Three-dimensional (3D) printing as a powerful manufacturing platform has been increasingly used in biomedical engineering over the past two decades. Such technologies greatly improve our ability to fabricate a variety of complex and customized biomedical products accurately, efficiently, economically, and with high reproducibility through layer-by-layer positioning of materials, biomolecules, or even living cells in the products. Despite the impressive progress of 3D printing in biomedical engineering, more and greater efforts are needed to develop new and much improved biomedical products via 3D printing. In particular, many challenges in 3D printing processes, materials, and applications must be addressed in order to make available high-quality products and novel products to millions of patients. Addressing these challenges requires the integration of advances in physics, materials science, engineering, biological sciences, and medicine. In this article, we provide a comprehensive and up-to-date review of 3D printing and its applications in the biomedical field. We systematically present and discuss 3D printing technologies, materials, cells, and applications that are associated with biomedical engineering. Additionally, 4D printing and bioprinting are reviewed. We give our analysis and put forward our views on the challenges for 3D printing in biomedical engineering and also possible future developments. It is apparent that 3D printing plays a more and more important role in biomedical engineering and can create a diverse range of high-value biomedical products. This comprehensive review can help to understand the current status and identify future directions of 3D printing in biomedical engineering, as well as moving 3D printing toward manufacturing newer and better biomedical products.

1.
C. W.
Hull
, “
Apparatus for production of three-dimensional objects by stereolithography
,” U.S. patent 45,753,301 (
1986
).
2.
C. R.
Deckard
, “
Method and apparatus for producing parts by selective sintering
,” U.S. patent 4,863,538 (
1989
).
3.
E. M.
Sachs
,
J. S.
Haggerty
,
M. J.
Cima
, and
P. A.
Williams
, “
Three-dimensional printing techniques
,” U.S. patent 5,204,055 (
1993
).
4.
S. S.
Crump
, “
Apparatus and method for creating three-dimensional objects
,” U.S. patent 5,121,329 (
1992
).
5.
M.
Feygin
,
A.
Shkolnik
,
M. N.
Diamond
, and
E.
Dvorskiy
, “
Laminated object manufacturing system
,” U.S. patent 5,730,817 (
1998
).
6.
S.
Tibbits
, “
The emergence of ‘4D printing
,’” presented at the
TED conference
, Long Beach, CA, USA, February 25-March 1,
2013
.
7.
J.
Choi
,
O. C.
Kwon
,
W.
Jo
,
H. J.
Lee
, and
M. W.
Moon
, “
4D printing technology: A review
,”
3D Print Addit. Manuf.
2
(
4
),
159
167
(
2015
).
8.
C.
Chua
,
K.
Leong
, and
J.
An
, in
Introduction to Rapid Prototyping of Biomaterials
(
Elsevier
,
2014
), pp.
1
15
.
9.
D. M.
Kalaskar
,
3D Printing in Medicine
(
Woodhead Publishing
,
2017
).
10.
S. C.
Ligon
,
R.
Liska
,
J.
Stampfl
,
M.
Gurr
, and
R.
Mülhaupt
, “
Polymers for 3D printing and customized additive manufacturing
,”
Chem. Rev.
117
,
10212
10290
(
2017
).
11.
K. V.
Wong
and
A.
Hernandez
, “
A review of additive manufacturing
,”
ISRN Mech. Eng.
2012
,
1
.
12.
E.
Malone
and
H.
Lipson
, “
Fab@ Home: The personal desktop fabricator kit
,”
Rapid Prototyp. J.
13
(
4
),
245
255
(
2007
).
13.
See https://optomec.com/3d-printed-metals/lens-emerging-applications/ for more information about 3D printing of metal components via laser engineered net shaping (Accessed on May 30,
2020
).
14.
T.
Allard
,
M.
Sitchon
,
R.
Sawatzky
, and
R.
Hoppa
, “
Use of hand-held laser scanning and 3D printing for creation of a museum exhibit
,”
presented at the 6th International Symposium on Virtual Reality, Archaelogy and Cultural Heritage, ISTI-CNR
, Pisa, Italy, November 8–11,
2005
.
15.
C.
Gosselin
,
R.
Duballet
,
P.
Roux
,
N.
Gaudillière
,
J.
Dirrenberger
, and
P.
Morel
, “
Large-scale 3D printing of ultra-high performance concrete—A new processing route for architects and builders
,”
Mater. Des.
100
,
102
109
(
2016
).
16.
M.
Pantelic
,
M.
Pantelic
,
T.
Pietila
,
M.
Rollet
,
E.
Myers
,
T.
Song
,
W. W.
O'Neill
, and
D. D.
Wang
, “
Using 3D-printed models to advance clinical care
,”
Cardiovasc. Innovat. Appl.
4
(
1
),
53
61
(
2019
).
17.
M. G.
Bateman
,
W. K.
Durfee
,
T. L.
Iles
,
C. M.
Martin
,
K.
Liao
,
A. G.
Erdman
, and
P. A.
Iaizzo
, “
Cardiac patient–specific three-dimensional models as surgical planning tools
,”
Surgery
167
(
2
),
259
263
(
2020
).
18.
J.
ten Kate
,
G.
Smit
, and
P.
Breedveld
, “
3D-printed upper limb prostheses: A review
,”
Disabil. Rehabil.: Assist. Technol.
12
(
3
),
300
314
(
2017
).
19.
C. J.
Boyer
,
M.
Boktor
,
H.
Samant
,
L. A.
White
,
Y.
Wang
,
D. H.
Ballard
,
R. C.
Huebert
,
J. E.
Woerner
,
G. E.
Ghali
, and
J. S.
Alexander
, “
3D printing for bio-synthetic biliary stents
,”
Bioengineering
6
(
1
),
16
(
2019
).
20.
W. J.
Choy
and
R. J.
Mobbs
, “
Current state of 3D-printed custom-made spinal implants
,”
Lancet Digit. Health
1
(
4
),
e149
e150
(
2019
).
21.
W.
Peng
,
P.
Datta
,
B.
Ayan
,
V.
Ozbolat
,
D.
Sosnoski
, and
I. T.
Ozbolat
, “
3D bioprinting for drug discovery and development in pharmaceutics
,”
Acta Biomater.
57
,
26
46
(
2017
).
22.
A.
Mazzocchi
,
S.
Soker
, and
A.
Skardal
, “
3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine applications
,”
Appl. Phys. Rev.
6
(
1
),
011302
(
2019
).
23.
J.
Nie
,
Q.
Gao
,
J.
Fu
, and
Y.
He
, “
Grafting of 3D bioprinting to in vitro drug screening: A review
,”
Adv. Healthc. Mater.
9
(
7
),
1901773
(
2020
).
24.
S. J.
Trenfield
,
A.
Awad
,
C. M.
Madla
,
G. B.
Hatton
,
J.
Firth
,
A.
Goyanes
,
S.
Gaisford
, and
A. W.
Basit
, “
Shaping the future: Recent advances of 3D printing in drug delivery and healthcare
,”
Expert Opi. Drug Deliv.
16
(
10
),
1081
1094
(
2019
).
25.
E.
Mathew
,
G.
Pitzanti
,
E.
Larrañeta
, and
D. A.
Lamprou
, “
3D printing of pharmaceuticals and drug delivery devices
,”
Pharmaceutics
12
(
3
),
266
(
2020
).
26.
Y.
Yang
,
X.
Qiao
,
R.
Huang
,
H.
Chen
,
X.
Shi
,
J.
Wang
,
W.
Tan
, and
Z.
Tan
, “
E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer
,”
Biomaterials
230
,
119618
(
2020
).
27.
S. V.
Murphy
,
P.
De Coppi
, and
A.
Atala
, “
Opportunities and challenges of translational 3D bioprinting
,”
Nat. Biomed. Eng.
4
(
4
),
370
380
(
2020
).
28.
M.
Zhang
,
R.
Lin
,
X.
Wang
,
J.
Xue
,
C.
Deng
,
C.
Feng
,
H.
Zhuang
,
J.
Ma
,
C.
Qin
, and
L.
Wan
, “
3D printing of Haversian bone–mimicking scaffolds for multicellular delivery in bone regeneration
,”
Sci. Adv.
6
(
12
),
eaaz6725
(
2020
).
29.
Y. Y. C.
Choong
,
H. W.
Tan
,
D. C.
Patel
,
W. T. N.
Choong
,
C.-H.
Chen
,
H. Y.
Low
,
M. J.
Tan
,
C. D.
Patel
, and
C. K.
Chua
, “
The global rise of 3D printing during the COVID-19 pandemic
,”
Nat. Rev. Mater.
5
(
9
),
637
639
(
2020
).
30.
F.
Rengier
,
A.
Mehndiratta
,
H.
Von Tengg-Kobligk
,
C. M.
Zechmann
,
R.
Unterhinninghofen
,
H.-U.
Kauczor
, and
F. L.
Giesel
, “
3D printing based on imaging data: Review of medical applications
,”
Int. J. Comput. Ass. Rad.
5
(
4
),
335
341
(
2010
).
