Selective area epitaxy (SAE) can be used to grow highly uniform III–V nanostructure arrays in a fully controllable way and is thus of great interest in both basic science and device applications. Here, an overview of this promising technique is presented, focusing on the growth fundamentals, formation of III–V nanowire arrays, monolithic integration of III–V nanowire arrays on silicon, the growth of nanowire heterostructures, and networks of various shapes. The applications of these III–V nanostructure arrays in photonics, electronics, optoelectronics, and quantum science are also reviewed. Finally, the current challenges and opportunities provided by SAE are discussed.
References
1.
J.
Wong-Leung
, I.
Yang
, Z.
Li
, S. K.
Karuturi
, L.
Fu
, H. H.
Tan
, and C.
Jagadish
, “Engineering III-V semiconductor nanowires for device applications
,” Adv. Mater.
32
, e1904359
(2020
).2.
L.
Güniat
, P.
Caroff
, and A.
Fontcuberta i Morral
, “Vapor phase growth of semiconductor nanowires: key developments and open questions
,” Chem. Rev.
119
, 8958
(2019
).3.
J.
Noborisaka
, J.
Motohisa
, and T.
Fukui
, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy
,” Appl. Phys. Lett.
86
, 213102
(2005
).4.
P.
Mohan
, J.
Motohisa
, and T.
Fukui
, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays
,” Nanotechnology
16
, 2903
(2005
).5.
C.-Y.
Chi
, C.-C.
Chang
, S.
Hu
, T.-W.
Yeh
, S. B.
Cronin
, and P. D.
Dapkus
, “Twin-free GaAs nanosheets by selective area growth: implications for defect-free nanostructures
,” Nano Lett.
13
, 2506
(2013
).6.
N.
Wang
, X.
Yuan
, X.
Zhang
, Q.
Gao
, B.
Zhao
, L.
Li
, M.
Lockrey
, H. H.
Tan
, C.
Jagadish
, and P.
Caroff
, “Shape engineering of InP nanostructures by selective area epitaxy
,” ACS Nano
13
, 7261
(2019
).7.
A. M.
Raya
, M.
Friedl
, S.
Martí-Sánchez
, V. G.
Dubrovskii
, L.
Francaviglia
, B.
Alén
, N.
Morgan
, G.
Tütüncüoglu
, Q. M.
Ramasse
, D.
Fuster
, J. M.
Llorens
, J.
Arbiol
, and A.
Fontcuberta i Morral
, “GaAs nanoscale membranes: prospects for seamless integration of III–Vs on silicon
,” Nanoscale
12
, 815
(2020
).8.
T.-W.
Yeh
, Y.-T.
Lin
, B.
Ahn
, L. S.
Stewart
, P. D.
Dapkus
, and S. R.
Nutt
, “Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets
,” Appl. Phys. Lett.
100
, 033119
(2012
).9.
J.
Seidl
, J. G.
Gluschke
, X.
Yuan
, S.
Naureen
, N.
Shahid
, H. H.
Tan
, C.
Jagadish
, A. P.
Micolich
, and P.
Caroff
, “Regaining a spatial dimension: mechanically transferrable two-dimensional InAs nanofins grown by selective area epitaxy
,” Nano Lett.
19
, 4666
(2019
).10.
S.
Vaitiekėnas
, A. M.
Whiticar
, M. T.
Deng
, F.
Krizek
, J. E.
Sestoft
, C. J.
Palmstrøm
, S.
Marti-Sanchez
, J.
Arbiol
, P.
Krogstrup
, L.
Casparis
, and C. M.
Marcus
, “Selective-area-grown semiconductor-superconductor hybrids: a basis for topological networks
,” Phys. Rev. Lett.
121
, 147701
(2018
).11.
P.
Aseev
, G.
Wang
, L.
Binci
, A.
Singh
, S.
Martí-Sánchez
, M.
Botifoll
, L. J.
Stek
, A.
Bordin
, J. D.
Watson
, F.
Boekhout
, D.
Abel
, J.
Gamble
, K.
Van Hoogdalem
, J.
Arbiol
, L. P.
Kouwenhoven
, G.
de Lange
, and P.
Caroff
, “Ballistic InSb nanowires and networks via metal-sown selective area growth
,” Nano Lett.
19
, 9102
(2019
).12.
P.
Aseev
, A.
Fursina
, F.
Boekhout
, F.
Krizek
, J. E.
Sestoft
, F.
Borsoi
, S.
Heedt
, G.
