The fabrication of biomimetic scaffolding is a challenging issue in tissue engineering. Scaffolds must be designed with micrometer precision to enable cell proliferation and tissue growth, requiring customization based on the type of tissue being developed. Biomimetic scaffolds have attracted interest for their potential in spinal fusion applications. By providing a structured environment to promote osteogenesis, these materials offer a robust and minimally invasive means to fuse vertebrae. The present study describes the successful preparation of a biomimetic collagen/hydroxyapatite hierarchical scaffold, with each strut having several microchannels via 3D printing, leaching, and coating processes (i.e., one-way shape morphing, 4D printing). The biophysical properties of the scaffold were analyzed, as were its various cellular activities, using human adipose stem cells. This biomimetic microchannel scaffold demonstrated great potential for osteogenic activities in vitro and significantly increased new bone formation and ingrowth of blood vessels in vivo in a mouse model of posterolateral lumbar spinal fusion. These in vitro and in vivo results suggest that the microchannel collagen/hydroxyapatite scaffold could act as a potential bone graft substitute to promote high rates of successful fusion.

1.
S. L.
de Kunder
,
K.
Rijkers
,
I. J.
Caelers
,
R. A.
de Bie
,
P. J.
Koehler
, and
H.
van Santbrink
,
Spine
43
(
16
),
1161
(
2018
).
2.
J. N.
Weinstein
,
J. D.
Lurie
,
P.
Olson
,
K. K.
Bronner
,
E. S.
Fisher
, and
M. T. S.
Morgan
,
Spine
31
(
23
),
2707
(
2006
).
3.
H.
Yuan
,
H.
Fernandes
,
P.
Habibovic
,
J.
De Boer
,
A. M.
Barradas
,
A.
De Ruiter
,
W. R.
Walsh
,
C. A.
Van Blitterswijk
, and
J. D.
De Bruijn
,
Proc. Natl. Acad. Sci. U.S.A.
107
(
31
),
13614
(
2010
).
4.
M.
Miyazaki
,
H.
Tsumura
,
J. C.
Wang
, and
A.
Alanay
,
Eur. Spine. J.
18
(
6
),
783
(
2009
).
5.
A.
Gupta
,
N.
Kukkar
,
K.
Sharif
,
B. J.
Main
,
C. E.
Albers
, and
S. F.
El-Amin
 III
,
World J. Orthop.
6
(
6
),
449
(
2015
).
6.
R. J.
O'Keefe
and
J.
Mao
,
Tissue Eng. Part B Rev.
17
(
6
),
389
(
2011
).
7.
C.
Rodrigues
,
P.
Serricella
,
A.
Linhares
,
R.
Guerdes
,
R.
Borojevic
,
M.
Rossi
,
M.
Duarte
, and
M.
Farina
,
Biomaterials
24
(
27
),
4987
(
2003
).
8.
C.
Feng
,
W.
Zhang
,
C.
Deng
,
G.
Li
,
J.
Chang
,
Z.
Zhang
,
X.
Jiang
, and
C.
Wu
,
Adv. Sci.
4
(
12
),
1700401
(
2017
).
9.
U. G.
Wegst
,
H.
Bai
,
E.
Saiz
,
A. P.
Tomsia
, and
R. O.
Ritchie
,
Nat. Mater.
14
(
1
),
23
(
2015
);
[PubMed]
S.
Wu
,
X.
Liu
,
K. W.
Yeung
,
C.
Liu
, and
X.
Yang
,
Mater. Sci. Eng. R.
80
,
1
(
2014
).
10.
Q.
Cheng
,
C.
Huang
, and
A. P.
Tomsia
,
Adv. Mater.
29
(
45
),
1703155
(
2017
).
11.
H. D.
Kim
,
S.
Amirthalingam
,
S. L.
Kim
,
S. S.
Lee
,
J.
Rangasamy
, and