31.
B.
Duan
and
M.
Wang
,
Selective Laser Sintering and Its Biomedical Applications
(
Springer
,
2013
), pp.
83
109
.
32.
P. F.
Jacobs
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
(
Society of Manufacturing Engineers
,
1992
).
33.
K.
Salonitis
,
G.
Tsoukantas
,
P.
Stavropoulos
, and
A.
Stournaras
, “
A critical review of stereolithography process modeling
,”
presented at the 1st International Conference on Advanced Research in Virtual and Rapid Prototyping, VRAP
, Leiria, Portugal, October 1–4,
2003
.
34.
F. P.
Melchels
,
J.
Feijen
, and
D. W.
Grijpma
, “
A review on stereolithography and its applications in biomedical engineering
,”
Biomaterials
31
(
24
),
6121
6130
(
2010
).
35.
V. B.
Morris
,
S.
Nimbalkar
,
M.
Younesi
,
P.
McClellan
, and
O.
Akkus
, “
Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography
,”
Ann. Biomed. Eng.
45
(
1
),
286
296
(
2017
).
36.
X.
Li
,
B.
Xie
,
J.
Jin
,
Y.
Chai
, and
Y.
Chen
, “
3D printing temporary crown and bridge by temperature controlled mask image projection stereolithography
,”
Procedia Manuf.
26
,
1023
1033
(
2018
).
37.
N.
Anandakrishnan
,
H.
Ye
,
Z.
Guo
,
Z.
Chen
,
K. I.
Mentkowski
,
J. K.
Lang
,
N.
Rajabian
,
S. T.
Andreadis
,
Z.
Ma
,
J. A.
Spernyak
,
J. F.
Lovell
,
D.
Wang
,
J.
Xia
,
C.
Zhou
, and
R.
Zhao
, “
Fast stereolithography printing of large-scale biocompatible hydrogel models
,”
Adv. Healthc. Mater.
10
,
2002103
(
2021
).
38.
E. J.
Mott
,
M.
Busso
,
X.
Luo
,
C.
Dolder
,
M. O.
Wang
,
J. P.
Fisher
, and
D.
Dean
, “
Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds
,”
Mater. Sci. Eng. C
61
,
301
311
(
2016
).
39.
H.
Hong
,
Y. B.
Seo
,
J. S.
Lee
,
Y. J.
Lee
,
H.
Lee
,
O.
Ajiteru
,
M. T.
Sultan
,
O. J.
Lee
,
S. H.
Kim
, and
C. H.
Park
, “
Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering
,”
Biomaterials
232
,
119679
(
2020
).
40.
P.
Wang
,
D. B.
Berry
,
Z.
Song
,
W.
Kiratitanaporn
,
J.
Schimelman
,
A.
Moran
,
F.
He
,
B.
Xi
,
S.
Cai
, and
S.
Chen
, “
3D printing of a biocompatible double network elastomer with digital control of mechanical properties
,”
Adv. Funct. Mater.
30
(
14
),
1910391
(
2020
).
41.
P.
Calvert
, “
Inkjet printing for materials and devices
,”
Chem. Mater.
13
,
3299
(
2001
).
42.
M.
Ibrahim
,
H.
Suzuki
,
H.
Narahara
,
H.
Koresawa
, and
H.
Suzuki
, “
Inkjet printing resolution study for multi-material rapid prototyping
,”
JSME Int. J. C-Mech. Sy.
49
,
353
(
2006
).
43.
X.
Cui
and
T.
Boland
, “
Human microvasculature fabrication using thermal inkjet printing technology
,”
Biomaterials
30
(
31
),
6221
6227
(
2009
).
44.
S. V.
Murphy
and
A.
Atala
, “
3D bioprinting of tissues and organs
,”
Nat. Biotechnol.
32
(
8
),
773
785
(
2014
).
45.
R.
Mau
,
K.
Kriebel
,
H.
Lang
, and
H.
Seitz
, “
Inkjet printing of viable human dental follicle stem cells
,”
Curr. Dir. Biomed. Eng.
1
(
1
),
112
115
(
2015
).
46.
C.
Tse
,
R.
Whiteley
,
T.
Yu
,
J.
Stringer
,
S.
MacNeil
,
J. W.
Haycock
, and
P. J.
Smith
, “
Inkjet printing Schwann cells and neuronal analogue NG108-15 cells
,”
Biofabrication
8
(
1
),
015017
(
2016
).
47.
J. P. R.
Dudman
,
A. M.
Ferreira
,
P.
Gentile
,
X.
Wang
,
R. D. C.
Ribeiro
,
M.
Benning
, and
K. W.
Dalgarno
, “
Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation
,”
Biofabrication
12
(
4
),
045024
(
2020
).
48.
J.
Tan
,
C.
Chua
, and
K.
Leong
, “
Indirect fabrication of gelatin scaffolds using rapid prototyping technology
,”
Virtual Phys. Proto.
5
(
1
),
45
53
(
2010
).
49.
R.
Singh
, “
Process capability study of Polyjet printing for plastic components
,”
J. Mech. Sci. Technol.
25
(
4
),
1011
1015
(
2011
).
50.
A.
Cazón
,
P.
Morer
, and
L.
Matey
, “
PolyJet technology for product prototyping: Tensile strength and surface roughness properties
,”
P|Mech. Eng. B-J. Eng.
228
(
12
),
1664
1675
(
2014
).
51.
Q.
Lan
,
Q.
Zhu
,
L.
Xu
, and
T.
Xu
, “
Application of 3D-printed craniocerebral model in simulated surgery for complex intracranial lesions
,”
World Neurosurg.
134
,
e761
e770
(
2020
).
52.
A.
Goyanes
,
J.
Wang
,
A.
Buanz
,
R.
Martínez-Pacheco
,
R.
Telford
,
S.
Gaisford
, and
A. W.
Basit
, “
3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics
,”
Mol. Pharm.
12
(
11
),
4077
4084
(
2015
).
53.
M.
Chung
,
N.
Radacsi
,
C.
Robert
,
E. D.
McCarthy
,
A.
Callanan
,
N.
Conlisk
,
P. R.
Hoskins
, and
V.
Koutsos
, “
On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry
,”
3D Print. Med.
4
(
1
),
2
(
2018
).
54.
J. H.
Chung
,
S.
Naficy
,
Z.
Yue
,
R.
Kapsa
,
A.
Quigley
,
S. E.
Moulton
, and
G. G.
Wallace
, “
Bio-ink properties and printability for extrusion printing living cells
,”
Biomater. Sci.
1
(
7
),
763
773
(
2013
).
55.
A.
Panwar
and
L. P.
Tan
, “
Current status of bioinks for micro-extrusion-based 3D bioprinting
,”
Molecules
21
(
6
),
685
(
2016
).
56.
J. A.
Brassard
,
M.
Nikolaev
,
T.
Hübscher
,
M.
Hofer
, and
M. P.
Lutolf
, “
Recapitulating macro-scale tissue self-organization through organoid bioprinting
,”
Nat. Mater.
20
(
1
),
22
29
(
2021
).
57.
C. C.
Chang
,
E. D.
Boland
,
S. K.
Williams
, and
J. B.
Hoying
, “
Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
,”
J. Biomed. Mater. Res. Part B
98B
(
1
),
160
170
(
2011
).
58.
J.
Russias
,
E.
Saiz
,
S.
Deville
,
K.
Gryn
,
G.
Liu
,
R. K.
Nalla
, and
A. P.
Tomsia
, “
Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting
,”
J. Biomed. Mater. Res. A
83A
(
2
),
434
445
(
2007
).
59.
B.
Dorj
,
J. H.
Park
, and
H. W.
Kim
, “
Robocasting chitosan/nanobioactive glass dual-pore structured scaffolds for bone engineering
,”
Mater. Lett.
73
,
119
122
(
2012
).
60.
S.
Eqtesadi
,
A.
Motealleh
,
A.
Pajares
, and
P.
Miranda
, “
Effect of milling media on processing and performance of 13–93 bioactive glass scaffolds fabricated by robocasting
,”
Ceram. Int.
41
(
1, Part B
),
1379
1389
(
2015
).
61.
H.
Shao
,
A.
Liu
,
X.
Ke
,
M.
Sun
,
Y.
He
,
X.
Yang
,
J.
Fu
,
L.
Zhang
,
G.
Yang
, and
Y.
Liu
, “
3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects
,”
J. Mater. Chem. B
5
(
16
),
2941
2951
(
2017
).
62.
L.
Lei
,
Y.
Wei
,
Z.
Wang
,
J.
Han
,
J.
Sun
,
Y.
Chen
,
X.
Yang
,
Y.
Wu
,
L.
Chen
, and
Z.
Gou
, “
Core–shell bioactive ceramic robocasting: Tuning component distribution beneficial for highly efficient alveolar bone regeneration and repair
,”
ACS Biomater. Sci. Eng.
6
(
4
),
2376
2387
(
2020
).
63.
J.
Cesarano
, “
A review of robocasting technology
,”
MRS Proc.
