Antibiotic-resistant bacteria, which are growing at a frightening rate worldwide, has put the world on a long-standing alert. The COVID-19 health crisis reinforced the pressing need to address a fast-developing pandemic. To mitigate these health emergencies and prevent economic collapse, cheap, practical, and easily applicable infection control techniques are essential worldwide. Application of light in the form of photodynamic action on microorganisms and viruses has been growing and is now successfully applied in several areas. The efficacy of this approach has been demonstrated in the fight against viruses, prompting additional efforts to advance the technique, including safety use protocols. In particular, its application to suppress respiratory tract infections and to provide decontamination of fluids, such as blood plasma and others, can become an inexpensive alternative strategy in the fight against viral and bacterial infections. Diverse early treatment methods based on photodynamic action enable an accelerated response to emerging threats prior to the availability of preventative drugs. In this review, we evaluate a vast number of photodynamic demonstrations and first-principle proofs carried out on viral control, revealing its potential and encouraging its rapid development toward safe clinical practice. This review highlights the main research trends and, as a futuristic exercise, anticipates potential situations where photodynamic treatment can provide a readily available solution.

1.
B. K.
Tischer
and
N.
Osterrieder
, “
Herpesviruses—A zoonotic threat?
,”
Vet. Microbiol.
140
,
266
270
(
2010
).
2.
K. K.
Irwin
,
N.
Renzette
,
T. F.
Kowalik
, and
J. D.
Jensen
, “
Antiviral drug resistance as an adaptive process
,”
Virus Evol.
2
,
vew014
(
2016
).
3.
D. W.
Kimberlin
and
R. J.
Whitley
, “
Antiviral resistance: Mechanisms, clinical significance, and future implications
,”
J. Antimicrob. Chemother.
37
,
403
421
(
1996
).
4.
K. I.
Moller
,
B.
Kongshoj
,
P. A.
Philipsen
,
V. O.
Thomsen
, and
C.
Wulf
, “
How Finsen's light cured lupus vulgaris
,”
Photodermatology
21
,
118
124
(
2005
).
5.
E.
Hideg
,
M. A. K.
Jansen
, and
A.
Strid
, “
UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates?
,”
Trends Plant Sci.
18
,
107
115
(
2013
).
6.
S.-W. D.
Tsen
, “
A novel ultrashort pulsed laser method pathogen inactivation
,” Ph.D. dissertation (
Washington University
,
2016
).
7.
A.
Berchtikou
,
A. A.
Greschner
,
P.
Tijssen
,
M. A.
Gauthier
, and
T.
Ozaki
, “
Accelerated inactivation of M13 bacteriophage using millijoule femtosecond lasers
,”
J. Biophotonics
13
,
e201900001
(
2020
).
8.
E.
Sotiriou
,
T.
Koussidou-Eremonti
,
G.
Chaidemenos
,
Z.
Apalla
, and
D.
Ioannides
, “
Photodynamic therapy for distal and lateral subungual toenail onychomycosis caused by Trichophyton rubrum: Preliminary results of a single-centre open trial
,”
Acta Derm. Venereol.
90
,
216
217
(
2010
).
9.
P.
Hillemanns
,
M. H.
Einstein
, and
O. E.
Iversen
, “
Topical hexaminolevulinate photodynamic therapy for the treatment of persistent human papilloma virus infections and cervical intraepithelial neoplasia
,”
Expert Opin. Investig. Drugs
24
,
273
281
(
2015
).
10.
P.
Soergel
,
G. F.
Dahl
,
M.
Onsrud
, and
P.
Hillemanns
, “
Photodynamic therapy of cervical intraepithelial neoplasia 1-3 and HPV infection with methylaminolevulinate and hexaminolevulinate—A double-blind, dose-finding study
,”
Lasers Surg. Med.
44
,
468
474
(
2012
).
11.
K.
Moghissi
,
K.
Dixon
,
J. A. C.
Thorpe
,
M.
Stringer
, and
C.
Oxtoby
, “
Photodynamic therapy (PDT) in early central lung cancer: A treatment option for patients ineligible for surgical resection
,”
Thorax
62
,
391
395
(
2007
).
12.
A. C. E.
Moor
,
A.
van der Veen
,
T. M. A. R.
Dubbelman
,
J.
VanSteveninck
, and
A.
Brand
, “
Photodynamic sterilization of red cells and its effect on contaminating white cells: Viability and mechanism of cell death
,”
Transfusion
39
,
599
607
(
1999
).
13.
S.
Rywkin
, et al., “
New phthalocyanines for photodynamic virus inactivation in red blood cell concentrates
,”
Photochem. Photobiol.
60
,
165
170
(
1994
).
14.
J.
Wang
 et al., “
Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection
,”
Nanoscale
10
,
132
141
(
2018
).
15.
