All multicellular organisms embed endogenous circadian oscillators or clocks that rhythmically regulate a wide variety of processes in response to daily environmental cycles. Previous molecular studies using rhythmic mutants for several model systems have identified a set of genes responsible for rhythmic activities and illustrated the molecular mechanisms underlying how disruptions in circadian rhythms are associated with the sort of aberrant cell cycling. However, the wide use of these forward genetic studies is impaired by a limited number of mutations that can be identified or induced only in a single genome, limiting the identification of many other conserved or non-conserved clock genes. Genetic linkage or association mapping provides an unprecedented glimpse into the genome-wide scanning and characterization of genes underlying circadian rhythms. The implementation of sophisticated statistical models into genetic mapping studies can not only identify key clock genes or clock quantitative trait loci (cQTL) but also, more importantly, reveal a complete atlas of the genetic control mechanisms constituted by gene interactomes. Here, we introduce and review an advanced statistical mechanics framework for coalescing all possible clock genes into intricate but well-organized interaction networks that regulate rhythmic cycles. The application of this framework to widely available mapping populations will reshape and further our understanding of the genetic signatures behind circadian rhythms for an enlarged range of species including microbes, plants, and humans.

1.
M. W.
Young
and
S. A.
Kay
, “
Time zones: A comparative genetics of circadian clocks
,”
Nat. Rev. Genet.
2
(
9
),
702
715
(
2001
).
2.
U.
Albrecht
, “
Timing to perfection: The biology of central and peripheral circadian clocks
,”
Neuron
74
,
246
260
(
2012
).
3.
S.
Sahar
and
P.
Sassone-Corsi
, “
Regulation of metabolism: The circadian clock dictates the time
,”
Trends Endocrinol. Metab.
23
(
1
),
1
8
(
2012
).
4.
G. K.
Paschos
and
G. A.
FitzGerald
, “
Circadian clocks and metabolism: Implications for microbiome and aging
,”
Trends Genet.
33
(
10
),
760
769
(
2017
).
5.
Y.
Serin
and
N.
Acar Tek
, “
Effect of circadian rhythm on metabolic processes and the regulation of energy balance
,”
Ann. Nutr. Metab.
74
(
4
),
322
330
(
2019
).
6.
J.
Bass
and
M. A.
Lazar
, “
Circadian time signatures of fitness and disease
,”
Science
354
(
6315
),
994
999
(
2016
).
7.
J. T.
Bass
, “
The circadian clock system's influence in health and disease
,”
Genome Med.
9
(
1
),
94
(
2017
).
8.
F.
Rijo-Ferreira
and
J. S.
Takahashi
, “
Genomics of circadian rhythms in health and disease
,”
Genome Med.
11
(
1
),
82
(
2019
).
9.
Y.
Ouyang
,
C. R.
Andersson
,
T.
Kondo
,
S. S.
Golden
, and
C. H.
Johnson
, “
Resonating circadian clocks enhance fitness in cyanobacteria
,”
Proc. Natl. Acad. Sci.
95
,
8660
8664
(
1998
).
10.
A. N.
Dodd
,
N.
Salathia
,
A.
Hall
 et al., “
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
,”
Science
309
,
630
633
(
2005
).
11.
J. A.
Kim
,
H. S.
Kim
,
S. H.
Choi
 et al., “
The importance of the circadian clock in regulating plant metabolism
,”
Intl. J. Mol. Sci.
18
(
12
),
2680
(
2017
).
12.
D.
Srivastava
,
M.
Shamim
,
M. A.
Kumar
 et al., “
Role of circadian rhythm in plant system: An update from development to stress response
,”
Environ. Exp. Bot.
162
,
256
271
(
2019
).
13.
E. D.
Buhr
and
J. S.
Takahashi
, “
Molecular components of the mammalian circadian clock
,”
Handb. Exp. Pharmacol.
217
,
3
27
(
2013
).
14.
P. L.
Lowrey
and
J. S.
Takahashi
, “
Genetics of circadian rhythms in mammalian model organisms
,”
Adv. Genet.
74
,
175
230
(
2011
).
15.
R. C.
Huang
, “
The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine
,”
Biomed. J.
41
(
1
),
5
8
(
2018
).
16.