542
,
133
(
1998
).
64.
K.
Tappa
and
U.
Jammalamadaka
, “
Novel biomaterials used in medical 3D printing techniques
,”
J. Funct. Biomater.
9
(
1
),
17
(
2018
).
65.
D. X.
Luong
,
A. K.
Subramanian
,
G. A. L.
Silva
,
J.
Yoon
,
S.
Cofer
,
K.
Yang
,
P. S.
Owuor
,
T.
Wang
,
Z.
Wang
,
J.
Lou
,
P. M.
Ajayan
, and
J. M.
Tour
, “
Laminated object manufacturing of 3D-printed laser-induced graphene foams
,”
Adv. Mater.
30
(
28
),
1707416
(
2018
).
66.
B.
Duan
and
M.
Wang
, “
Selective laser sintering and its application in biomedical engineering
,”
MRS Bull.
36
(
12
),
998
1005
(
2011
).
67.
B.
Duan
and
M.
Wang
, in
Customized Nanocomposite Scaffolds Fabricated via Selective Laser Sintering for Bone Tissue Engineering
(
Pan Stanford Publishing Pte. Ltd
.,
2012
), pp.
925
953
.
68.
C.
Gayer
,
J.
Ritter
,
M.
Bullemer
,
S.
Grom
,
L.
Jauer
,
W.
Meiners
,
A.
Pfister
,
F.
Reinauer
,
M.
Vučak
, and
K.
Wissenbach
, “
Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds
,”
Mater. Sci. Eng. C
101
,
660
673
(
2019
).
69.
K. H.
Tan
,
C. K.
Chua
,
K. F.
Leong
,
C. M.
Cheah
,
P.
Cheang
,
M. S.
Abu Bakar
, and
S. W.
Cha
, “
Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends
,”
Biomaterials
24
(
18
),
3115
3123
(
2003
).
70.
B.
Vandenbroucke
and
J. P.
Kruth
, “
Selective laser melting of biocompatible metals for rapid manufacturing of medical parts
,”
Rapid Prototyping J.
13
(
4
),
196
203
(
2007
).
71.
T.
Habijan
,
C.
Haberland
,
H.
Meier
,
J.
Frenzel
,
J.
Wittsiepe
,
C.
Wuwer
,
C.
Greulich
,
T. A.
Schildhauer
, and
M.
Köller
, “
The biocompatibility of dense and porous nickel–titanium produced by selective laser melting
,”
Mater. Sci. Eng. C
33
(
1
),
419
426
(
2013
).
72.
Q.
Wei
,
S.
Li
,
C.
Han
,
W.
Li
,
L.
Cheng
,
L.
Hao
, and
Y.
Shi
, “
Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties
,”
J. Mater. Process. Technol.
222
,
444
453
(
2015
).
73.
L. C.
Zhang
and
H.
Attar
, “
Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review
,”
Adv. Eng. Mater.
18
(
4
),
463
475
(
2016
).
74.
D.
Cormier
,
H.
West
,
O.
Harrysson
, and
K.
Knowlson
, “
Characterization of thin walled Ti-6Al-4V components produced via electron beam melting
,”
presented at the Solid Freeform Fabrication Symposium, Austin
, TX, USA, August 2–4,
2004
.
75.
P.
Heinl
,
A.
Rottmair
,
C.
Körner
, and
R. F.
Singer
, “
Cellular titanium by selective electron beam melting
,”
Adv. Eng. Mater.
9
(
5
),
360
364
(
2007
).
76.
P.
Heinl
,
L.
Müller
,
C.
Körner
,
R. F.
Singer
, and
F. A.
Müller
, “
Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting
,”
Acta Biomater.
4
(
5
),
1536
1544
(
2008
).
77.
J.
Yang
,
H.
Cai
,
J.
Lv
,
K.
Zhang
,
H.
Leng
,
C.
Sun
,
Z.
Wang
, and
Z.
Liu
, “
In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting
,”
Spine
39
(
8
),
E486
E492
(
2014
).
78.
S. L.
Sing
,
J.
An
,
W. Y.
Yeong
, and
F. E.
Wiria
, “
Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs
,”
J. Orthop. Res.
34
(
3
),
369
385
(
2016
).
79.
N.
Guo
and
M. C.
Leu
, “
Additive manufacturing: Technology, applications and research needs
,”
Front. Mech. Eng.
8
(
3
),
215
243
(
2013
).
80.
G.
Brunello
,
S.
Sivolella
,
R.
Meneghello
,
L.
Ferroni
,
C.
Gardin
,
A.
Piattelli
,
B.
Zavan
, and
E.
Bressan
, “
Powder-based 3D printing for bone tissue engineering
,”
Biotechnol. Adv.
34
,
740
753
(
2016
).
81.
M.
Griffith
,
D.
Keicher
,
C.
Atwood
,
J.
Romero
,
J.
Smugeresky
,
L.
Harwell
, and
D.
Greene
, “
Free form fabrication of metallic components using laser engineered net shaping (LENS)
,”
presented at the Solid Freeform Fabrication Proceedings, Austin
, TX, USA, August 12–14,
1996
.
82.
C.
Atwood
,
M.
Griffith
,
L.
Harwell
,
E.
Schlienger
,
M.
Ensz
,
J.
Smugeresky
,
T.
Romero
,
D.
Greene
, and
D.
Reckaway
, “
Laser engineered net shaping (LENS™): A tool for direct fabrication of metal parts
,”
presented at the International Congress on Applications of Lasers & Electro-Optics
, Orlando, FL, USA, November 16–19,
1998
.
83.
A.
Bandyopadhyay
,
B. V.
Krishna
,
W.
Xue
, and
S.
Bose
, “
Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants
,”
J. Mater. Sci. Mater. Med.
20
(
1
),
29
(
2009
).
84.
H.
Bikas
,
P.
Stavropoulos
, and
G.
Chryssolouris
, “
Additive manufacturing methods and modelling approaches: A critical review
,”
Int. J. Adv. Manuf. Tech.
83
(
1–4
),
389
405
(
2016
).
85.
Y.
Zhai
,
D. A.
Lados
,
E. J.
Brown
, and
G. N.
Vigilante
, “
Fatigue crack growth behavior and microstructural mechanisms in Ti-6Al-4V manufactured by laser engineered net shaping
,”
Int. J. Fatigue
93
,
51
63
(
2016
).
86.
C. K.
Chua
and
W. Y.
Yeong
,
Bioprinting: Principles and Applications
(
World Scientific Publishing
,
2014
).
87.
W.
Zhu
,
X.
Qu
,
J.
Zhu
,
X.
Ma
,
S.
Patel
,
J.
Liu
,
P.
Wang
,
C. S. E.
Lai
,
M.
Gou
,
Y.
Xu
,
K.
Zhang
, and
S.
Chen
, “
Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture
,”
Biomaterials
124
,
106
115
(
2017
).
88.
W.
Zhu
,
H.
Cui
,
B.
Boualam
,
F.
Masood
,
E.
Flynn
,
R. D.
Rao
,
Z. Y.
Zhang
, and
L. G.
Zhang
, “
3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering
,”
Nanotechnology
29
(
18
),
185101
(
2018
).
89.
M. L.
Bedell
,
A. M.
Navara
,
Y.
Du
,
S.
Zhang
, and
A. G.
Mikos
, “
Polymeric systems for bioprinting
,”
Chem. Rev.
120
(
19
),
10744
10792
(
2020
).
90.
K. S.
Lim
,
J. H.
Galarraga
,
X.
Cui
,
G. C.
Lindberg
,
J. A.
Burdick
, and
T. B.
Woodfield
, “
Fundamentals and applications of photo-cross-linking in bioprinting
,”
Chem. Rev.
120
(
19
),
10662
10694
(
2020
).
91.
J.
An
,
C. K.
Chua
, and
V.
Mironov
, “
A perspective on 4D bioprinting
,”
Int. J. Bioprinting
2
(
1
),
3
5
(
2016
).
92.
X.
Kuang
,
D. J.
Roach
,
J.
Wu
,
C. M.
Hamel
,
Z.
Ding
,
T.
Wang
,
M. L.
Dunn
, and
H. J.
Qi
, “
Advances in 4D Printing: Materials and applications
,”
Adv. Funct. Mater.
29
(
2
),
1805290
(
2019
).
93.
M.
Vaezi
,
H.
Seitz
, and
S.
Yang
, “
A review on 3D micro-additive manufacturing technologies
,”
Int. J. Adv. Manuf. Tech.
67
,
1721
1754
(
2013
).
94.
B.
Guillotin
,
A.
Souquet
,
S.
Catros
,
M.
Duocastella
,
B.
Pippenger
,
S.
Bellance
,
R.
Bareille
,
M.
Rémy
,
L.
Bordenave
,
J.
Amédée
, and
F.
Guillemot
, “
Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
,”
Biomaterials
31
(
28
),
7250
7256
(
2010
).
95.
J.
Malda
,
J.
Visser
,
F. P.
Melchels
,
T.
Jüngst
,
W. E.
Hennink
,
W. J.
Dhert
,
J.