M. C.
Geralde
 et al., “
Pneumonia treatment by photodynamic therapy with extracorporeal illumination—An experimental model
,”
Physiol. Rep.
5
,
1
7
(
2017
).
16.
M. N.
Mead
, “
Benefits of sunlight: A bright spot for human health
,”
Environ. Health Perspect.
116
,
160
167
(
2008
).
17.
M. J.
Garland
,
C. M.
Cassidy
,
D.
Woolfson
, and
R. F.
Donnelly
, “
Designing photosensitizers for photodynamic therapy: Strategies, challenges and promising developments
,”
Future Medicin. Chem.
1
,
667
691
(
2009
).
18.
P. C.
Lo
 et al., “
New amphiphilic silicon(IV) phthalocyanines as efficient photosensitizers for photodynamic therapy: Synthesis, photophysical properties, and in vitro photodynamic activities
,”
Chem. - A Eur. J.
10
,
4831
4838
(
2004
).
19.
W.
Randazzo
,
R.
Aznar
, and
G.
Sánchez
, “
Curcumin-mediated photodynamic inactivation of norovirus surrogates
,”
Food Environ. Virol.
8
,
244
250
(
2016
).
20.
A. M.
Prince
, et al., “
Strategies for evaluation of enveloped virus inactivation in red cell concentrates using hypericin
,”
Photochem. Photobiol.
71
,
188
195
(
2000
).
21.
M. E.
Lim
,
Y.-l.
Lee
,
Y.
Zhang
, and
J. J. H.
Chu
, “
Photodynamic inactivation of viruses using upconversion nanoparticles
,”
Biomaterials
33
,
1912
1920
(
2012
).
22.
M. J.
Shikowitz
 et al., “
Clinical trial of photodynamic therapy with meso-tetra (Hydroxyphenyl) chlorin for respiratory papillomatosis
,”
Arch. Otolaryngol. - Head Neck Surg.
131
,
99
105
(
2005
).
23.
S.
Cui
 et al., “
In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct
,”
ACS Nano
7
,
676
688
(
2013
).
24.
J.
D'Orazio
,
S.
Jarrett
,
A.
Amaro-Ortiz
, and
T.
Scott
, “
UV radiation and the skin
,”
Int. J. Mol. Sci.
14
,
12222
12248
(
2013
).
25.
A.
Scrima
 et al., “
Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex
,”
Cell
135
,
1213
1223
(
2008
).
26.
S. W. D.
Tsen
,
T. C.
Wu
,
J. G.
Kiang
, and
K. T.
Tsen
, “
Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation
,”
J. Biomed. Sci.
19
,
1
(
2012
).
27.
J. C.
Wiggle
 et al., “
No effect of femtosecond laser pulses on M13, E. coli, DNA, or protein
,”
J. Biomed. Opt.
19
,
115008
(
2014
).
28.
L.
Pan
,
J.
Liu
, and
J.
Shi
, “
Intranuclear photosensitizer delivery and photosensitization for enhanced photodynamic therapy with ultralow irradiance
,”
Adv. Funct. Mater.
24
,
7318
7327
(
2014
).
29.
J.
Moan
, “
On the diffusion length of singlet oxygen in cells and tissues
,”
J. Photochem. Photobiol.
6
,
343
347
(
1990
).
30.
D. G.
Meckes
and
N.
Raab-traub
, “
Microvesicles and viral infection
,”
J. Virol.
85
,
12844
12854
(
2011
).
31.
S. N.
Morris
,
A. N.
Fader
,
M. P.
Milad
, and
H. J.
Dionisi
, “
Understanding the ‘scope’ of the problem: Why laparoscopy is considered safe during the COVID-19 pandemic
,”
J. Minim. Invasive Gynecol.
27
,
789
791
(
2020
).
32.
M. E.
Fabry
 et al., “
Some aspects of the pathophysiology of homozygous Hb CC erythrocytes
,”
J. Clin. Invest.
67
,
1284
1291
(
1981
).
33.
D. A.
Guertin
and
D. M.
Sabatini
, “
Cell size control
,” in
Encyclopedia of Life Sciences
(
John Wiley & Sons, Ltd.
,
Chichester, UK
).
34.
M.
Wainwright
, “
Local treatment of viral disease using photodynamic therapy
,”
Int. J. Antimicrob. Agents
21
,
510
520
(
2003
).
35.
P. R.
Ogilby
, “
Singlet oxygen: There is indeed something new under the sun
,”
Chem. Soc. Rev.
39
,
3181
3209
(
2010
).
36.
J.
Lenard
,
A.
Rabson
, and
R.
Vanderoef
, “
Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: Inhibition of fusion and syncytia formation
,”
Proc. Natl. Acad. Sci.
90
,
158
162
(
1993
).
37.
A.