K. H.
Cox
and
J. S.
Takahashi
, “
Circadian clock genes and the transcriptional architecture of the clock mechanism
,”
J. Mol. Endocrinol.
63
(
4
),
R93
R102
(
2019
).
17.
T. A.
Bargiello
and
M. W.
Young
, “
Molecular genetics of a biological clock in Drosophila
,”
Proc. Natl. Acad. Sci.
81
,
2142
2146
(
1984
).
18.
T. A.
Bargiello
,
F. R.
Jackson
, and
M. W.
Young
, “
Restoration of circadian behavioural rhythms by gene transfer in Drosophila
,”
Nature
312
,
752
754
(
1984
).
19.
P.
Reddy
,
W. A.
Zehring
,
D. A.
Wheeler
,
V.
Pirrotta
,
C.
Hadfield
, and
J. C.
Hall
, “
Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms
,”
Cell
38
,
701
710
(
1984
).
20.
C.
Ibäñez
, “
Scientific background: Discoveries of molecular mechanisms controlling the circadian rhythm
,” Advanced Information, Nobelprize.org. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/advanced.html.
21.
M. A.
Rosbash
, “
50-year personal journey: Location, gene expression, and circadian rhythms
,”
Cold Spring Harb. Perspect. Biol.
9
,
a032516
(
2017
).
22.
S. T.
Crews
,
J. B.
Thomas
, and
C. S.
Goodman
, “
The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product
,”
Cell
52
,
143
152
(
1988
).
23.
K. K.
Siwicki
,
C.
Eastman
,
G.
Petersen
,
M.
Rosbash
, and
J. C.
Hall
, “
Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system
,”
Neuron
1
,
141
150
(
1988
).
24.
M. P.
Myers
,
K.
Wager-Smith
,
C. S.
Wesley
,
M. W.
Young
, and
A.
Sehgal
, “
Positional cloning and sequence analysis of the Drosophila clock gene timeless
,”
Science
270
,
805
808
(
1995
).
25.
A.
Sehgal
,
A.
Rothenfluh-Hilfiker
,
M.
Hunter-Ensor
,
Y.
Chen
,
M.
Myers
, and
M. W.
Young
, “
Rhythmic expression of timeless: A basis for promoting circadian cycles in period gene autoregulation
,”
Science
270
,
808
810
(
1995
).
26.
M. H.
Vitaterna
,
D. P.
King
,
A. M.
Chang
 et al., “
Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
,”
Science
264
,
719
725
(
1994
).
27.
D. P.
King
,
Y.
Zhao
,
A. M.
Sangoram
 et al., “
Positional cloning of the mouse circadian clock gene
,”
Cell
89
(
4
),
641
653
(
1997
).
28.
M. P.
Antoch
,
E. J.
Song
,
A. M.
Chang
 et al., “
Functional identification of the mouse circadian Clock gene by transgenic BAC rescue
,”
Cell
89
(
4
),
655
667
(
1997
).
29.
N.
Gekakis
,
D.
Staknis
,
H. B.
Nguyen
 et al., “
Role of the CLOCK protein in the mammalian circadian mechanism
,”
Science
280
,
1564
1569
(
1998
).
30.
M. E.
Eriksson
and
A. J.
Millar
, “
The circadian clock: A plant's best friend in a spinning world
,”
Plant Physiol.
132
,
732
738
(
2003
).
31.
M.
Loza-Correa
,
L.
Gomez-Valero
, and
C.
Buchrieser
, “
Circadian clock proteins in prokaryotes: Hidden rhythms?
,”
Front. Microbiol.
1
,
130
(
2010
).
32.
M.
Kamioka
,
S.
Takao
,
T.
Suzuki
 et al., “
Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock
,”
Plant Cell
28
(
3
),
696
711
(
2016
).
33.
A. K.
Michael
,
J. L.
Fribourgh
,
Y.
Chelliah
 et al., “
Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1
,”
Proc. Natl. Acad. Sci.
114
(
7
),
1560
1565
(
2017
).
34.
J.
Takahashi
, “
Transcriptional architecture of the mammalian circadian clock
,”
Nat. Rev. Genet.
18
,
164
179
(
2017
).
35.
J.
Yan
,
H.
Wang
,
Y.
Liu
, and
C.