Wang
, L.
Binci
, S.
Marti-Sanchez
, T.
Swoboda
, R.
Koops
, E.
Uccelli
, J.
Arbiol
, P.
Krogstrup
, L. P.
Kouwenhoven
, and P.
Caroff
, “Selectivity map for molecular beam epitaxy of advanced III-V quantum nanowire networks
,” Nano Lett.
19
, 218
(2019
).13.
P.
Krogstrup
, N. L. B.
Ziino
, W.
Chang
, S. M.
Albrecht
, M. H.
Madsen
, E.
Johnson
, J.
Nygard
, C. M.
Marcus
, and T. S.
Jespersen
, “Epitaxy of semiconductor-superconductor nanowires
,” Nat. Mater.
14
, 400
(2015
).14.
M.
Borg
, H.
Schmid
, K. E.
Moselund
, G.
Signorello
, L.
Gignac
, J.
Bruley
, C.
Breslin
, P.
Das Kanungo
, P.
Werner
, and H.
Riel
, “Vertical III-V nanowire device integration on Si(100)
,” Nano Lett.
14
, 1914
(2014
).15.
H.
Schmid
, M.
Borg
, K.
Moselund
, L.
Gignac
, C. M.
Breslin
, J.
Bruley
, D.
Cutaia
, and H.
Riel
, “Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si
,” Appl. Phys. Lett.
106
, 233101
(2015
).16.
M.
Borg
, H.
Schmid
, K. E.
Moselund
, D.
Cutaia
, and H.
Riel
, “Mechanisms of template-assisted selective epitaxy of InAs nanowires on Si
,” J. Appl. Phys.
117
, 144303
(2015
).17.
L.
Czornomaz
, E.
Uccelli
, M.
Sousa
, V.
Deshpande
, V.
Djara
, D.
Caimi
, M. D.
Rossell
, R.
Erni
, and J.
Fompeyrine
, “Confined epitaxial lateral overgrowth (CELO): a novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates
,” in 2015 Symposium on VLSI Technology (VLSI Technology)
, Kyoto, Japan, 16–18 June 2015, p. T172
.18.
S.
Wirths
, B. F.
Mayer
, H.
Schmid
, M.
Sousa
, J.
Gooth
, H.
Riel
, and K. E.
Moselund
, “Room-temperature lasing from monolithically integrated GaAs microdisks on silicon
,” ACS Nano
12
, 2169
(2018
).19.
M.
Borg
, H.
Schmid
, J.
Gooth
, M. D.
Rossell
, D.
Cutaia
, M.
Knoedler
, N.
Bologna
, S.
Wirths
, K. E.
Moselund
, and H.
Riel
, “High-mobility GaSb nanostructures cointegrated with InAs on Si
,” ACS Nano
11
, 2554
(2017
).20.
D.
Dalacu
, A.
Kam
, D. G.
Austing
, X.
Wu
, J.
Lapointe
, G. C.
Aers
, and P. J.
Poole
, “Selective-area vapour–liquid–solid growth of InP nanowires
,” Nanotechnology
20
, 395602
(2009
).21.
F.
Oehler
, A.
Cattoni
, A.
Scaccabarozzi
, G.
Patriarche
, F.
Glas
, and J. C.
Harmand
, “Measuring and modeling the growth dynamics of self-catalyzed GaP nanowire arrays
,” Nano Lett.
18
, 701
(2018
).22.
D.
Dalacu
, K.
Mnaymneh
, X.
Wu
, J.
Lapointe
, G. C.
Aers
, P. J.
Poole
, and R. L.
Williams
, “Selective-area vapor-liquid-solid growth of tunable InAsP quantum dots in nanowires
,” Appl. Phys. Lett.
98
, 251101
(2011
).23.
D.
Ren
, A. C.
Farrell
, and D. L.
Huffaker
, “Axial InAs(Sb) inserts in selective-area InAsP nanowires on InP for optoelectronics beyond 2.5 μm
,” Opt. Mater. Express
8
, 1075
(2018
).24.
Y.
Zhang
, J.
Wu
, M.
Aagesen
, J.
Holm
, S.
Hatch
, M.
Tang
, S.
Huo
, and H.
Liu
, “Self-catalyzed ternary core–shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy
,” Nano Lett.
14
, 4542
(2014
).25.
M.
Vettori
, V.
Piazza
, A.
Cattoni
, A.
Scaccabarozzi
, G.
Patriarche
, P.
Regreny
, N.