Wiehe
,
J. M.
O'Brien
, and
M. O.
Senge
, “
Trends and targets in antiviral phototherapy
,”
Photochem. Photobiol. Sci.
18
,
2565
2612
(
2019
).
38.
K.
Zhu
,
G.
Liu
,
J.
Hu
, and
S.
Liu
, “
Near-infrared light-activated photochemical internalization of reduction-responsive polyprodrug vesicles for synergistic photodynamic therapy and chemotherapy
,”
Biomacromolecules
18
,
2571
2582
(
2017
).
39.
L.
Costa
 et al., “
Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation
,”
Photochem. Photobiol. Sci.
11
,
1520
1523
(
2012
).
40.
M. D.
Weitzman
and
A.
Fradet-Turcotte
, “
Virus DNA replication and the host DNA damage response
,”
Annu. Rev. Virol.
5
,
141
164
(
2018
).
41.
M.
Hossain
and
G. S.
Kumar
, “
DNA intercalation of methylene blue and quinacrine: New insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides
,”
Mol. Biosyst.
5
,
1311
1322
(
2009
).
42.
F. A.
Jalilian
, “
Effect of photodynamic therapy by 810 and 940 nm diode laser on Herpes Simplex Virus 1: An in vitro study
,”
Photodiagnosis Photodyn. Ther.
25
,
87
91
(
2019
).
43.
A. B.
Ormond
and
H. S.
Freeman
, “
Dye sensitizers for photodynamic therapy
,”
Materials
6
,
817
840
(
2013
).
44.
J.
Dairou
,
C.
Vever-Bizet
, and
D.
Brault
, “
Interaction of sulfonated anionic porphyrins with HIV glycoprotein gp120: Photodamages revealed by inhibition of antibody binding to V3 and C5 domains
,”
Antiviral Res.
61
,
37
47
(
2004
).
45.
Z.
Smetana
 et al., “
Photodynamic inactivation of herpes viruses with phthalocyanine derivatives
,”
J. Photochem. Photobiol.
22
,
37
43
(
1994
).
46.
A.
Ohtsuki
,
T.
Hasegawa
,
Y.
Hirasawa
,
H.
Tsuchihashi
, and
S.
Ikeda
, “
Photodynamic therapy using light-emitting diodes for the treatment of viral warts
,”
J. Dermatol.
36
,
525
528
(
2009
).
47.
H.
Majiya
,
O. O.
Adeyemi
,
N. J.
Stonehouse
, and
P.
Millner
, “
Photodynamic inactivation of bacteriophage MS2: The A-protein is the target of virus inactivation
,”
J. Photochem. Photobiol.
178
,
404
411
(
2017
).
48.
K. L.
Warfield
 et al., “
Ebola virus inactivation with preservation of antigenic and structural integrity by a photoinducible alkylating agent
,”
J. Infect. Dis.
196
,
S276
S283
(
2007
).
49.
M. R.
Ke
 et al., “
Oligolysine-conjugated zinc(II) phthalocyanines as efficient photosensitizers for antimicrobial photodynamic therapy
,”
Chem. - An Asian J.
9
,
1868
1875
(
2014
).
50.
M. L.
Embleton
,
S. P.
Nair
,
B. D.
Cookson
, and
M.
Wilson
, “
Antibody-directed photodynamic therapy of methicillin-resistant Staphylococcus aureus
,”
Microb. Drug Resist.
10
,
92
97
(
2004
).
51.
S.
Wang
 et al. “
Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy
,”
J. Biomed. Opt.
21
,
078001
(
2016
).
52.
M.
Sadraeian
 et al., “
Photoimmunotherapy using cationic and anionic photosensitizer-antibody conjugates against HIV Env-expressing cells
,”
Int. J. Mol. Sci.
21
,
9151
(
2020
).
53.
Y.
Raviv
 et al., “
Hydrophobic inactivation of influenza viruses confers preservation of viral structure with enhanced immunogenicity
,”
J. Virol.
82
,
4612
4619
(
2008
).
54.
M. A.
Tortorici
 et al., “
Structural basis for human coronavirus attachment to sialic acid receptors
,”
Nat. Struct. Mol. Biol.
26
,
481
489
(
2019
).
55.
P. M. R.
Pereira
 et al., “
Antibodies armed with photosensitizers: From chemical synthesis to photobiological applications
,”
Org. Biomol. Chem.
13
,
2518
2529
(
2015
).
56.
Z.
Li
 et al., “
Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction
,”
Cell Res.
27
,
1046
1064
(
2017
).
57.
R. M.
Gulick
 et al., “
Phase I studies of hypericin, the active compound in St. John's wort, as an antiretroviral agent in HIV-infected adults: AIDS clinical trials group protocols 150 and 258
,”
Ann. Intern. Med.
130
,
510
514
(
1999
).
58.
S.