Shao
, “
Analysis of gene regulatory networks in the mammalian circadian rhythm
,”
PLoS Comput. Biol.
4
(
10
),
e1000193
(
2008
).
36.
N.
Koike
,
S. H.
Yoo
,
H. C.
Huang
 et al., “
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
,”
Science
338
(
6105
),
349
354
(
2012
).
37.
J. S.
Menet
,
J.
Rodriguez
,
K. C.
Abruzzi
, and
M.
Rosbash
, “
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
,”
eLife
1
,
e00011
(
2012
).
38.
O. A.
Podkolodnaya
,
N. N.
Podkolodnaya
, and
N. L.
Podkolodnyy
, “
The mammalian circadian clock: Gene regulatory network and computer analysis
,”
Russ. J. Genet. Appl. Res.
5
,
354
362
(
2015
).
39.
N.
Salathia
,
K.
Edwards
, and
A. J.
Millar
, “
QTL for timing: A natural diversity of clock genes
,”
Trends Genet.
18
(
3
),
115
118
(
2002
).
40.
R. J.
Konopka
and
S.
Benzer
, “
Clock mutants of Drosophila melanogaster
,”
Proc. Natl. Acad. Sci.
68
(
9
),
2112
2116
(
1971
).
41.
N.
Cermakian
,
L.
Monaco
,
M. P.
Pando
 et al., “
Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene
,”
EMBO J.
20
(
15
),
3967
3974
(
2001
).
42.
D.
Bell-Pedersen
,
V.
Cassone
,
D.
Earnest
 et al., “
Circadian rhythms from multiple oscillators: Lessons from diverse organisms
,”
Nat. Rev. Genet.
6
,
544
556
(
2005
).
43.
Y.
Niwa
,
T.
Matsuo
,
K.
Onai
 et al., “
Phase-resetting mechanism of the circadian clock in Chlamydomonas reinhardtii
,”
Proc. Natl. Acad. Sci.
110
(
33
),
13666
13671
(
2013
).
44.
H.
Oike
, “
Modulation of circadian clocks by nutrients and food factors
,”
Biosci. Biotechnol. Biochem.
81
(
5
),
863
870
(
2017
).
45.
E.
Poliner
,
C.
Cummings
,
L.
Newton
, and
E. M.
Farré
, “
Identification of circadian rhythms in Nannochloropsis species using bioluminescence reporter lines
,”
Plant J.
99
(
1
),
112
127
(
2019
).
46.
C.
Miyoshi
,
S. J.
Kim
,
T.
Ezaki
 et al., “
Methodology and theoretical basis of forward genetic screening for sleep/wakefulness in mice
,”
Proc. Natl. Acad. Sci.
116
(
32
),
16062
16067
(
2019
).
47.
K.
Swarup
,
C.
Alonso-Blanco
,
J. R.
Lynn
 et al., “
Natural allelic variation identifies new genes in the Arabidopsis circadian system
,”
Plant J.
20
(
1
),
67
77
(
1999
).
48.
M. U.
Anwer
and
S. J.
Davis
, “
An overview of natural variation studies in the Arabidopsis thaliana circadian clock
,”
Semin. Cell. Dev. Biol.
24
(
5
),
422
429
(
2013
).
49.
K.
Shimomura
,
S. S.
Low-Zeddies
,
D. P.
King
 et al., “
Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice
,”
Genome Res.
11
(
6
),
959
980
(
2001
).
50.
R. E.
Kerwin
,
J. M.
Jimenez-Gomez
,
D.
Fulop
 et al., “
Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis
,”
Plant Cell
23
(
2
),
471
485
(
2011
).
51.
S. E.
Jones
,
J. M.
Lane
,
A. R.
Wood
 et al., “
Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms
,”
Nat. Commun.
10
,
343
(
2019
).
52.
S. E.
Jones
,
J.
Tyrrell
,
A. R.
Wood
 et al., “
Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci
,”
PLoS Genet.
12
(
8
),
e1006125
(
2016
).
53.
A.
Jagannath
,
L.
Taylor
,
Z.
Wakaf
 et al., “
The genetics of circadian rhythms, sleep and health
,”
Hum. Mol. Genet.
26
(
R2
),
R128
R138
(
2017
).
54.
A.
Ferguson
,
L. M.
Lyall
,
J.