Groll
, and
D. W.
Hutmacher
, “
25th anniversary article: Engineering hydrogels for biofabrication
,”
Adv. Mater.
25
(
36
),
5011
5028
(
2013
).
96.
W. L.
Ng
,
J. M.
Lee
,
W. Y.
Yeong
, and
M. W.
Naing
, “
Microvalve-based bioprinting—Process, bio-inks and applications
,”
Biomater. Sci.
5
(
4
),
632
647
(
2017
).
97.
D.
Jang
,
D.
Kim
, and
J.
Moon
, “
Influence of fluid physical properties on ink-jet printability
,”
Langmuir
25
(
5
),
2629
2635
(
2009
).
98.
X.
Cui
,
T.
Boland
,
D. D.
D'Lima
, and
M. K
Lotz
, “
Thermal inkjet printing in tissue engineering and regenerative medicine
,”
Recent Pat. Drug Deliv. Formul.
6
(
2
),
149
155
(
2012
).
99.
B.
Derby
, “
Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures
,”
J. Mater. Chem.
18
(
47
),
5717
5721
(
2008
).
100.
E.
Tekin
,
P. J.
Smith
, and
U. S.
Schubert
, “
Inkjet printing as a deposition and patterning tool for polymers and inorganic particles
,”
Soft Matter
4
(
4
),
703
713
(
2008
).
101.
E. M.
Kritchman
and
I.
Zeytoun
, “
Rapid prototyping apparatus
,” U.S. patent. 7,896,639 B2 (
2011
).
102.
T.
Wohlers
and
T.
Gornet
, “
History of additive manufacturing
,”
Wohler's Rep.
24
,
118
(
2014
), available at http://www.wohlersassociates.com/history2016.pdf.
103.
T.
Kamio
,
K.
Hayashi
,
T.
Onda
,
T.
Takaki
,
T.
Shibahara
,
T.
Yakushiji
,
T.
Shibui
, and
H.
Kato
, “
Utilizing a low-cost desktop 3D printer to develop a ‘one-stop 3D printing lab’ for oral and maxillofacial surgery and dentistry fields
,”
3D Print. Med.
4
(
1
),
6
(
2018
).
104.
A.
Gregor
,
E.
Filová
,
M.
Novák
,
J.
Kronek
,
H.
Chlup
,
M.
Buzgo
,
V.
Blahnová
,
V.
Lukášová
,
M.
Bartoš
,
A.
Nečas
, and
J.
Hošek
, “
Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer
,”
J. Biol. Eng.
11
,
31
(
2017
).
105.
R.
Landers
and
R.
Mülhaupt
, “
Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers
,”
Macromol. Mater. Eng.
282
(
1
),
17
21
(
2000
).
106.
R.
Chang
,
J.
Nam
, and
W.
Sun
, “
Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing
,”
Tissue Eng. Part A
14
(
1
),
41
48
(
2008
).
107.
T.
Jungst
,
W.
Smolan
,
K.
Schacht
,
T.
Scheibel
, and
J. R.
Groll
, “
Strategies and molecular design criteria for 3D printable hydrogels
,”
Chem. Rev.
116
(
3
),
1496
1539
(
2016
).
108.
J.
Visser
,
B.
Peters
,
T. J.
Burger
,
J.
Boomstra
,
W. J.
Dhert
,
F. P.
Melchels
, and
J.
Malda
, “
Biofabrication of multi-material anatomically shaped tissue constructs
,”
Biofabrication
5
(
3
),
035007
(
2013
).
109.
T.
Hinton
,
Q.
Jallerat
,
R.
Palchesko
,
J.
Park
,
M.
Grodzicki
,
H.
Shue
,
M. H.
Ramadan
,
A. R.
Hudson
, and
A. W.
Feinberg
, “
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
,”
Sci. Adv.
1
(
9
),
e1500758
(
2015
).
110.
D. J.
Shiwarski
,
A. R.
Hudson
,
J. W.
Tashman
, and
A. W.
Feinberg
, “
Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication
,”
APL Bioeng.
5
(
1
),
010904
(
2021
).
111.
I.
Donderwinkel
,
J. C.
van Hest
, and
N. R.
Cameron
, “
Bio-inks for 3D bioprinting: Recent advances and future prospects
,”
Polym. Chem.
8
(
31
),
4451
4471
(
2017
).
112.
D. B.
Kolesky
,
R. L.
Truby
,
A. S.
Gladman
,
T. A.
Busbee
,
K. A.
Homan
, and
J. A.
Lewis
, “
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
,”
Adv. Mater.
26
(
19
),
3124
3130
(
2014
).
113.
W.
Chen
,
Y.
Xu
,
Y.
Li
,
L.
Jia
,
X.
Mo
,
G.
Jiang
, and
G.
Zhou
, “
3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration
,”
Chem. Eng. J.
382
,
122986
(
2020
).
114.
M.
Touri
,
F.
Moztarzadeh
,
N. A. A.
Osman
,
M. M.
Dehghan
, and
M.
Mozafari
, “
Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications
,”
Ceram. Int.
45
(
1
),
805
816
(
2019
).
115.
B. G.
Mekonnen
,
G.
Bright
, and, and
A.
Walker
, in
A Study on State of the Art Technology of Laminated Object Manufacturing (LOM)
(
Springer
,
2016
), pp.
207
216
.
116.
Z.
Meng
,
J.
He
,
Z.
Cai
,
M.
Zhang
,
J.
Zhang
,
R.
Ling
, and
D.
Li
, “
In-situ re-melting and re-solidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties
,”
Biofabrication
12
(
3
),
035012
(
2020
).
117.
L.
Hao
,
S.
Dadbakhsh
,
O.
Seaman
, and
M.
Felstead
, “
Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development
,”
J. Mater. Process. Tech.
209
(
17
),
5793
5801
(
2009
).
118.
X. Z.
Xin
,
N.
Xiang
,
J.
Chen
, and
B.
Wei
, “
In vitro biocompatibility of Co-Cr alloy fabricated by selective laser melting or traditional casting techniques
,”
Mater. Lett.
88
,
101
103
(
2012
).
119.
X.
Wang
,
S.
Xu
,
S.
Zhou
,
W.
Xu
,
M.
Leary
,
P.
Choong
,
M.
Qian
,
M.
Brandt
, and
Y. M.
Xie
, “
Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review
,”
Biomaterials
83
,
127
141
(
2016
).
120.
H.
Liang
,
T.
Ji
,
Y.
Zhang
,
Y.
Wang
, and
W.
Guo
, “
Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour
,”
Bone Joint J.
99-B
(
2
),
267
275
(
2017
).
121.
S. A.
Hunn
,
A. J.
Koefman
, and
A. W.
Hunn
, “
3D-printed titanium prosthetic reconstruction of the C2 vertebra: Techniques and outcomes of three consecutive cases
,”
Spine
45
(
10
),
667
672
(
2020
).
122.
A.
Bandyopadhyay
,
S.
Bose
, and
S.
Das
, “
3D printing of biomaterials
,”
MRS Bull.
40
(
2
),
108
115
(
2015
).
123.
V.
Mironov
,
N.
Reis
, and
B.
Derby
, “
Review: Bioprinting: A Beginning
,”
Tissue Eng.
12
(
4
),
631
634
(
2006
).
124.
Z. X.
Khoo
,
J. E. M.
Teoh
,
Y.
Liu
,
C. K.
Chua
,
S.
Yang
,
J.
An
,
K. F.
Leong
, and
W. Y.
Yeong
, “
3D printing of smart materials: A review on recent progresses in 4D printing
,”
Virtual Phys. Prototyp.
10
(
3
),
103
122
(
2015
).
125.
S.
Miao
,
N.
Castro
,
M.
Nowicki
,
L.
Xia
,
H.
Cui
,
X.
Zhou
,
W.
Zhu
,
S.-j.
Lee
,
K.
Sarkar
,
G.
Vozzi
,
Y.
Tabata
,
J.
Fisher
, and
L. G.
Zhang
, “
4D printing of polymeric materials for tissue and organ regeneration
,”
Mater. Today
20
(
10
),
577
591
(
2017
).
126.
M.
Champeau
,
D. A.
Heinze
,
T. N.
Viana
,
E. R.
de Souza
,
A. C.
Chinellato
, and
S.
Titotto
, “
4D printing of hydrogels: A review
,”
Adv. Funct. Mater.
30
(
31
),
1910606
(
2020
).
127.
S.
Tibbits
, “
4D printing: Multi-material shape change
,”
Archit. Des.
84
(
1
),
116
121
(
2014
).
128.
M.
Bao
,
X.
Lou
,
Q.
Zhou
,
W.
Dong
,
H.
Yuan
, and
Y.
Zhang
, “
Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering
,”
ACS Appl. Mater. Inter.
6
(
4
),
2611
2621
(
2014
).
129.
J.
Lai
,
X.
Ye
,
J.
Liu
,
C.
Wang
,
J.
Li
,
X.
Wang
,
M.
Ma
, and
M.