Onoue
 et al., “
In vitro photochemical and phototoxicological characterization of major constituents in St. John's wort (Hypericum perforatum) extracts
,”
Phytochemistry
72
,
1814
1820
(
2011
).
59.
J. B.
Hudson
,
L.
Harris
, and
G. H. N.
Towers
, “
The importance of light in the anti-HIV effect of hypericin
,”
Antiviral Res.
20
,
173
178
(
1993
).
60.
J. B.
Hudson
 et al., “
Further investigations on the antiviral activities of medicinal plants of Togo
,”
Pharm. Biol.
38
,
46
50
(
2000
).
61.
J. B.
Hudson
,
M. K.
Lee
,
B.
Sener
, and
N.
Erdemoglu
, “
Antiviral activities in extracts of Turkish medicinal plants
,”
Pharm. Biol.
38
,
171
175
(
2000
).
62.
L. R.
Comini
et al., “
Antimicrobial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae)
,”
J. Photochem. Photobiol. B
102
,
108
114
(
2011
).
63.
J. M.
Jacobson
 et al., “
Pharmacokinetics, safety, and antiviral effects of hypericin, a derivative of St. John's wort plant, in patients with chronic hepatitis C virus infection
.,”
Antimicrob. Agents Chemother.
45
,
517
524
(
2001
).
64.
M.
Blank
 et al., “
Antimetastatic activity of the photodynamic agent hypericin in the dark
,”
Int. J. Cancer
111
,
596
603
(
2004
).
65.
J.
Montanari
 et al., “
Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark
,”
J. Controlled Release
147
,
368
376
(
2010
).
66.
L. G.
Sabino
 et al., “
Experimental evidence and model explanation for cell population characteristics modification when applying sequential photodynamic therapy
,”
Laser Phys. Lett.
8
,
239
246
(
2011
).
67.
I. O. L.
Bacellar
,
T. M.
Tsubone
,
C.
Pavani
, and
M. S.
Baptista
, “
Photodynamic efficiency: From molecular photochemistry to cell death
,”
Int. J. Mol. Sci.
16
,
20523
20559
(
2015
).
68.
M. R.
Hamblin
and
T.
Hasan
, “
Photodynamic therapy: A new antimicrobial approach to infectious disease?
,”
Photochem. Photobiolog. Sci.
3
,
436
450
(
2004
).
69.
B.
Muz
,
P.
de la Puente
,
F.
Azab
, and
A. K.
Azab
, “
The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy
,”
Hypoxia
3
,
83
92
(
2015
).
70.
V. N.
Nguyen
 et al., “
An emerging molecular design approach to heavy-atom-free photosensitizers for enhanced photodynamic therapy under hypoxia
,”
J. Am. Chem. Soc.
141
,
16243
16248
(
2019
).
71.
E.
Delaey
,
A.
Vandenbogaerde
,
W.
Merlevede
, and
P.
De Witte
, “
Photocytotoxicity of hypericin in normoxic and hypoxic conditions
,”
J. Photochem. Photobiol. B Biol.
56
,
19
24
(
2000
).
72.
A. C.
Zangirolami
,
N. M.
Inada
,
V. S.
Bagnato
, and
K. C.
Blanco
, “
Biofilm destruction on endotracheal tubes by photodynamic inactivation
,”
Infect. Disord. - Drug Targets
18
,
218
223
(
2018
).
73.
J. M.
Soares
,
T. Q.
Corrêa
,
N. M.
Inada
,
V. S.
Bagnato
, and
K. C.
Blanco
, “
In vitro study of photodynamic therapy for treatment of bacteremia in whole blood
,”
J. Pharm. Pharmacol.
6
,
863
869
(
2018
).
74.
J. M.
Soares
,
N. M.
Inada
,
V. S.
Bagnato
, and
K. C.
Blanco
, “
Evolution of surviving Streptoccocus pyogenes from pharyngotonsillitis patients submit to multiple cycles of antimicrobial photodynamic therapy
,”
J. Photochem. Photobiol. B Biol.
210
,
111985
(
2020
).
75.
C. M. G.
de Faria
,
N. M.
Inada
,
J. D.
Vollet-Filho
, and
V. S.
Bagnato
, “
A threshold dose distribution approach for the study of PDT resistance development: A threshold distribution approach for the study of PDT resistance
,”
J. Photochem. Photobiol. B Biol.
182
,
85
91
(
2018
).
76.
J. S. M.
Giusti
 et al., “
Antimicrobial photodynamic action on dentin using a light-emitting diode light source
,”
Photomed. Laser Surg.
26
,
281
287
(
2008
).
77.
Yang
,
Y.-l.
 et al., “
Off-label photodynamic therapy for recalcitrant facial flat warts using topical 5-aminolevulinic acid
,”
Lasers Med. Sci.
31
,
929
936
(
2016
).
78.
L.