Ward
 et al., “
Genome-wide association study of circadian rhythmicity in 71,500 UK biobank participants and polygenic association with mood instability
,”
EBioMedicine
35
,
279
287
(
2018
).
55.
M. J.
Rubin
,
M. T.
Brock
,
S. J.
Davis
, and
C.
Weinig
, “
QTL underlying circadian clock parameters under seasonally variable field settings in Arabidopsis thaliana
,”
G3
9
(
4
),
1131
1139
(
2019
).
56.
T.
Liu
,
X. L.
Liu
,
Y. M.
Chen
, and
R. L.
Wu
, “
A computational model for functional mapping of genes that regulate intra-cellular circadian rhythms
,”
Theor. Biol. Med. Model.
4
,
5
(
2007
).
57.
N.
Li
,
T.
McMurry
,
A.
Berg
 et al., “
Functional clustering of periodic transcriptional profiles through ARMA(p,q)
,”
PLoS ONE
5
(
4
),
e9894
(
2010
).
58.
B.-R.
Kim
,
R. C.
Littell
, and
R. L.
Wu
, “
Clustering periodic patterns of gene expression based on Fourier approximations
,”
Curr. Genom.
7
,
197
203
(
2006
).
59.
B.-R.
Kim
,
L.
Zhang
,
A.
Berg
,
J.
Fan
, and
R. L.
Wu
, “
A computational approach to the functional clustering of periodic gene expression profiles
,”
Genetics
180
,
821
834
(
2008
).
60.
B. R.
Kim
,
T.
McMurry
,
W.
Zhao
,
A.
Berg
, and
R. L.
Wu
, “
Wavelet-based functional clustering for high-dimensional dynamic gene expression patterns
,”
J. Comp. Biol.
17
,
1067
1080
(
2010
).
61.
G. F.
Fu
,
J.
Luo
,
A.
Berg
 et al., “
A dynamic model for functional mapping of biological rhythms
,”
J. Biol. Dyn.
4
,
1
10
(
2010
).
62.
G. F.
Fu
,
Z.
Wang
,
J. H.
Li
, and
R. L.
Wu
, “
A mathematical framework for functional mapping of complex phenotypes using delay differential equations
,”
J. Theor. Biol.
289
,
206
216
(
2011
).
63.
K.
Wei
,
Q.
Wang
,
J. W.
Gan
 et al., “
Mapping genes for drug chronotherapy
,”
Drug Discov. Today
23
,
1883
1888
(
2018
).
64.
R. L.
Wu
and
M.
Lin
, “
Functional mapping – how to map and study the genetic architecture of dynamic complex traits
,”
Nat. Rev. Genet.
7
,
229
237
(
2006
).
65.
L. D.
Sun
and
R. L.
Wu
, “
Mapping complex traits as a dynamic system
,”
Phys. Life Rev.
13
,
155
185
(
2015
).
66.
Z.
Li
and
M. J.
Sillanpää
, “
Dynamic quantitative trait locus analysis of plant phenomic data
,”
Trends Plant Sci.
20
,
822
833
(
2015
).
67.
N.
Vijesh
,
S. K.
Chakrabarti
, and
J.
Sreekumar
, “
Modeling of gene regulatory networks: A review
,”
J. Biomed. Sci. Eng.
6
,
223
231
(
2013
).
68.
Y. X.
Wang
and
H.
Huang
, “
Review on statistical methods for gene network reconstruction using expression data
,”
J. Theor. Biol.
362
,
53
61
(
2014
).
69.
V.
Huynh-Thu
and
G.
Sanguinetti
, “
Gene regulatory network inference: An introductory survey
,”
Methods Mol. Biol.
1883
,
1
23
(
2019
).
70.
H.
Yaghoobi
,
S.
Haghipour
,
H.
Hamzeiy
, and
M.
Asadi-Khiavi
, “
A review of modeling techniques for genetic regulatory networks
,”
J. Med. Signals. Sens.
2
(
1
),
61
70
(
2012
).
71.
L. B.
Jiang
,
H.
Shi
,
M.
Sang
 et al., “
A computational model for inferring QTL control networks underlying developmental covariation
,”
Front. Plant Sci.
10
,
1557
(
2019
).
72.