Chauvin
, C.
Botella
, G.
Grenet
, J.
Penuelas
, A.
Fave
, M.
Tchernycheva
, and M.
Gendry
, “Growth optimization and characterization of regular arrays of GaAs/AlGaAs core/shell nanowires for tandem solar cells on silicon
,” Nanotechnology
30
, 084005
(2019
).26.
S.
Gazibegovic
, D.
Car
, H.
Zhang
, S. C.
Balk
, J. A.
Logan
, M. W. A.
de Moor
, M. C.
Cassidy
, R.
Schmits
, D.
Xu
, G.
Wang
, P.
Krogstrup
, R. L. M.
Op Het Veld
, K.
Zuo
, Y.
Vos
, J.
Shen
, D.
Bouman
, B.
Shojaei
, D.
Pennachio
, J. S.
Lee
, P. J.
van Veldhoven
, S.
Koelling
, M. A.
Verheijen
, L. P.
Kouwenhoven
, C. J.
Palmstrom
, and E.
Bakkers
, “Epitaxy of advanced nanowire quantum devices
,” Nature
548
, 434
(2017
).27.
D.
Car
, J.
Wang
, M. A.
Verheijen
, E. P.
Bakkers
, and S. R.
Plissard
, “Rationally designed single-crystalline nanowire networks
,” Adv. Mater.
26
, 4875
(2014
).28.
D.
Dalacu
, K.
Mnaymneh
, J.
Lapointe
, X.
Wu
, P. J.
Poole
, G.
Bulgarini
, V.
Zwiller
, and M. E.
Reimer
, “Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires
,” Nano Lett.
12
, 5919
(2012
).29.
S.
Haffouz
, K. D.
Zeuner
, D.
Dalacu
, P. J.
Poole
, J.
Lapointe
, D.
Poitras
, K.
Mnaymneh
, X.
Wu
, M.
Couillard
, M.
Korkusinski
, E.
Schöll
, K. D.
Jöns
, V.
Zwiller
, and R. L.
Williams
, “Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP Nanowires: the role of the photonic waveguide
,” Nano Lett.
18
, 3047
(2018
).30.
D.
Ren
, L.
Ahtapodov
, J. S.
Nilsen
, J.
Yang
, A.
Gustafsson
, J.
Huh
, G. J.
Conibeer
, A. T. J.
van Helvoort
, B.-O.
Fimland
, and H.
Weman
, “Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature
,” Nano Lett.
18
, 2304
(2018
).31.
M.
Karimi
, M.
Heurlin
, S.
Limpert
, V.
Jain
, X.
Zeng
, I.
Geijselaers
, A.
Nowzari
, Y.
Fu
, L.
Samuelson
, H.
Linke
, M. T.
Borgström
, and H.
Pettersson
, “Intersubband quantum disc-in-nanowire photodetectors with normal-incidence response in the long-wavelength infrared
,” Nano Lett.
18
, 365
(2018
).32.
M.
Karimi
, V.
Jain
, M.
Heurlin
, A.
Nowzari
, L.
Hussain
, D.
Lindgren
, J. E.
Stehr
, I. A.
Buyanova
, A.
Gustafsson
, L.
Samuelson
, M. T.
Borgström
, and H.
Pettersson
, “Room-temperature InP/InAsP quantum discs-in-nanowire infrared photodetectors
,” Nano Lett.
17
, 3356
(2017
).33.
J.
Wallentin
, N.
Anttu
, D.
Asoli
, M.
Huffman
, I.
Åberg
, M. H.
Magnusson
, G.
Siefer
, P.
Fuss-Kailuweit
, F.
Dimroth
, B.
Witzigmann
, H. Q.
Xu
, L.
Samuelson
, K.
Deppert
, and M. T.
Borgström
, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit
,” Science
339
, 1057
(2013
).34.
W.
Guo
, M.
Zhang
, A.
Banerjee
, and P.
Bhattacharya
, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy
,” Nano Lett.
10
, 3355
(2010
).35.
T.
Van Caenegem
, I.
Moerman
, and P.
Demeester
, “Selective area growth on planar masked InP substrates by metal organic vapour phase epitaxy (MOVPE)
,” Prog. Cry. Grow. Charac. Mater.
35
, 263
(1997
).36.
I.
Mahaboob
, K.
Hogan
, S. W.
Novak
, F.
Shahedipour-Sandvik
, R. P.
Tompkins
, and N.