Wu
 et al., “
Efficacy of the combination of superficial shaving with photodynamic therapy for recalcitrant periungual warts
,”
Photodiagnosis Photodyn. Ther.
27
,
340
344
(
2019
).
79.
Q.
Li
 et al., “
Comparative study of photodynamic therapy with 5%, 10% and 20% aminolevulinic acid in the treatment of generalized recalcitrant facial verruca plana: A randomized clinical trial
,”
J. Eur. Acad. Dermatology Venereol.
28
,
1821
1826
(
2014
).
80.
M.
Caucanas
,
P.
Gillard
, and
O.
Vanhooteghem
, “
Efficiency of photodynamic therapy in the treatment of diffuse facial viral warts in an immunosuppressed patient: Towards a gold standard?
,”
Case Rep. Dermatol.
2
,
207
213
(
2010
).
81.
Z.
Hu
 et al., “
Dynamics of HPV viral loads reflect the treatment effect of photodynamic therapy in genital warts
,”
Photodiagnosis Photodyn. Ther.
21
,
86
90
(
2018
).
82.
V.
Nucci
,
D.
Torchia
, and
P.
Cappugi
, “
Treatment of anogenital condylomata acuminata with topical photodynamic therapy: Report of 14 cases and review
,”
Int. J. Infect. Dis.
145
,
280
282
(
2010
).
83.
H.
Wang
 et al., “
Treatment of HPV infection-associated cervical condylomata acuminata with 5-aminolevulinic acid-mediated photodynamic therapy
,”
Photochem. Photobiol.
88
,
565
569
(
2012
).
84.
F. M.
Carbinatto
 et al., “
Photodynamic therapy of Cervical Intraepithelial Neoplasia (CIN) high grade
,” in
Proceedings of Photonic Therapeutics and Diagnostics XII
, 9689,
968948
(
SPIE
,
San Francisco
,
2016
).
85.
J.
Xu
 et al., “
The combination treatment using CO2 laser and photodynamic therapy for HIV seropositive men with intraanal warts
,”
Photodiagnosis Photodyn. Ther.
10
,
186
193
(
2013
).
86.
N. M.
Inada
 et al., “
Photodiagnosis and treatment of condyloma acuminatum using 5-aminolevulinic acid and homemade devices
,”
Photodiagnosis Photodyn. Ther.
9
,
60
68
(
2012
).
87.
F.
Liang
 et al., “
Topical 5-aminolevulinic acid photodynamic therapy for laryngeal papillomatosistosis treatment
,”
Photodiagnosis Photodyn. Ther.
28
,
136
141
(
2019
).
88.
C.
Zhou
 et al., “
Coblation plus photodynamic therapy (PDT) for the treatment of juvenile onset laryngeal papillomatosis: Case reports
,”
World J. Surg. Oncol.
12
,
1
6
(
2014
).
89.
S.
Lu
,
Y.
Liu
,
R.
Shi
, and
P.
Zhou
, “
Successful treatment of adult-onset recurrent respiratory papillomatosis with CO2 laser and photodynamic therapy
,”
Case Rep. Otolaryngol.
2019
,
7394879
.
90.
S.
Yang
 et al., “
Efficacy of microsurgery in combined with topical-PDT in treating recurrent respiratory papillomatosis: Compare JORRP with AORRP
,”
Acta Oto-Laryngol.
139
,
1133
1139
(
2019
).
91.
S.
Teitelbaum
,
L. H.
Azevedo
, and
W. E.
Bernaola-Paredes
, “
Antimicrobial photodynamic therapy used as first choice to treat herpes zoster virus infection in younger patient: A case report
,”
Photobiomodulation, Photomedicine, Laser Surg.
38
,
232
236
(
2020
).
92.
B. J.
Osiecka
,
P.
Nockowski
,
S.
Kwiatkowski
, and
J. C.
Szepietowski
, “
Photodynamic therapy with red light and 5-aminolaevulinic acid for herpes simplex recurrence: Preliminary results
,”
Acta Derm. Venereol.
97
,
1239
1240
(
2017
).
93.
J.
Marotti
 et al., “
High-intensity laser and photodynamic therapy as a treatment for recurrent herpes labialis
,”
Photomed. Laser Surg.
28
,
439
444
(
2010
).
94.
S.
Nobbe
,
R. M.
Trüeb
,
L. E.
French
, and
G. F. L.
Hofbauer
, “
Herpes simplex virus reactivation as a complication of photodynamic therapy
,”
Photodermatol. Photoimmunol. Photomed.
27
,
51
52
(
2011
).
95.
M.
Galasso
 et al., “
Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion
,”
Nat. Commun.
10
,
1
12
(
2019
).
96.
M.