E. E.
Zhang
and
S. A.
Kay
, “
Clocks not winding down: Unravelling circadian networks
,”
Nat. Rev. Mol. Cell Biol.
11
,
764
776
(
2010
).
73.
J. V.
von Neumann
and
O.
Morgenstern
,
Theory of Games and Economic Behavior
(
Princeton University Press
,
Princeton, NJ
,
1944
).
74.
J. F.
Nash
, “
Equilibrium points in N-person games
,”
Proc. Natl. Acad. Sci.
36
,
48
49
(
1950
).
75.
J. M.
Smith
and
G. R.
Price
, “
Logic of animal conflict
,”
Nature
246
(
5427
),
15
18
(
1973
).
76.
R. A.
Fisher
,
The Genetic Theory of Natural Selection
(
Clarendon Press
,
Oxford
,
1930
).
77.
C. X.
Ma
,
G.
Casella
, and
R. L.
Wu
, “
Functional mapping of quantitative trait loci underlying the character process: A theoretical framework
,”
Genetics
161
,
1751
1762
(
2002
).
78.
R. L.
Wu
,
C. X.
Ma
,
M.
Lin
 et al., “
A general framework for analyzing the genetic architecture of developmental characteristics
,”
Genetics
166
,
1541
1551
(
2004
).
79.
C.
Wu
,
G.
Li
,
J.
Zhu
, and
Y. H.
Cui
, “
Functional mapping of dynamic traits with robust t-distribution
,”
PLoS ONE
6
(
9
),
e24902
(
2011
).
80.
G.
Liu
,
M.
Li
,
J.
Wen
,
Y.
Du
, and
Y.-M.
Zhang
, “
Functional mapping of quantitative trait loci associated with rice tillering
,”
Mol. Genet. Genom.
284
,
263
271
(
2010
).
81.
Z.
Li
,
R.
Henrik
,
S.
Hallingbäck
 et al., “
Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits
,”
G3
4
(
12
),
2365
2379
(
2014
).
82.
I. Y.
Kwak
,
C. R.
Moore
,
E. P.
Spalding
, and
K. W.
Broman
, “
Mapping quantitative trait loci underlying function-valued traits using functional principal component analysis and multi-trait mapping
,”
G3
6
(
1
),
79
86
(
2016
).
83.
D. H.
Lyra
,
N.
Virlet
,
P.
Sadeghi-Tehran
 et al., “
Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform
,”
J. Exp. Bot.
71
(
6
),
1885
1898
(
2020
).
84.
W.
Zhao
,
Y. Q.
Chen
,
G.
Casella
,
J. M.
Cheverud
, and
R. L.
Wu
, “
A non-stationary model for functional mapping of complex traits
,”
Bioinformatics
21
,
2469
2477
(
2005
).
85.
W.
Zhao
,
W.
Hou
,
R. C.
Littell
, and
R. L.
Wu
, “
Structured antedependence models for functional mapping of multivariate longitudinal traits
,”
Stat. Methods Mol. Genet. Biol.
4
(
1
),
33
(
2005
).
86.
M.
Karanasos
, “
A new method for obtaining the autocovariance of an ARMA model: An exact form solution
,”
Econometric Theory
14
,
622
640
(
1998
).
87.
J.
Yap
,
J.
Fan
, and
R. L.
Wu
, “
Nonparametric modeling of covariance structure in functional mapping of quantitative trait loci
,”
Biometrics
65
,
1068
1077
(
2009
).
88.
K.
Das
,
J. H.
Li
,
Z.
Wang
 et al., “
A dynamic model for genome-wide association studies
,”
Hum. Genet.
129
,
629
639
(
2011
).
89.
R.
Yang
and
S.
Xu
, “
Bayesian shrinkage analysis of quantitative trait loci for dynamic traits
,”
Genetics
176
,
1169
1185
(
2007
).
90.
E. B.
Klerman
and
M. A.
St Hilaire
, “
On mathematical modeling of circadian rhythms, performance, and alertness
,”
J. Biol. Rhyth.
22
(
2
),
91
102
(
2007
).
91.
A.
Asgari-Targhi
and
E. B.
Klerman
, “
Mathematical modeling of circadian rhythms
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
11
(
2
),
e1439
(
2019
).
92.
P. T.
Spellman
,
G.