N. S.
Hwang
,
Adv. Healthc. Mater.
6
(
23
),
1770120
(
2017
);
T.
Li
,
D.
Zhai
,
B.
Ma
,
J.
Xue
,
P.
Zhao
,
J.
Chang
,
M.
Gelinsky
, and
C.
Wu
,
Adv. Sci.
6
(
19
),
1901146
(
2019
);
M.
Zhang
,
R.
Lin
,
X.
Wang
,
J.
Xue
,
C.
Deng
,
C.
Feng
,
H.
Zhuang
,
J.
Ma
,
C.
Qin
, and
L.
Wan
,
Sci. Adv.
6
(
12
),
eaaz6725
(
2020
).
[PubMed]
12.
A. S.
Gladman
,
E. A.
Matsumoto
,
R. G.
Nuzzo
,
L.
Mahadevan
, and
J. A.
Lewis
,
Nat. Mater.
15
(
4
),
413
(
2016
);
[PubMed]
G. H.
Yang
,
M.
Yeo
,
Y. W.
Koo
, and
G. H.
Kim
,
Macromol. Biosci.
19
(
5
),
1800441
(
2019
);
Z. X.
Khoo
,
J. E. M.
Teoh
,
Y.
Liu
,
C. K.
Chua
,
S.
Yang
,
J.
An
,
K. F.
Leong
, and
W. Y.
Yeong
,
Virtual Phys. Prototyp.
10
(
3
),
103
(
2015
).
13.
G. H.
Yang
,
W.
Kim
,
J.
Kim
, and
G. H.
Kim
,
Theranostics
11
(
1
),
48
(
2021
).
14.
S.
Miao
,
W.
Zhu
,
N. J.
Castro
,
M.
Nowicki
,
X.
Zhou
,
H.
Cui
,
J. P.
Fisher
, and
L. G.
Zhang
,
Sci. Rep.
6
(
1
),
1
(
2016
).
15.
C.
Li
,
J. P.
Armstrong
,
I. J.
Pence
,
W. K.
Anan
,
J. L.
Puetzer
,
S. C.
Carreira
,
A. C.
Moore
, and
M. M.
Stevens
,
Biomaterials
176
,
24
(
2018
).
16.
W.
Kim
,
M.
Kim
, and
G. H.
Kim
,
Adv. Funct. Mater.
28
(
26
),
1800405
(
2018
);
J.
Lee
,
S.
Chae
,
H.
Lee
, and
G. H.
Kim
,
Addit. Manuf.
32
,
101023
(
2020
).
17.
C.
Dhand
,
S. T.
Ong
,
N.
Dwivedi
,
S. M.
Diaz
,
J. R.
Venugopal
,
B.
Navaneethan
,
M. H.
Fazil
,
S.
Liu
,
V.
Seitz
, and
E.
Wintermantel
,
Biomaterials
104
,
323
(
2016
).
18.
Z.
Tadmor
,
Ind. Eng. Chem
15
(
4
),
346
(
1976
).
19.
M. M.
Laronda
,
A. L.
Rutz
,
S.
Xiao
,
K. A.
Whelan
,
F. E.
Duncan
,
E. W.
Roth
,
T. K.
Woodruff
, and
R. N.
Shah
,
Nat. Commun.
8
(
1
),
1
(
2017
).
20.
C. M.
Murphy
,
M. G.
Haugh
, and
F. J.
O'Brien
,
Biomaterials
31
(
3
),
461
(
2010
).
21.
S.
Nagarajan
,
S.
Radhakrishnan
,
S. N.
Kalkura
,
S.
Balme
,
P.
Miele
, and
M.
Bechelany
,
Macromol. Chem. Phys.
220
(
14
),
1900126
(
2019
).
22.
R.
Zhang
and
P. X.
Ma
,
Macromol. Biosci.
4
(
2
),
100
(
2004
).
23.
A. C.
Tas
and
S. B.
Bhaduri
,
J. Mater. Res.
19
(
9
),
2742
(
2004
).
24.
F.
Gao
,
Z.
Xu
,
Q.
Liang
,
B.
Liu
,
H.
Li
,
Y.
Wu
,
Y.
Zhang
,
Z.
Lin
,
M.
Wu
,
C.
Ruan
, and
W.
Liu
,
Adv. Funct. Mater.
28
(
13
),
1706644
(
2018
).
25.
H. S.
Sohn
and
J. K.
Oh
,
Biomater. Res.
23
(
1
),
1
(
2019
);
[PubMed]
M. T.
Morris
,
S. P.
Tarpada
, and
W.
Cho
,
Eur. Spine J.
27
(
8
),
1856
(
2018
).
[PubMed]
26.
G.
Wei
and
P. X.
Ma
,
Biomaterials
25
(
19
),
4749
(
2004
).
27.
C.
Granéli
,
A.
Thorfve
,
U.
Ruetschi
,
H.
Brisby
,
P.
Thomsen
,
A.
Lindahl
, and
C.
Karlsson
,
Stem Cell Res.
12
(
1
),
153
(
2014
).
28.
S. H.
Han
,
J.
Lee
,
K. M.
Lee
,
Y. Z.
Jin
,
H.
Yun
,
G. H.
Kim
, and
J. H.
Lee
,
J. Mech. Behav. Biomed
108
,
103782
(
2020
).

Supplementary Material

You do not currently have access to this content.