Perlin
,
J. C. H.
Mao
,
E. R.
Otis
,
N. L.
Shipkowitz
, and
R. G.
Duff
, “
Photodynamic inactivation of influenza and herpes viruses by hematoporphyrin
,”
Antiviral Res.
7
,
43
51
(
1987
).
97.
H.
Yin
 et al., “
Preliminary safety evaluation of photodynamic therapy for blood purification: An animal study
,”
Artif. Organs
38
,
510
515
(
2014
).
98.
M. A.
Namvar
 et al., “
Effect of photodynamic therapy by 810 and 940 nm diode laser on Herpes Simplex Virus 1: An in vitro study
,”
Photodiagnosis Photodyn. Ther.
25
,
87
91
(
2019
).
99.
V. V.
Zverev
 et al., “
In vitro studies of the antiherpetic effect of photodynamic therapy
,”
Lasers Med. Sci.
31
,
849
855
(
2016
).
100.
Z. B.
Kvacheva
 et al., “
Photodynamic inhibition of infection caused by drug-resistant variants of herpes simplex virus type I
,”
Bull. Exp. Biol. Med.
135
,
450
454
(
2003
).
101.
B. H.
Mahmoud
,
C. L.
Hexsel
,
I. H.
Hamzavi
, and
H. W.
Lim
, “
Effects of visible light on the skin
,”
Photochem. Photobiol.
84
,
450
462
(
2008
).
102.
S. R.
Tsai
and
M. R.
Hamblin
, “
Biological effects and medical applications of infrared radiation
,”
J. Photochem. Photobiol. B Biol.
170
,
197
207
(
2017
).
103.
M.
Rehan Zaheer
 et al., “
Molecular mechanisms of drug photodegradation and photosensitization
,”
Curr. Pharm. Des.
22
,
768
782
(
2016
).
104.
S.
Onoue
 et al., “
Chemical photoallergy: Photobiochemical mechanisms, classification, and risk assessments
,”
J. Dermatol. Sci.
85
,
4
11
(
2017
).
105.
J.
Webber
,
D.
Kessel
, and
D.
Fromm
, “
Side effects and photosensitization of human tissues after aminolevulinic acid
,”
J. Surg. Res.
68
,
31
37
(
1997
).
106.
M.
Wachowska
 et al., “
Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer
,”
Molecules
16
,
4140
4164
(
2011
).
107.
G. B.
Kharkwal
,
S. K.
Sharma
,
Y.
Huang
,
T.
Dai
, and
M. R.
Hamblin
, “
Photodynamic therapy for infections: Clinical applications
,”
Lasers Surg. Med.
43
,
755
767
(
2011
).
108.
M. A.
Lotufo
 et al., “
Efficacy of photodynamic therapy on the treatment of herpes labialis: A systematic review
,”
Photodiagnosis Photodyn. Ther.
29
,
1
7
(
2020
).
109.
S.
Radakovic
and
A.
Tanew
, “
5-aminolaevulinic acid patch-photodynamic therapy in the treatment of actinic cheilitis
,”
Photodermatol. Photoimmunol. Photomed.
33
,
306
310
(
2017
).
110.
S. H.
Ibbotson
, “
Adverse effects of topical photodynamic therapy
,”
Photodermatol. Photoimmunol. Photomed.
27
,
116
130
(
2011
).
111.
R. W.
Johnson
and
R. H.
Dworkin
, “
Treatment of herpes zoster and postherpetic neuralgia
,”
BMJ
326
,
748
750
(
2003
).
112.
I. U.
Park
,
C.
Introcaso
, and
E. F.
Dunne
, “
Human papillomavirus and genital warts: A review of the evidence for the 2015 Centers for Disease Control and Prevention Sexually Transmitted Diseases Treatment Guidelines
,”
Clin. Infect. Dis.
61
,
849
855
(
2015
).
113.
J. M.
Crow
, “
HPV: The global burden
,”
Nature
488
,
S2
S3
(
2012
).
114.
S. K.
Loo
and
W. Y.
Tang
, “
Warts (non-genital)
,”
BMJ Clin. Evid.
2009
,
1710
PMID: 21726478.
115.
E.
Mulhem
and
S.
Pinelis
, “
Treatment of nongenital cutaneous warts
,”
Am. Fam. Physician
84
,
288
293
(
2011
). PMID: 21842775.
116.
Y.
Lu
,
J.
Wu
,
Y.
He
,
H.
Yang
, and
Y.
Yang
, “
Efficacy of topical aminolevulinic acid photodynamic therapy for the treatment of verruca planae
,”
Photomed. Laser Surg.
28
,
561
563
(
2010
).
117.
J. N. B.
Bavinck
and
R. J. M.
Berkhout
, “
HPV infections and immunosuppression
,”
Clin. Dermatol.
15
,
427
437
(
1997
).
118.
H.
De Vuyst
,
F.
Lillo
,
N.
