitrary chirality strongly relaxes the selection rules in the electric dipole approximation and removes energy degeneracies. This leads to a richer set of allowed optical transitions spanning frequencies from 1 THz to several tens of THz, for a ∼10 nm quantum dot. Based on these findings, we propose a terahertz detector device based on a metallic single-walled carbon nanotube quantum dot defined by artificial defects. Depending on its length and contacts transparency, the operating regimes range from a high-resolution gate-tunable terahertz sensor to a broadband terahertz detector. Our calculations indicate that the device is largely unaffected by temperatures up to 100 K, making carbon nanotube quantum dots with broken symmetries a promising platform to design tunable terahertz detectors that could operate at liquid nitrogen temperatures.
Skip Nav Destination
Metallic carbon nanotube quantum dots with broken symmetries as a platform for tunable terahertz detection
,
,
,
,
,
,
,
,
Article navigation
June 2021
Research Article|
May 13 2021
Metallic carbon nanotube quantum dots with broken symmetries as a platform for tunable terahertz detection
Available to Purchase
G. Buchs
;
G. Buchs
a)
1
Silicon Quantum Computing
, Sydney, NSW 2052, Australia
2
School of Physics, UNSW Sydney
, Sydney, NSW 2052, Australia
Search for other works by this author on:
M. Marganska
;
M. Marganska
b)
3
Institute of Theoretical Physics, Regensburg University
, 93 053 Regensburg, Germany
Search for other works by this author on:
J. W. González
;
J. W. González
4
Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU
, E-20018 Donostia-San Sebastián, Spain
5
Donostia International Physics Center (DIPC)
, Manuel de Lardizabal 4, E-20018 San Sebastían, Spain
6
Departamento de Física, Universidad Técnica Federico Santa María
, Casilla Postal 110V, Valparaíso, Chile
Search for other works by this author on:
K. Eimre
;
K. Eimre
7
EMPA Swiss Federal Laboratories for Materials Testing and Research
, nanotech@surfaces, Überlandstraße 129, CH-8600 Dübendorf, Switzerland
Search for other works by this author on:
C. A. Pignedoli
;
C. A. Pignedoli
7
EMPA Swiss Federal Laboratories for Materials Testing and Research
, nanotech@surfaces, Überlandstraße 129, CH-8600 Dübendorf, Switzerland
Search for other works by this author on:
D. Passerone
;
D. Passerone
7
EMPA Swiss Federal Laboratories for Materials Testing and Research
, nanotech@surfaces, Überlandstraße 129, CH-8600 Dübendorf, Switzerland
Search for other works by this author on:
A. Ayuela
;
A. Ayuela
4
Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU
, E-20018 Donostia-San Sebastián, Spain
5
Donostia International Physics Center (DIPC)
, Manuel de Lardizabal 4, E-20018 San Sebastían, Spain
Search for other works by this author on:
O. Gröning;
O. Gröning
7
EMPA Swiss Federal Laboratories for Materials Testing and Research
, nanotech@surfaces, Überlandstraße 129, CH-8600 Dübendorf, Switzerland
Search for other works by this author on:
D. Bercioux
D. Bercioux
c)
5
Donostia International Physics Center (DIPC)
, Manuel de Lardizabal 4, E-20018 San Sebastían, Spain
8
IKERBASQUE, Basque Foundation for Science
, Euskadi Plaza, 5, 48009 Bilbao, Spain
c) Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
G. Buchs
1,2,a)
M. Marganska
3,b)
J. W. González
4,5,6
K. Eimre
7
C. A. Pignedoli
7
D. Passerone
7
A. Ayuela
4,5
O. Gröning
7
D. Bercioux
5,8,c)
1
Silicon Quantum Computing
, Sydney, NSW 2052, Australia
2
School of Physics, UNSW Sydney
, Sydney, NSW 2052, Australia
3
Institute of Theoretical Physics, Regensburg University
, 93 053 Regensburg, Germany
4
Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU
, E-20018 Donostia-San Sebastián, Spain
5
Donostia International Physics Center (DIPC)
, Manuel de Lardizabal 4, E-20018 San Sebastían, Spain
6
Departamento de Física, Universidad Técnica Federico Santa María
, Casilla Postal 110V, Valparaíso, Chile
7
EMPA Swiss Federal Laboratories for Materials Testing and Research
, nanotech@surfaces, Überlandstraße 129, CH-8600 Dübendorf, Switzerland
8
IKERBASQUE, Basque Foundation for Science
, Euskadi Plaza, 5, 48009 Bilbao, Spain
a)
Electronic mail: [email protected]
b)
Electronic mail: [email protected]
c) Author to whom correspondence should be addressed: [email protected]
Appl. Phys. Rev. 8, 021406 (2021)
Article history
Received:
June 18 2020
Accepted:
April 19 2021
Citation
G. Buchs, M. Marganska, J. W. González, K. Eimre, C. A. Pignedoli, D. Passerone, A. Ayuela, O. Gröning, D. Bercioux; Metallic carbon nanotube quantum dots with broken symmetries as a platform for tunable terahertz detection. Appl. Phys. Rev. 1 June 2021; 8 (2): 021406. https://doi.org/10.1063/5.0018944
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Nanoscale imaging of biological systems via expansion and super-resolution microscopy
Daria Aristova, Dominik Kylies, et al.
Polarization and domains in wurtzite ferroelectrics: Fundamentals and applications
Simon Fichtner, Georg Schönweger, et al.
Recent advances in fluidic neuromorphic computing
Cheryl Suwen Law, Juan Wang, et al.
Related Content
Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube
Appl. Phys. Lett. (September 2015)