Lazarus
, “Influence of mask material on the electrical properties of selective area epitaxy GaN microstructures
,” J. Vac. Sci. Technol. B
36
, 031203
(2018
).37.
G.
Badawy
, S.
Gazibegovic
, F.
Borsoi
, S.
Heedt
, C. A.
Wang
, S.
Koelling
, M. A.
Verheijen
, L. P.
Kouwenhoven
, and E.
Bakkers
, “High mobility stemless InSb nanowires
,” Nano Lett
19
, 3575
(2019
).38.
X.
Yuan
, P.
Caroff
, J.
Wong-Leung
, L.
Fu
, H. H.
Tan
, and C.
Jagadish
, “Tunable polarity in a III–V nanowire by droplet wetting and surface energy engineering
,” Adv. Mater.
27
, 6096
(2015
).39.
A. T.
Vogel
, J. d
Boor
, M.
Becker
, J. V.
Wittemann
, S. L.
Mensah
, P.
Werner
, and V.
Schmidt
, “Ag-assisted CBE growth of ordered InSb nanowire arrays
,” Nanotechnology
22
, 015605
(2011
).40.
D.
Pribat
, L.
Karapiperis
, and C.
Collet
, “Conformal vapor phase epitaxy
,” Appl. Phys. Lett.
55
, 2544
(1989
).41.
P.
Tejedor
and M.
Benedicto
, “Selective area growth of InxGa1-xAs nanowires on HfO2 templates for highly scaled nMOS devices
,” MRS Adv.
4
, 337
(2019
).42.
Y.
Kobayashi
, Y.
Kohashi
, S.
Hara
, and J.
Motohisa
, “Selective-area growth of InAs nanowires with metal/dielectric composite mask and their application to vertical surrounding-gate field-effect transistors
,” Appl. Phys. Express
6
, 045001
(2013
).43.
T.
Oto
, Y.
Mizuno
, K.
Yamano
, J.
Yoshida
, and K.
Kishino
, “Column diameter dependence of the strain relaxation effect in GaN/AlGaN quantum wells on GaN nanocolumn arrays
,” Appl. Phys. Express
12
, 125001
(2019
).44.
C.-W.
Yang
, W.-C.
Chen
, C.
Chou
, and H.-H.
Lin
, “Selective area growth of InAs nanowires from SiO2/Si(111) templates direct-written by focused helium ion beam technology
,” J. Cry. Growth
484
, 56
(2018
).45.
M. I.
Mitrofanov
, I. V.
Levitskii
, G. V.
Voznyuk
, E. E.
Tatarinov
, S. N.
Rodin
, W. V.
Lundin
, V. P.
Evtikhiev
, and M. N.
Mizerov
, “FIB lithography challenges of Si3N4/GaN mask preparation for selective epitaxy
,” Semiconductors
52
, 2114
(2018
).46.
A. R.
Madaria
, M.
Yao
, C.
Chi
, N.
Huang
, C.
Lin
, R.
Li
, M. L.
Povinelli
, P. D.
Dapkus
, and C.
Zhou
, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth
,” Nano Lett.
12
, 2839
(2012
).47.
Y.
Huang
, T. W.
Kim
, S.
Long
, L. J.
Mawst
, T. F.
Kuech
, P. F.
Nealey
, Y.
Dai
, Z.
Wang
, W.
Guo
, D.
Forbes
, S. M.
Hubbard
, and M.
Nesnidal
, “InAs nanowires grown by metal-organic vapor-phase epitaxy (MOVPE) employing PS/PMMA diblock copolymer nanopatterning
,” Nano Lett.
13
, 5979
(2013
).48.
N.
Wang
, W. W.
Wong
, X.
Yuan
, L.
Li
, C.
Jagadish
, and H. H.
Tan
, “Understanding shape evolution and phase transition in InP nanostructures grown by selective area epitaxy
,” Small (published online) (2020
).49.
M.
de la Mata
, R. R.
Zamani
, S.
Marti-Sanchez
, M.
Eickhoff
, Q.
Xiong
, I. M. A.
Fontcuberta
, P.
Caroff
, and J.
Arbiol
, “The role of polarity in nonplanar semiconductor nanostructures
,” Nano Lett
19
, 3396
(2019
).50.
F.
Glas
, J.-C.
Harmand
, and G.
Patriarche
, “Why does wurtzite form in nanowires of III-V zinc blende semiconductors?
,” Phys. Rev. Lett.
99
, 146101
(2007
).51.
P.
Staudinger
, S.