Sherlock
,
M. Q.
Zhang
 et al., “
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
,”
Mol. Biol. Cell
9
(
12
),
3273
3297
(
1998
).
93.
J. K.
Dale
,
M.
Maroto
,
M. L.
Dequeant
 et al., “
Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock
,”
Nature
421
,
275
278
(
2003
).
94.
T.
Konopka
and
M.
Rooman
, “
Gene expression model (in)validation by Fourier analysis
,”
BMC Syst. Biol.
4
,
123
(
2010
).
95.
R.
Yang
and
Z.
Su
, “
Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation
,”
Bioinformatics
26
,
i168
i174
(
2010
).
96.
E. A.
Boyle
,
Y. I.
Li
, and
J. K.
Pritchard
, “
An expanded view of complex traits: From polygenic to omnigenic
,”
Cell
169
,
1177
1186
(
2017
).
97.
D.
Garlaschelli
,
G.
Caldarelli
, and
L.
Pietronero
, “
Universal scaling relations in food webs
,”
Nature
423
,
165
168
(
2003
).
98.
Y.-Y.
Liu
,
J.-J.
Slotine
, and
A.-L.
Barabási
, “
Controllability of complex networks
,”
Nature
423
,
167
173
(
2011
).
99.
J. C.
Nacher
and
T.
Akutsu
, “
Structural controllability of unidirectional bipartite networks
,”
Sci. Rep.
3
,
1647
(
2013
).
100.
S.
Suweis
,
F.
Simini
,
J. R.
Banavar
, and
A.
Maritan
, “
Emergence of structural and dynamical properties of ecological mutualistic networks
,”
Nature
500
,
449
452
(
2013
).
101.
J.
Grilli
,
M.
Adorisio
,
S.
Suweis
 et al., “
Feasibility and coexistence of large ecological communities
,”
Nat. Commun.
8
,
14389
(
2017
).
102.
D. M.
Busiello
,
S.
Suweis
,
J.
Hidalgo
 et al., “
Explorability and the origin of network sparsity in living systems
,”
Sci. Rep.
7
,
12323
(
2017
).
103.
R. M.
May
, “
Will a large complex system be stable?
,”
Nature
238
,
413
414
(
1972
).
104.
S.
Allesina
and
S.
Tang
, “
Stability criteria for complex ecosystems
,”
Nature
483
,
205
208
(
2012
).
105.
R. J.
Tibshirani
, “
Regression shrinkage and selection via the Lasso
,”
J. Roy. Stat. Soc. B
58
,
267
288
(
1996
).
106.
H.
Zou
and
T.
Hastie
, “
Regularization and variable selection via the elastic net
,”
J. Roy. Stat. Soc. B
67
,
301
320
(
2005
).
107.
M.
Yuan
and
Y.
Lin
, “
Model selection and estimation in regression with grouped variables
,”
J. Roy. Stat. Soc. B
68
,
49
67
(
2006
).
108.
H.
Wang
and
C.
Leng
, “
A note on adaptive group Lasso
,”
Comput. Stat. Data. Analy.
52
,
5277
5286
(
2008
).
109.
G. A. K.
Van Voorn
and
B. W.
Kooi
, “
Combining bifurcation and sensitivity analysis for ecological models
,”
Eur. Phys. J. Spec. Top.
226
,
2101
2118
(
2017
).
110.
A.
Donzé
,
G.
Clermont
, and
C. J.
Langmead
, “
Parameter synthesis in nonlinear dynamical systems: Application to systems biology
,”
J. Comput. Biol.
17
(
3
),
325
336
(
2010
).
111.
H.
Miao
,
H.
Wu
, and
H.
Xue
, “
Generalized ordinary differential equation models
,”
J. Am. Stat. Assoc.
109
(
508
),
1672
1682
(
2014
).
112.
J. O.
Ramsay
,
G.
Hooker
,
D.
Campbell
 et al., “
Parameter estimation for differential equations: A generalized smoothing approach
,”
J. Roy. Stat. Soc. Ser. B-Stat. Method.
69
,
741
770
(
2007
).
113.
H.
Liang
and
H.
Wu
, “
Parameter estimation for differential equation models using a framework of measurement error in regression models
,”
J. Am. Stat. Assoc.
103
(
484
),
1570
1583
(
2008
).
114.
J.