Wang
, “
4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose
,”
Mater. Des.
205
,
109699
(
2021
).
130.
C.
Wang
,
Y.
Zhou
, and
M.
Wang
, “
In situ delivery of rhBMP-2 in surface porous shape memory scaffolds developed through cryogenic 3D plotting
,”
Mater. Lett.
189
,
140
143
(
2017
).
131.
S.
Miao
,
W.
Zhu
,
N. J.
Castro
,
M.
Nowicki
,
X.
Zhou
,
H.
Cui
,
J. P.
Fisher
, and
L. G.
Zhang
, “
4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate
,”
Sci. Rep.
6
,
27226
(
2016
).
132.
M.
Zarek
,
N.
Mansour
,
S.
Shapira
, and
D.
Cohn
, “
4D printing of shape memory-based personalized endoluminal medical devices
,”
Macromol. Rapid Commun.
38
(
2
),
1600628
(
2017
).
133.
E.
Goulart
,
L. C.
de Caires-Junior
,
K. A.
Telles-Silva
,
B. H. S.
Araujo
,
S. A.
Rocco
,
M.
Sforca
,
I. L.
de Sousa
,
G. S.
Kobayashi
,
C. M.
Musso
,
A. F.
Assoni
,
D.
Oliveira
,
E.
Caldini
,
S.
Raia
,
P. I.
Lelkes
, and
M.
Zatz
, “
3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro
,”
Biofabrication
12
(
1
),
015010
(
2019
).
134.
M. A.
Skylar-Scott
,
S. G.
Uzel
,
L. L.
Nam
,
J. H.
Ahrens
,
R. L.
Truby
,
S.
Damaraju
, and
J. A.
Lewis
, “
Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels
,”
Sci. Adv.
5
(
9
),
eaaw2459
(
2019
).
135.
B.
Gao
,
Q.
Yang
,
X.
Zhao
,
G.
Jin
,
Y.
Ma
, and
F.
Xu
, “
4D bioprinting for biomedical applications
,”
Trends Biotechnol.
34
(
9
),
746
756
(
2016
).
136.
A.
Kirillova
,
R.
Maxson
,
G.
Stoychev
,
C. T.
Gomillion
, and
L.
Ionov
, “
4D biofabrication using shape-morphing hydrogels
,”
Adv. Mater.
29
(
46
),
1703443
(
2017
).
137.
S. H.
Kim
,
Y. B.
Seo
,
Y. K.
Yeon
,
Y. J.
Lee
,
H. S.
Park
,
M. T.
Sultan
,
J. M.
Lee
,
J. S.
Lee
,
O. J.
Lee
,
H.
Hong
,
H.
Lee
,
O.
Ajiteru
,
Y. J.
Suh
,
S. H.
Song
,
K. H.
Lee
, and
C. H.
Park
, “
4D-bioprinted silk hydrogels for tissue engineering
,”
Biomaterials
260
,
120281
(
2020
).
138.
Y.
Luo
,
X.
Lin
,
B.
Chen
, and
X.
Wei
, “
Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks
,”
Biofabrication
11
(
4
),
045019
(
2019
).
139.
D. F.
Williams
,
Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, Engl., March 3–5, 1986
(
Elsevier
,
1987
).
140.
W. E.
Frazier
, “
Metal additive manufacturing: A review
,”
J. Mater. Eng. Perform.
23
(
6
),
1917
1928
(
2014
).
141.
D.
Herzog
,
V.
Seyda
,
E.
Wycisk
, and
C.
Emmelmann
, “
Additive manufacturing of metals
,”
Acta Mater.
117
,
371
392
(
2016
).
142.
L. S. O.
Pires
,
M. H. F. V.
Fernandes
, and
J. M. M.
de Oliveira
, “
Biofabrication of glass scaffolds by 3D printing for tissue engineering
,”
Int. J. Adv. Manuf. Tech.
98
(
9–12
),
2665
2676
(
2018
).
143.
J. W.
Choi
and
N.
Kim
, “
Clinical application of three-dimensional printing technology in craniofacial plastic surgery
,”
Arch. Plast. Surg.
42
(
3
),
267
(
2015
).
144.
C. C.
Ploch
,
C. S.
Mansi
,
J.
Jayamohan
, and
E.
Kuhl
, “
Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning
,”
World Neurosurg.
90
,
668
674
(
2016
).
145.
J.
Yin
,
C.
Lu
,
J.
Fu
,
Y.
Huang
, and
Y.
Zheng
, “
Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion
,”
Mater. Des.
150
,
104
112
(
2018
).
146.
H.
Lin
,
L.
Shi
, and
D.
Wang
, “
A rapid and intelligent designing technique for patient-specific and 3D-printed orthopedic cast
,”
3D Print. Med.
2
(
1
),
4
(
2016
).
147.
E. L.
Nyberg
,
A. L.
Farris
,
B. P.
Hung
,
M.
Dias
,
J. R.
Garcia
,
A. H.
Dorafshar
, and
W. L.
Grayson
, “
3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration
,”
Ann. Biomed. Eng.
45
(
1
),
45
(
2017
).
148.
L.
Hale
,
E.
Linley
, and
D. M.
Kalaskar
, “
A digital workflow for design and fabrication of bespoke orthoses using 3D scanning and 3D printing, a patient-based case study
,”
Sci. Rep.
10
(
1
),
7028
(
2020
).
149.
L.
Griffith
, “
Polymeric biomaterials
,”
Acta Mater.
48
(
1
),
263
277
(
2000
).
150.
A. J.
Lasprilla
,
G. A.
Martinez
,
B. H.
Lunelli
,
A. L.
Jardini
, and
R.
Maciel Filho
, “
Poly-lactic acid synthesis for application in biomedical devices—A review
,”
Biotech. Adv.
30
(
1
),
321
328
(
2012
).
151.
T.
Serra
,
J. A.
Planell
, and
M.
Navarro
, “
High-resolution PLA-based composite scaffolds via 3-D printing technology
,”
Acta Biomater.
9
(
3
),
5521
5530
(
2013
).
152.
T.
Serra
,
M.
Ortiz-Hernandez
,
E.
Engel
,
J. A.
Planell
, and
M.
Navarro
, “
Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds
,”
Mater. Sci. Eng. C
38
,
55
62
(
2014
).
153.
B.
Holmes
,
W.
Zhu
,
J.
Li
,
J. D.
Lee
, and
L. G.
Zhang
, “
Development of novel three-dimensional printed scaffolds for osteochondral regeneration
,”
Tissue Eng. Part A
21
(
1–2
),
403
415
(
2015
).
154.
T.
van Manen
,
S.
Janbaz
, and
A. A.
Zadpoor
, “
Programming 2D/3D shape-shifting with hobbyist 3D printers
,”
Mater. Horiz.
4
(
6
),
1064
1069
(
2017
).
155.
P.
Gunatillake
,
R.
Mayadunne
, and
R.
Adhikari
, “
Recent developments in biodegradable synthetic polymers
,”
Biotechnol. Annu. Rev.
12
,
301
347
(
2006
).
156.
B. D.
Ulery
,
L. S.
Nair
, and
C. T.
Laurencin
, “
Biomedical applications of biodegradable polymers
,”
J. Polym. Sci. Pol. Phys.
49
(
12
),
832
864
(
2011
).
157.
R. A.
Jain
, “
The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices
,”
Biomaterials
21
(
23
),
2475
2490
(
2000
).
158.
R. L.
Simpson
,
F. E.
Wiria
,
A. A.
Amis
,
C. K.
Chua
,
K. F.
Leong
,
U. N.
Hansen
,
M.
Chandrasekaran
, and
M. W.
Lee
, “
Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering
,”
J. Biomed. Mater. Res. Part B
84B
(
1
),
17
25
(
2008
).
159.
J.
Kim
,
S.
Mcbride
,
B.
Tellis
,
P.
Alvarz-Urena
,
Y. H.
Song
,
D. D.
Dean
,
V. L.
Sylvia
,
H.
Elgendy
,
J.
Ong
, and
J. O.
Hollinger
, “
Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model
,”
Biofabrication
4
(
2
),
025003
(
2012
).
160.
P.
Gentile
,
V.
Chiono
,
I.
Carmagnola
, and
P.
Hatton
, “
An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering
,”
Int. J. Mol. Sci.
15
(
3
),
3640
3659
(
2014
).
161.
C.
Wang
,
X.
Ye
,
Y.
Zhao
,
L.
Bai
,
Z.
He
,
Q.
Tong
,
X.
Xie
,
H.
Zhu
,
D.
Cai
,
Y.
Zhou
,
B.
Lu
,
Y.
Wei
,
L.
Mei
,
D.
Xie
, and
M.
Wang
, “
Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects
,”
Biofabrication
12
(
3
),
035004
(
2020
).
162.
J. H.
Shim
,
S. E.
Kim
,
J. Y.
Park
,
J.
Kundu
,
S. W.
Kim
,
S. S.
Kang
, and
D. W.
Cho
, “
Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect
,”
Tissue Eng. Part A
20
(
13–14
),
1980
1992
(
2014
).