Broutet
, and
J. S.
Smith
, “
HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy
,”
Eur. J. Cancer Prev.
17
,
545
554
(
2008
).
119.
C.
O'Mahony
, “
Genital warts: Current and future management options
,”
Am. J. Clin. Dermatol.
6
,
239
243
(
2005
).
120.
H.
Wang
,
X.
Wang
,
L.
Zhang
,
M.
Guo
, and
Z.
Huang
, “
Aminolevulinic acid (ALA)-assisted photodynamic diagnosis of subclinical and latent HPV infection of external genital region
,”
Photodiagnosis Photodyn. Ther.
5
,
251
255
(
2008
).
121.
N. M.
Inada
 et al., “
Optical techniques for the diagnosis and treatment of lesions induced by the human papillomavirus—A resource letter
,”
Photodiagnosis Photodyn. Ther.
23
,
106
110
(
2018
).
122.
N.
Inada
 et al., “
Protoporphyrin IX production and photobleaching during treatment of condyloma by HPV with methyl aminolevulinate
,”
Photodiagnosis Photodyn. Ther.
8
,
216
217
(
2011
).
123.
N. M.
Inada
 et al., “
Treatment of vulvar/vaginal condyloma by HPV: Developed instrumentation and clinical report
,” in
Proceedings of Photodynamic Therapy: Back to the Future
7380
,
738054
(
2009
).
124.
M.
Carifi
,
D.
Napolitano
,
M.
Morandi
, and
D.
Dall'Olio
, “
Recurrent respiratory papillomatosis: Current and future perspectives
,”
Ther. Clin. Risk Manag.
11
,
731
738
(
2015
).
125.
G. D.
Souza
 et al., “
Oral Human Papillomavirus (HPV) infection in HPV-positive patients with oropharyngeal cancer and their partners
,”
J. Clin. Oncol.
32
,
2408
2416
(
2014
).
126.
D. S.
Michaud
 et al., “
High-risk HPV types and head and neck cancer
,”
Int. J. Cancer
135
,
1653
1661
(
2014
).
127.
M. J.
Silverberg
,
P.
Thorsen
,
H.
Lindeberg
,
L. A.
Grant
, and
K. V.
Shah
, “
Condyloma in pregnancy is strongly predictive of juvenile-onset recurrent respiratory papillomatosis
,”
Obstet. Gynecol.
101
,
645
652
(
2003
).
128.
M.
James
,
D.
Katundu
,
D.
Chussi
, and
P.
Shija
, “
Prevalence, clinical presentations, associated risk factors and recurrence of laryngeal papillomatosis among inpatients attended at a Tertiary Hospital in Northern zone Tanzania
,”
Pan Afr. Med. J.
16
,
209
(
2018
).
129.
S.
Mallidi
 et al., “
Beyond the barriers of light penetration: Strategies, perspectives and possibilities for photodynamic therapy
,”
Theranostics
6
,
2458
2487
(
2016
).
130.
T. M.
Baran
,
H. W.
Choi
,
M. J.
Flakus
, and
A. K.
Sharma
, “
Photodynamic therapy of deep tissue abscess cavities: Retrospective image-based feasibility study using Monte Carlo simulation
,”
Med. Phys.
46
,
3259
3267
(
2019
).
131.
C. L.
Campbell
,
K.
Wood
,
C. T. A.
Brown
, and
H.
Moseley
, “
Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures
,”
Phys. Med. Biol.
61
,
4840
4854
(
2016
).
132.
S.
Stolik
,
J. A.
Delgado
,
A.
Pérez
, and
L.
Anasagasti
, “
Measurement of the penetration depths of red and near infrared light in human ‘ex vivo’ tissues
,”
J. Photochem. Photobiol. B Biol.
57
,
90
93
(
2000
).
133.
T. A.
Henderson
and
L. D.
Morries
, “
Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain?
,”
Neuropsychiatr. Dis. Treat.
11
,
2191
2208
(
2015
).
134.
J. R.
Starkey
,
E. M.
Pascucci
,
M. A.
Drobizhev
,
A.
Elliott
, and
A. K.
Rebane
, “
Vascular targeting to the SST2 receptor improves the therapeutic response to near-IR two-photon activated PDT for deep-tissue cancer treatment
,”
Biochim. Biophys. Acta - Gen. Subj.
1830
,
4594
4603
(
2013
).
135.
L.
Song
 et al., “
Low-dose x-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy
,”
Adv. Funct. Mater.
28
,
1707496
(
2018
).
136.
N. M.
Idris
 et al., “
In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers
,”
Nat. Med.
18
,
1580
1585
(
2012
).
137.
Y. R.
Kim
 et al., “
Bioluminescence-activated deep-tissue photodynamic therapy of cancer
,”
Theranostics
5
,
805
817
(
2015
).
138.
M. A.
Biel
,
J. W.
Jones
,
L.