Cao
,
J. Z.
Huang
, and
H.
Wu
, “
Penalized nonlinear least squares estimation of time-varying parameters in ordinary differential equations
,”
J. Comput. Graph. Stat.
21
(
1
),
42
56
(
2012
).
115.
N. J. B.
Brunel
,
Q.
Clairon
, and
F.
d'Alché-Buc
, “
Parametric estimation of ordinary differential equations with orthogonality conditions
,”
J. Am. Stat. Assoc.
109
(
505
),
173
185
(
2014
).
116.
Y.
Li
,
J.
Zhu
, and
N.
Wang
, “
Regularized semiparametric estimation for ordinary differential equations
,”
Technometrics
57
(
3
),
341
350
(
2015
).
117.
S. Z.
Chen
,
A.
Shojaie
, and
D. M.
Witten
, “
Network reconstruction from high-dimensional ordinary differential equations
,”
J. Am. Stat. Assoc.
112
(
520
),
1697
1707
(
2017
).
118.
W.
Bateson
,
Mendel's Principles of Heredity
(
Cambridge University Press
,
Cambridge
,
1909
).
119.
H.
Cordell
, “
Epistasis: What it means, what it doesn't mean, and statistical methods to detect it in humans
,”
Human Mol. Genet.
11
,
2463
2468
(
2002
).
120.
G.
Michailidis
and
F.
d'Alché-Buc
, “
Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues
,”
Math. Biosci.
246
(
2
),
326
334
(
2013
).
121.
M. M.
Zavlanos
,
A. A.
Julius
,
S. P.
Boyd
, and
G. J.
Pappas
, “
Inferring stable genetic networks from steady-state data
,”
Automatica
47
,
1113
1122
(
2011
).
122.
J. E.
Larvie
,
M. G.
Sefidmazgi
,
A.
Homaifar
 et al., “
Stable gene regulatory network modeling from steady-state data
,”
Bioengineering
3
(
2
),
12
(
2016
).
123.
R. I. M.
Dunbar
, “
Neocortex size as a constraint on group size in primates
,”
J. Hum. Evol.
22
,
469
493
(
1992
).
124.
W.
Callebaut
and
D.
Rasskin-Gutman
,
Understanding the Development of Evolution of Natural Complex Systems Cambridge
(
MIT Press
,
Cambridge, MA
,
2005
).
125.
G. P.
Wagner
,
M.
Pavlicev
, and
J. M.
Cheverud
, “
The road to modularity
,”
Nat. Rev. Genet.
8
(
12
),
921
931
(
2007
).
126.
M. E.
Newman
, “
Modularity and community structure in networks
,”
Proc. Natl. Acad. Sci.
103
(
23
),
8577
8582
(
2006
).
127.
D.
Mehrle
,
A.
Strosser
, and
A.
Harkin
, “
Walk-modularity and community structure in networks
,”
Netw. Sci.
3
(
3
),
348
360
(
2015
).
128.
M.
Serban
, “
Exploring modularity in biological networks
,”
Phil. Trans. R. Soc.
375
,
20190316
(
2020
).
129.
J.
Yoon
,
A.
Blumer
, and
K.
Lee
, “
An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality
,”
Bioinformatics
22
(
24
),
3106
3108
(
2006
).
130.
H. M.
Kaltenbach
and
J.
Stelling
, “
Modular analysis of biological networks
,”
Adv. Exp. Med. Biol.
736
,
3
17
(
2012
).
131.
C. R.
Tosh
and
L.
McNally
, “
The relative efficiency of modular and non-modular networks of different size
,”
Proc. Biol. Sci.
282
(
1802
),
20142568
(
2015
).
132.
B.
Al-Anzi
,
S.
Gerges
,
N.
Olsman
 et al., “
Modeling and analysis of modular structure in diverse biological networks
,”
J. Theor. Biol.
422
,
18
30
(
2017
).
133.
G.
Didier
,
A.
Valdeolivas
, and
A.
Baudot
, “
Identifying communities from multiplex biological networks by randomized optimization of modularity
,”
F1000Res
7
,
1042
(
2018
).
134.
Y. Q.
Wang
,
M.
Xu
,
Z.
Wang
 et al., “
How to cluster gene expression dynamics in response to environmental signals
,”
Brief Bioinform.