163.
H. N.
Chia
and
B. M.
Wu
, “
Recent advances in 3D printing of biomaterials
,”
J. Biol. Eng.
9
(
1
),
4
(
2015
).
164.
L.
Dong
,
S. J.
Wang
,
X. R.
Zhao
,
Y. F.
Zhu
, and
J. K.
Yu
, “
3D-printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering
,”
Sci. Rep.
7
(
1
),
13412
13412
(
2017
).
165.
E.
Luis
,
H.
Liu
,
J.
Song
, and
W. Y.
Yeong
, “
A review of medical silicone 3d-printing technologies and clinical applications
,”
J. Orthop. Res. Ther.
10
,
2575
8241
(
2018
).
166.
E.
Luis
,
H. M.
Pan
,
A. K.
Bastola
,
R.
Bajpai
,
S. L.
Sing
,
J.
Song
, and
W. Y.
Yeong
, “
3D printed silicone meniscus implants: Influence of the 3D printing process on properties of silicone implants
,”
Polymers
12
(
9
),
2136
(
2020
).
167.
E.
Luis
,
H. M.
Pan
,
S. L.
Sing
,
R.
Bajpai
,
J.
Song
, and
W. Y.
Yeong
, “
3D direct printing of silicone meniscus implant using a novel heat-cured extrusion-based printer
,”
Polymers
12
(
5
),
1031
(
2020
).
168.
Y.
Zhang
,
X.
Cheng
,
J.
Wang
,
Y.
Wang
,
B.
Shi
,
C.
Huang
,
X.
Yang
, and
T.
Liu
, “
Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering
,”
Biochem. Biophys. Res. Commun.
344
(
1
),
362
369
(
2006
).
169.
M.
Hospodiuk
,
M.
Dey
,
D.
Sosnoski
, and
I. T.
Ozbolat
, “
The bioink: A comprehensive review on bioprintable materials
,”
Biotechnol. Adv.
35
(
2
),
217
239
(
2017
).
170.
A.
Lee
,
A. R.
Hudson
,
D. J.
Shiwarski
,
J. W.
Tashman
,
T. J.
Hinton
,
S.
Yerneni
,
J. M.
Bliley
,
P. G.
Campbell
, and
A. W.
Feinberg
, “
3D bioprinting of collagen to rebuild components of the human heart
,”
Science
365
(
6452
),
482
(
2019
).
171.
S.
Rhee
,
J.
Puetzer
,
B.
Mason
,
C.
Reinhart-King
, and
L.
Bonassar
, “
3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering
,”
ACS Biomater. Sci. Eng.
2
(
10
),
1800
1805
(
2016
).
172.
A. J.
Kuijpers
,
G. H. M.
Engbers
,
J.
Feijen
,
S. C.
De Smedt
,
T. K. L.
Meyvis
,
J.
Demeester
,
J.
Krijgsveld
,
S. A. J.
Zaat
, and
J.
Dankert
, “
Characterization of the network structure of carbodiimide cross-linked gelatin gels
,”
Macromolecules
32
(
10
),
3325
3333
(
1999
).
173.
S.
Sakai
,
K.
Hirose
,
K.
Taguchi
,
Y.
Ogushi
, and
K.
Kawakami
, “
An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering
,”
Biomaterials
30
(
20
),
3371
3377
(
2009
).
174.
A. O.
Elzoghby
, “
Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research
,”
J. Controlled Release
172
(
3
),
1075
1091
(
2013
).
175.
K.
Yue
,
G.
Trujillo-de Santiago
,
M. M.
Alvarez
,
A.
Tamayol
,
N.
Annabi
, and
A.
Khademhosseini
, “
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
,”
Biomaterials
73
,
254
271
(
2015
).
176.
S.
Bertlein
,
G.
Brown
,
K. S.
Lim
,
T.
Jungst
,
T.
Boeck
,
T.
Blunk
,
J.
Tessmar
,
G. J.
Hooper
,
T. B. F.
Woodfield
, and
J.
Groll
, “
Thiol-ene clickable gelatin: A platform bioink for multiple 3D biofabrication technologies
,”
Adv. Mater.
29
(
44
),
1703404
(
2017
).
177.
L.
Zhang
,
Y.
Xiang
,
H.
Zhang
,
L.
Cheng
,
X.
Mao
,
N.
An
,
L.
Zhang
,
J.
Zhou
,
L.
Deng
,
Y.
Zhang
, and
X.
Sun
, “
A biomimetic 3D-self-forming approach for microvascular scaffolds
,”
Adv. Sci.
7
(
9
),
1903553
(
2020
).
178.
H.
Li
,
Y. J.
Tan
,
S.
Liu
, and
L.
Li
, “
Three-dimensional bioprinting of oppositely charged hydrogels with super strong interface bonding
,”
ACS Appl. Mater. Interfaces
10
(
13
),
11164
11174
(
2018
).
179.
A.
Skardal
,
D.
Mack
,
E.
Kapetanovic
,
A.
Atala
,
J. D.
Jackson
,
J.
Yoo
, and
S.
Soker
, “
Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
,”
Stem Cells Transl. Med.
1
(
11
),
792
802
(
2012
).
180.
A. L.
Rutz
,
K. E.
Hyland
,
A. E.
Jakus
,
W. R.
Burghardt
, and
R. N.
Shah
, “
A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
,”
Adv. Mater.
27
(
9
),
1607
1614
(
2015
).
181.
L.
Ouyang
,
C. B.
Highley
,
C. B.
Rodell
,
W.
Sun
, and
J. A.
Burdick
, “
3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking
,”
ACS Biomater. Sci. Eng.
2
(
10
),
1743
1751
(
2016
).
182.
L.
Ouyang
,
C. B.
Highley
,
W.
Sun
, and
J. A.
Burdick
, “
A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks
,”
Adv. Mater.
29
(
8
),
1604983
(
2017
).
183.
M. T.
Poldervaart
,
B.
Goversen
,
M.
De Ruijter
,
A.
Abbadessa
,
F. P.
Melchels
,
F. C.
Öner
,
W. J.
Dhert
,
T.
Vermonden
, and
J.
Alblas
, “
3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity
,”
PLoS One
12
(
6
),
e0177628
(
2017
).
184.
M. A.
LeRoux
,
F.
Guilak
, and
L. A.
Setton
, “
Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration
,”
J. Biomed. Mater. Res.
47
(
1
),
46
53
(
1999
).
185.
J. A.
Rowley
,
G.
Madlambayan
, and
D. J.
Mooney
, “
Alginate hydrogels as synthetic extracellular matrix materials
,”
Biomaterials
20
(
1
),
45
53
(
1999
).
186.
K. Y.
Lee
and
D. J.
Mooney
, “
Alginate: Properties and biomedical applications
,”
Prog. Polym. Sci.
37
(
1
),
106
126
(
2012
).
187.
K.
Markstedt
,
A.
Mantas
,
I.
Tournier
,
H. C.
Martínez Ávila
,
D.
Hägg
, and
P.
Gatenholm
, “
3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications
,”
Biomacromolecules
16
(
5
),
1489
1496
(
2015
).
188.
A. G.
Tabriz
,
M. A.
Hermida
,
N. R.
Leslie
, and
W.
Shu
, “
Three-dimensional bioprinting of complex cell laden alginate hydrogel structures
,”
Biofabrication
7
(
4
),
045012
(
2015
).
189.
E.
Axpe
and
M. L.
Oyen
, “
Applications of alginate-based bioinks in 3D bioprinting
,”
Int. J. Mol. Sci.
17
(
12
),
1976
(
2016
).
190.
H.
Li
,
S.
Liu
, and
L.
Li
, “
Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide
,”
Int. J. Bioprint.
2
(
2
),
54
66
(
2016
).
191.
L. K.
Narayanan
,
P.
Huebner
,
M. B.
Fisher
,
J. T.
Spang
,
B.
Starly
, and
R. A.
Shirwaiker
, “
3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells
,”
ACS Biomater. Sci. Eng.
2
(
10
),
1732
1742
(
2016
).
192.
H.
Li
,
Y. J.
Tan
,
K. F.
Leong
, and
L.
Li
, “
3D bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding
,”
ACS Appl. Mater. Interface
9
(
23
),
20086
(
2017
).
193.
T. H.
Ang
,
F. S. A.
Sultana
,
D. W.
Hutmacher
,
Y. S.
Wong
,
J. Y. H.
Fuh
,
X. M.
Mo
,
H. T.
Loh
,
E.
Burdet
, and
S. H.
Teoh
, “
Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system
,”
Mater. Sci. Eng. C
20
(
1
),
35
42
(
2002
).
194.
A.
Anitha
,
S.
Sowmya
,
P. S.
Kumar
,
S.
Deepthi
,
K.
Chennazhi
,
H.
Ehrlich
,
M.
Tsurkan
, and
R.
Jayakumar
, “
Chitin and chitosan in selected biomedical applications
,”
Prog. Polym. Sci.