Pedigo
,
A.
Gibbs
, and
N.
Loebel
, “
The effect of antimicrobial photodynamic therapy on human ciliated respiratory mucosa
,”
Laryngoscope
122
,
2628
2631
(
2012
).
139.
A.
Ten Brinke
 et al., “
Chronic sinusitis in severe asthma is related to sputum eosinophilia
,”
J. Allergy Clin. Immunol.
109
,
621
626
(
2002
).
140.
G.
Kassab
 et al., “
Safety and delivery efficiency of a photodynamic treatment of the lungs using indocyanine green and extracorporeal near infra-red illumination
,”
J. Biophotonics
13
,
e202000176
(
2020
).
141.
D. J.
Minnich
,
A. S.
Bryant
,
A.
Dooley
, and
R. J.
Cerfolio
, “
Photodynamic laser therapy for lesions in the airway
,”
Ann. Thorac. Surg.
89
,
1744
1749
(
2010
).
142.
C. M.
Cassidy
 et al., “
Drug and light delivery strategies for photodynamic antimicrobial chemotherapy (PACT) of pulmonary pathogens: A pilot study
,”
Photodiagnosis Photodyn. Ther.
8
,
1
6
(
2011
).
143.
G.
Kassab
 et al., “
Nebulization as a tool for photosensitizer delivery to the respiratory tract
,”
J. Biophotonics
12
,
e201800189
(
2019
).
144.
A. C.
Zangirolami
,
L. D.
Dias
,
K. C.
Blanco
,
C. S.
Vinagreiro
, and
N. M.
Inada
, “
Avoiding ventilator-associated pneumonia: Curcumin-functionalized endotracheal tube and photodynamic action
,”
PNAS
117
,
22967
22973
(
2020
).
145.
R.
Fekrazad
, “
Photobiomodulation and antiviral photodynamic therapy as a possible novel approach in COVID-19 management
,”
Photobiomodulation, Photomedicine, Laser Surg.
38
,
255
257
(
2020
).
146.
L. D.
Dias
and
V. S.
Bagnato
, “
An update on clinical photodynamic therapy for fighting respiratory tract infections: A promising tool against COVID-19 and its co-infections
,”
Laser Phys. Lett.
17
,
083001
(
2020
).
147.
Y.
Jin
 et al., “
Virology, epidemiology, pathogenesis, and control of COVID-19
,”
Viruses
12
,
372
(
2020
).
148.
A.
Almeida
,
M. A. F.
Faustino
, and
M. G. P. M. S.
Neves
, “
Antimicrobial photodynamic therapy in the control of COVID-19
,”
Antibiotics
9
,
320
(
2020
).
149.
R.
Penjweini
,
M. M.
Kim
,
J. C.
Finlay
, and
T. C.
Zhu
, “
Investigating the impact of oxygen concentration and blood flow variation on photodynamic therapy
,”
Proc. SPIE Int. Soc. Opt. Eng.
176
,
139
148
(
2017
).
150.
Z.
Luo
 et al., “
Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy
,”
Sci. Rep.
6
,
1
11
(
2016
).
151.
S.
Darvekar
 et al., “
Selective killing of activated t cells by 5-aminolevulinic acid mediated photodynamic effect: Potential improvement of extracorporeal photopheresis
,”
Cancers
12
,
377
(
2020
).
152.
S. R. G.
Fernandes
,
R.
Fernandes
,
B.
Sarmento
,
P. M. R.
Pereira
, and
J. P. C.
Tomé
, “
Photoimmunoconjugates: Novel synthetic strategies to target and treat cancer by photodynamic therapy
,”
Org. Biomol. Chem.
17
,
2579
2593
(
2019
).
153.
H.
Yin
 et al., “
Evaluation of the effects of systemic photodynamic therapy in a rat model of acute myeloid leukemia
,”
J. Photochem. Photobiol. B Biol.
153
,
13
19
(
2015
).
154.
G.
Kim
and
A.
Gaitas
, “
Extracorporeal photo-immunotherapy for circulating tumor cells
,”
PLoS One
10
,
e0127219
(
2015
).
155.
Y. R.
Kim
,
J. K.
Yoo
,
C. W.
Jeong
, and
J. W.
Choi
, “
Selective killing of circulating tumor cells prevents metastasis and extends survival
,”
J. Hematol. Oncol.
11
,
1
4
(
2018
).
156.
D.
Schikora
and
M.
Weber
, “
Cancer metastases prevention by photodynamic in-vivo detection and destruction of circulating tumor cell clusters
,”
Int. J. Clin. Oncol. Cancer Res.
4
,
38
44
(
2019
).
157.
C. J.
Mycroft-West
 et al., “
The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding
,”
bioRxiv:2020.02.29.971093
1
9
(
2020
).
You do not currently have access to this content.