13
,
162
174
(
2012
).
135.
J. Z.
Li
,
B. G.
Bunney
,
F.
Meng
 et al., “
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder
,”
Proc. Natl. Acad. Sci.
110
(
24
),
9950
9955
(
2013
).
136.
L. M.
Smith
,
F. C.
Motta
,
G.
Chopra
 et al., “
An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum
,”
Science
368
(
6492
),
754
759
(
2020
).
137.
F.
Rijo-Ferreira
,
V. A.
Acosta-Rodriguez
,
J. H.
Abel
 et al., “
The malaria parasite has an intrinsic clock
,”
Science
368
(
6492
),
746
753
(
2020
).
138.
W. H.
Walker
,
J. C.
Walton
,
A. C.
DeVries
 et al., “
Circadian rhythm disruption and mental health
,”
Transl. Psychiatry
10
,
28
(
2020
).
139.
C. X.
Chen
,
L. B.
Jiang
,
G. F.
Fu
 et al., “
An omnidirectional visualization model of personalized gene regulatory networks
,”
NPJ: Syst. Biol. Appl.
5
,
38
(
2019
).
140.
L.
Sun
,
L.
Jiang
,
C. N.
Grant
,
H.-G.
Wang
,
C.
Gragnoli
,
Z.
Liu
, and
R.
Wu
, “
Computational identification of gene networks as a biomarker of neuroblastoma risk
,”
Cancers
12
,
2086
(
2020
).
141.
K.
Karczewski
and
M.
Snyder
, “
Integrative omics for health and disease
,”
Nat. Rev. Genet.
19
,
299
310
(
2018
).
142.
Y.
Ye
,
Z.
Zhang
,
Y.
Liu
 et al., “
Multi-omics perspective of quantitative trait loci in precision medicine
,”
Trends Genet.
36
(
5
),
318
336
(
2020
).
143.
M.
Kang
and
J.
Gao
, “
Integration of multi-omics data for expression quantitative trait loci (eQTL) analysis and eQTL epistasis
,”
Methods Mol. Biol.
2082
,
157
171
(
2020
).
144.
S.
Horvath
and
J.
Dong
, “
Geometric interpretation of gene coexpression network analysis
,”
PLoS Comp. Biol.
4
,
e1000117
(
2008
).
145.
L. C.
Freeman
, “
Centrality in social networks conceptual clarification
,”
Social Networks
1
,
215
239
(
1978
).
146.
U.
Brandes
, “
A faster algorithm for betweenness centrality
,”
J. Math. Sociol.
25
,
163
177
(
2001
).
147.
P.
Hage
and
F.
Harary
, “
Eccentricity and centrality in networks
,”
Social Networks
17
,
57
63
(
1995
).
148.
P.
Bonacich
, “
Some unique properties of eigenvector centrality
,”
Social Networks
29
,
555
564
(
2007
).
149.
L.
Page
, “
The PageRank citation ranking: Bringing order to the web
,”
Stanford Digital Libraries Work. Paper
9
,
1
14
(
1998
).
150.
K.
Greenham
,
R. C.
Sartor
,
S.
Zorich
, et al. “
Expansion of the circadian transcriptome in Brassica rapa and genome-wide diversification of paralog expression patterns
,”
Elife
9
,
e58993
(
2020
).
151.
D. J.
Gottlieb
,
G. T.
O'Connor
, and
J. B.
Wilk
, “
Genome-wide association of sleep and circadian phenotypes
,”
BMC Med. Genet.
8
,
S9
(
2007
).
152.
S. T.
Harbison
,
S.
Kumar
,
W.
Huang
 et al., “
Genome-wide association study of circadian behavior in Drosophila melanogaster
,”
Behav. Genet.
49
,
60
82
(
2019
).
153.
L. B.
Jiang
,
J. Y.
Liu
,
X. L.
Zhu
 et al., “
2HiGWAS: A unifying high-dimensional platform to infer the global genetic architecture of trait development
,”
Brief Bioinform.
16
,
905
911
(
2015
).
154.
D. L.
Zimmerman
and
V. A.
Núñez-Antón
,
Antedependence Models for Longitudinal Data
(
Chapman & Hall/CRC
,
Boca Raton, FL
,
2009
).
You do not currently have access to this content.