39
(
9
),
1644
1667
(
2014
).
195.
J.
Huang
,
H.
Fu
,
Z.
Wang
,
Q.
Meng
,
S.
Liu
,
H.
Wang
,
X.
Zheng
,
J.
Dai
, and
Z.
Zhang
, “
BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting
,”
RSC Adv.
6
(
110
),
108423
108430
(
2016
).
196.
Y.
Dong
,
J.
Liang
,
Y.
Cui
,
S.
Xu
, and
N.
Zhao
, “
Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique
,”
Carbohydr. Polym.
197
,
183
193
(
2018
).
197.
J.
Zhang
,
B. J.
Allardyce
,
R.
Rajkhowa
,
Y.
Zhao
,
R. J.
Dilley
,
S. L.
Redmond
,
X.
Wang
, and
X.
Liu
, “
3D printing of silk particle-reinforced chitosan hydrogel structures and their properties
,”
ACS Biomater. Sci. Eng.
4
(
8
),
3036
3046
(
2018
).
198.
J. W.
Seo
,
S. R.
Shin
,
Y. J.
Park
, and
H.
Bae
, “
Hydrogel production platform with dynamic movement using photo-crosslinkable/temperature reversible chitosan polymer and stereolithography 4D printing technology
,”
Tissue Eng. Regener. Med.
17
(
4
),
423
431
(
2020
).
199.
J. Y.
Xiong
,
J.
Narayanan
,
X. Y.
Liu
,
T. K.
Chong
,
S. B.
Chen
, and
T. S.
Chung
, “
Topology evolution and gelation mechanism of agarose gel
,”
J. Phys. Chem. B
109
(
12
),
5638
5643
(
2005
).
200.
L. E.
Bertassoni
,
M.
Cecconi
,
V.
Manoharan
,
M.
Nikkhah
,
J.
Hjortnaes
,
A. L.
Cristino
,
G.
Barabaschi
,
D.
Demarchi
,
M. R.
Dokmeci
, and
Y.
Yang
, “
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
,”
Lab Chip
14
(
13
),
2202
2211
(
2014
).
201.
N. E.
Fedorovich
,
J. R.
De Wijn
,
A. J.
Verbout
,
J.
Alblas
, and
W. J.
Dhert
, “
Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
,”
Tissue Eng. Part A
14
(
1
),
127
133
(
2008
).
202.
S.
Xiong
,
X.
Zhang
,
P.
Lu
,
Y.
Wu
,
Q.
Wang
,
H.
Sun
,
B. C.
Heng
,
V.
Bunpetch
,
S.
Zhang
, and
H.
Ouyang
, “
A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization
,”
Sci. Rep.
7
(
1
),
4288
(
2017
).
203.
Z.
Zheng
,
J.
Wu
,
M.
Liu
,
H.
Wang
,
C.
Li
,
M. J.
Rodriguez
,
G.
Li
,
X.
Wang
, and
D. L.
Kaplan
, “
3D bioprinting of self-standing silk-based bioink
,”
Adv. Healthc. Mater.
7
(
6
),
1701026
(
2018
).
204.
X.
Du
,
D.
Wei
,
L.
Huang
,
M.
Zhu
,
Y.
Zhang
, and
Y.
Zhu
, “
3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering
,”
Mater. Sci. Eng. C
103
,
109731
(
2019
).
205.
Q.
Wang
,
G.
Han
,
S.
Yan
, and
Q.
Zhang
, “
3D printing of silk fibroin for biomedical applications
,”
Materials
12
(
3
),
504
(
2019
).
206.
N. A.
Alcantar
,
E. S.
Aydil
, and
J. N.
Israelachvili
, “
Polyethylene glycol–coated biocompatible surfaces
,”
J. Biomed. Mater. Res.
51
(
3
),
343
351
(
2000
).
207.
Y.
Jin
,
C.
Liu
,
W.
Chai
,
A.
Compaan
, and
Y.
Huang
, “
Self-supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air
,”
ACS Appl. Mater. Interfaces
9
(
20
),
17456
17465
(
2017
).
208.
T.
Xu
,
K. W.
Binder
,
M. Z.
Albanna
,
D.
Dice
,
W.
Zhao
,
J. J.
Yoo
, and
A.
Atala
, “
Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
,”
Biofabrication
5
(
1
),
015001
(
2012
).
209.
Y.
Yang
,
J. B.
Lu
,
Z. Y.
Luo
, and
D.
Wang
, “
Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting
,”
Rapid Prototyping J.
18
(
6
),
482
489
(
2012
).
210.
W. E.
King
,
A. T.
Anderson
,
R.
Ferencz
,
N.
Hodge
,
C.
Kamath
,
S. A.
Khairallah
, and
A. M.
Rubenchik
, “
Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges
,”
Appl. Phys. Rev.
2
(
4
),
041304
(
2015
).
211.
R.
Bibb
,
D.
Eggbeer
, and
R.
Williams
, “
Rapid manufacture of removable partial denture frameworks
,”
Rapid Prototyping J.
12
(
2
),
95
99
(
2006
).
212.
M.
Niinomi
,
Metals for Biomedical Devices.
(
Elsevier
,
2010
).
213.
S.
Ayyıldız
,
E. H.
Soylu
,
S.
İde
,
S.
Kılıç
,
C.
Sipahi
,
B.
Pişkin
, and
H. S.
Gökçe
, “
Annealing of Co-Cr dental alloy: Effects on nanostructure and Rockwell hardness
,”
J. Adv. Prosthodont.
5
(
4
),
471
478
(
2013
).
214.
K. B.
Kim
,
W. C.
Kim
,
H. Y.
Kim
, and
J. H.
Kim
, “
An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system
,”
Dent. Mater.
29
(
7
),
e91
e96
(
2013
).
215.
F. E.
Wiria
,
J. Y. M.
Shyan
,
P. N.
Lim
,
F. G. C.
Wen
,
J. F.
Yeo
, and
T.
Cao
, “
Printing of titanium implant prototype
,”
Mater. Des.
31
,
S101
S105
(
2010
).
216.
S.
Tunchel
,
A.
Blay
,
R.
Kolerman
,
E.
Mijiritsky
, and
J. A.
Shibli
, “
3D printing/additive manufacturing single titanium dental implants: A prospective multicenter study with 3 years of follow-up
,”
Int. J. Dent.
2016
,
1
.
217.
G.
Dinda
,
L.
Song
, and
J.
Mazumder
, “
Fabrication of Ti-6Al-4V scaffolds by direct metal deposition
,”
Metall. Mater. Trans.
39
(
12
),
2914
2922
(
2008
).
218.
L.
Machado
and
M.
Savi
, “
Medical applications of shape memory alloys
,”
Braz. J. Med. Biol. Res.
36
(
6
),
683
691
(
2003
).
219.
S.
Bernard
,
V.
Krishna Balla
,
S.
Bose
, and
A.
Bandyopadhyay
, “
Compression fatigue behavior of laser processed porous NiTi alloy
,”
J. Mech. Behav. Biomed. Mater.
13
,
62
68
(
2012
).
220.
C.
Haberland
,
M.
Elahinia
,
J. M.
Walker
,
H.
Meier
, and
J.
Frenzel
, “
On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing
,”
Smart Mater. Struct.
23
(
10
),
104002
(
2014
).
221.
W.
Hoffmann
,
T.
Bormann
,
A.
Rossi
,
B.
Müller
,
R.
Schumacher
,
I.
Martin
,
M.
de Wild
, and
D.
Wendt
, “
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
,”
J. Tissue Eng.
5
,
204173141454067
(
2014
).
222.
C.
Chluba
,
W.
Ge
,
R.
Lima de Miranda
,
J.
Strobel
,
L.
Kienle
,
E.
Quandt
, and
M.
Wuttig
, “
Ultralow-fatigue shape memory alloy films
,”
Science
348
(
6238
),
1004
(
2015
).
223.
R.
Erbel
,
C. D.
Mario
,
J.
Bartunek
,
J.
Bonnier
,
B.
de Bruyne
,
F. R.
Eberli
,
P.
Erne
,
M.
Haude
,
B.
Heublein
,
M.
Horrigan
,
C.
Ilsley
,
D.
Böse
,
J.
Koolen
,
T. F.
Lüscher
,
N.
Weissman
, and
R.
Waksman
, “
Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial
,”
Lancet
369
(
9576
),
1869
1875
(
2007
).
224.
N. T.
Kirkland
,
I.
Kolbeinsson
,
T.
Woodfield
,
G. J.
Dias
, and
M. P.
Staiger
, “
Synthesis and properties of topologically ordered porous magnesium
,”
Mater. Sci. Eng. B
176
(
20
),
1666
1672
(
2011
).
225.
H.
Windhagen
,
K.
Radtke
,
A.
Weizbauer
,
J.
Diekmann
,
Y.
Noll
,
U.
Kreimeyer
,
R.
Schavan
,
C.
Stukenborg-Colsman
, and
H.
Waizy
, “
Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study
,”
BioMed. Eng. OnLine
12
(
1
),
62
(
2013
).
226.
H. S.
Han
,
S.
Loffredo
,
I.
Jun
,
J.
Edwards
,
Y. C.
Kim
,
H. K.
Seok
,
F.
Witte
,
D.
Mantovani
, and
S.
Glyn-Jones
, “
Current status and outlook on the clinical translation of biodegradable metals
,”
Mater. Today
23
,
57
71
(
2019
).
227.
H.
Hermawan
,
Biodegradable Metals: State of the Art
(
Springer
,
2012
), pp.
13
22
.
228.
D. T.
Chou
,
D.
Wells
,
D.
Hong
,
B.
Lee
,
H.
Kuhn
, and
P. N.
Kumta
, “
Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing
,”
Acta Biomater.
9
(
10
),
8593
8603
(
2013
).
229.
Y.
Qin
,
P.
Wen
,
H.
Guo
,
D.
Xia
,
Y.
Zheng
,
L.
Jauer
,
R.
Poprawe
,
M.
Voshage
, and
J. H.
Schleifenbaum
, “
Additive manufacturing of biodegradable metals: Current research status and future perspectives
,”
Acta Biomater.
98
,
3
22
(
2019
).
230.
S.
Bose
,
J.
Darsell
,
M.
Kintner
,
H.
Hosick
, and
A.
Bandyopadhyay
, “
Pore size and pore volume effects on alumina and TCP ceramic scaffolds
,”
Mater. Sci. Eng. C
23
(
4
),
479
486
(
2003
).
231.
A.
Licciulli
,
C.
Esposito Corcione
,
A.
Greco
,
V.
Amicarelli
, and
A.
Maffezzoli
, “
Laser stereolithography of ZrO2 toughened Al2O3
,”
J. Eur. Ceram. Soc.
25
(
9
),
1581
1589
(
2005
).
232.
I.
Lauria
,
M.
Kramer
,
T.
Schröder
,
S.
Kant
,
A.
Hausmann
,
F.
Böke
,
R.
Leube
,
R.
Telle
, and
H.
Fischer
, “
Inkjet printed periodical micropatterns made of inert alumina ceramics induce contact guidance and stimulate osteogenic differentiation of mesenchymal stromal cells
,”
Acta Biomater.
44
,
85
96
(
2016
).
233.
A. J.
Ruys
,
Alumina Ceramics: Biomedical and Clinical Applications.
(
Woodhead Publishing
,
2018
).
234.
C.
Piconi
and
G.
Maccauro
, “
Zirconia as a ceramic biomaterial
,”
Biomaterials
20
(
1
),
1
25
(
1999
).
235.
J.
Ebert
,
E.
Özkol
,
A.
Zeichner
,
K.
Uibel
,
Ö.
Weiss
,
U.
Koops
,
R.
Telle
, and
H.
Fischer
, “
Direct inkjet printing of dental prostheses made of zirconia
,”
J. Dent. Res.
88
(
7
),
673
676
(
2009
).
236.
R. B.
Osman
,
A. J.
van der Veen
,
D.
Huiberts
,
D.
Wismeijer
, and
N.
Alharbi
, “
3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs
,”
J. Mech. Behav. Biomed. Mater.
75
,
521
528
(
2017
).
237.
W.
Wang
,
H.
Yu
,
Y.
Liu
,
X.
Jiang
, and
B.
Gao
, “
Trueness analysis of zirconia crowns fabricated with 3-dimensional printing
,”
J. Prosthet. Dent.
121
(
2
),
285
291
(
2019
).
238.
Y.
Shi
and
W.
Wang
, “
3D inkjet printing of the zirconia ceramic implanted teeth
,”
Mater. Lett.
261
,
127131
(
2020
).
239.
B.
Leukers
,
H.
Gülkan
,
S. H.
Irsen
,
S.
Milz
,
C.
Tille
,
M.
Schieker
, and
H.
Seitz
, “
Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
,”
J. Mater. Sci.: Mater. Med.
16
(
12
),
1121
1124
(
2005
).
240.
S. C.
Cox
,
J. A.
Thornby
,
G. J.
Gibbons
,
M. A.
Williams
, and
K. K.
Mallick
, “
3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications
,”
Mater. Sci. Eng. C
47
,
237
247
(
2015
).
241.
M.
Wang
, “
Developing bioactive composite materials for tissue replacement
,”
Biomaterials
24
(
13
),
2133
2151
(
2003
).
242.
P.
Tesavibul
,
R.
Felzmann
,
S.
Gruber
,
R.
Liska
,
I.
Thompson
,
A. R.
Boccaccini
, and
J.
Stampfl
, “
Processing of 45S5 Bioglass® by lithography-based additive manufacturing
,”
Mater. Lett.
74
,
81
84
(
2012
).
243.
N.
Alharbi
,
S. F.
Khan
,
O.
Bretcanu
, and
K.
Dalgarno
, “
Processing of apatite-wollastonite (AW) glass-ceramic for three dimensional printing (3DP)
,”
Appl. Mech. Mater.
754–755
,
974
978
(
2015
).
244.
K. C.
Kolan
,
M. C.
Leu
,
G. E.
Hilmas
,
R. F.
Brown
, and
M.
Velez
, “
Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering
,”
Biofabrication
3
(
2
),
025004
(
2011
).
245.
Y.
Zhang
,
L.
Xia
,
D.
Zhai
,
M.
Shi
,
Y.
Luo
,
C.
Feng
,
B.
Fang
,
J.
Yin
,
J.
Chang
, and
C.
Wu
, “
Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis
,”
Nanoscale
7
(
45
),
19207
19221
(
2015
).
246.
X.
Qi
,
P.
Pei
,
M.
Zhu
,
X.
Du
,
C.
Xin
,
S.
Zhao
,
X.
Li
, and
Y.
Zhu
, “
Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
,”
Sci. Rep.
7
,
42556
(
2017
).
247.
V.
Lalzawmliana
,
A.
Anand
,
M.
Roy
,
B.
Kundu
, and
S. K.
Nandi
, “
Mesoporous bioactive glasses for bone healing and biomolecules delivery
,”
Mater. Sci. Eng. C
106
,
110180
(
2020
).
248.
E. B.
Bae
,
K. H.
Park
,
J. H.
Shim
,
H. Y.
Chung
,
J. W.
Choi
,
J. J.
Lee
,
C. H.
Kim
,
H. J.
Jeon
,
S. S.
Kang
, and
J. B.
Huh
, “
Efficacy of rhBMP-2 loaded PCL/TCP/bdECM scaffold fabricated by 3D printing technology on bone regeneration
,”
BioMed. Res. Int.
2018
,
2876135
.
249.
Z.
Zhou
,
C. A.
Mitchell
,
F. J.
Buchanan
, and
N. J.
Dunne
, “
Effects of heat treatment on the mechanical and degradation properties of 3D-printed calcium-sulphate-based scaffolds
,”
Int. Sch. Res. Notices.
2013
, (
2013
).
250.
E.
Hughes
,
T.
Yanni
,
P.
Jamshidi
, and
L.
Grover
, “
Inorganic cements for biomedical application: Calcium phosphate, calcium sulphate and calcium silicate
,”
Adv. Appl. Ceram.
114
(
2
),
65
76
(
2015
).
251.
J.
Xie
,
H.
Shao
,
D.
He
,
X.
Yang
,
C.
Yao
,
J.
Ye
,
Y.
He
,
J.
Fu
, and
Z.
Gou
, “
Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds
,”
MRS Commun.
5
(
4
),
631
639
(
2015
).
252.
A.
Liu
,
M.
Sun
,
H.
Shao
,
X.
Yang
,
C.
Ma
,
D.
He
,
Q.
Gao
,
Y.
Liu
,
S.
Yan
, and
S.
Xu
, “
The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects
,”
J. Mater. Chem. B
4
(
22
),
3945
3958
(
2016
).
253.
J.
Dávila
,
M.
Freitas
,
P.
Inforçatti Neto
,
Z.
Silveira
,
J.
Silva
, and
M.
d' Ávila
, “
Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing
,”
J. Appl. Polym. Sci.
133
(
15
),
n/a
(
2016
).
254.
H.
Zhang
,
X.
Mao
,
Z.
Du
,
W.
Jiang
,
X.
Han
,
D.
Zhao
,
D.
Han
, and
Q.
Li
, “
Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model
,”
Sci. Technol. Adv. Mater.
17
(
1
),
136
148
(
2016
).
255.
X.
Wang
,
M.
Jiang
,
Z.
Zhou
,
J.
Gou
, and
D.
Hui
, “
3D printing of polymer matrix composites: A review and prospective
,”
Composites, Part B
110
,
442
458
(
2017
).
256.
Q.
Gao
,
X.
Niu
,
L.
Shao
,
L.
Zhou
,
Z.
Lin
,
A.
Sun
,
J.
Fu
,
Z.
Chen
,
J.
Hu
,
Y.
Liu
, and
Y.
He
, “
3D printing of complex GelMA-based scaffolds with nanoclay
,”
Biofabrication
11
(
3
),
035006
(
2019
).