Mauthe
, K. E.
Moselund
, and H.
Schmid
, “Concurrent zinc-blende and wurtzite film formation by selection of confined growth planes
,” Nano Lett
18
, 7856
(2018
).52.
K.
Ikejiri
, F.
Ishizaka
, K.
Tomioka
, and T.
Fukui
, “Bidirectional growth of indium phosphide nanowires
,” Nano Lett.
12
, 4770
(2012
).53.
Q.
Gao
, D.
Saxena
, F.
Wang
, L.
Fu
, S.
Mokkapati
, Y.
Guo
, L.
Li
, J.
Wong-Leung
, P.
Caroff
, H. H.
Tan
, and C.
Jagadish
, “Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing
,” Nano Lett.
14
, 5206
(2014
).54.
V. G.
Dubrovskii
, “Evolution of the length and radius of catalyst-free III-V nanowires grown by selective area epitaxy
,” ACS Omega
4
, 8400
(2019
).55.
P.
Schroth
, M.
Al Humaidi
, L.
Feigl
, J.
Jakob
, A.
Al Hassan
, A.
Daytyan
, H.
Kuepers
, A.
Tahraoui
, L.
Geelhaar
, U.
Pietsch
, and T.
Baumbach
, “Impact of the shadowing effect on the crystal structure of patterned self-catalyzed GaAs nanowires
,” Nano Lett.
19
, 4263
(2019
).56.
P.
Staudinger
, K. E.
Moselund
, and H.
Schmid
, “Exploring the size limitations of wurtzite III–V film growth
,” Nano Lett.
20
, 686
(2020
).57.
I.
Yang
, X.
Zhang
, C.
Zheng
, Q.
Gao
, Z.
Li
, L.
Li
, M. N.
Lockrey
, N.
Hieu
, P.
Caroff
, J.
Etheridge
, H. H.
Tan
, C.
Jagadish
, J.
Wong-Leung
, and L.
Fu
, “Radial growth evolution of InGaAs/InP multi quantum-well nanowires grown by selective-area metal organic vapor-phase epitaxy
,” ACS Nano
12
, 10374
(2018
).58.
Q.
Sun
, C. D.
Yerino
, B.
Leung
, J.
Han
, and M. E.
Coltrin
, “Understanding and controlling heteroepitaxy with the kinetic Wulff plot: a case study with GaN
,” J. Appl. Phys.
110
, 053517
(2011
).59.
B.
Leung
, Q.
Sun
, C. D.
Yerino
, J.
Han
, and M. E.
Coltrin
, “Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy
,” Semicond. Sci. Technol.
27
, 024005
(2012
).60.
L. K.
Aagesen
, M. E.
Coltrin
, J.
Han
, and K.
Thornton
, “Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries
,” J. Appl. Phys.
117
, 194302
(2015
).61.
M.
Albani
, L.
Ghisalberti
, R.
Bergamaschini
, M.
Friedl
, M.
Salvalaglio
, A.
Voigt
, F.
Montalenti
, G.
Tütüncüoglu
, A.
Fontcuberta i Morral
, and L.
Miglio
, “Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment
,” Phys. Rev. Mater.
2
, 093404
(2018
).62.
M. T.
Robson
, V. G.
Dubrovskii
, and R. R.
LaPierre
, “Conditions for high yield of selective-area epitaxy InAs nanowires on SiOx/Si(111) substrates
,” Nanotechnology
26
, 465301
(2015
).63.
Q.
Gao
, V. G.
Dubrovskii
, P.
Caroff
, J.
Wong-Leung
, L.
Li
, Y.
Guo
, L.
Fu
, H. H.
Tan
, and C.
Jagadish
, “Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays
,” Nano Lett.
16
, 4361
(2016
).64.
E.
Russo-Averchi
, J.
Vukajlovic Plestina
, G.
Tütüncüoglu
, F.
Matteini
, A.
Dalmau-Mallorquí
, M.
de la Mata
, D.
Rüffer
, H. A.
Potts
, J.
Arbiol
, S.
Conesa-Boj
, and A.
Fontcuberta i Morral
, “High yield of GaAs nanowire arrays on Si mediated by the pinning and contact angle of Ga
,” Nano Lett.
15
, 2869
(2015
).65.
M.
Mandl
, X.
Wang
, T.
Schimpke
, C.
Kölper
, M.
Binder
, J.
Ledig
, A.
Waag
, X.
Kong
, A.
Trampert
, F.
Bertram
, J.
Christen
, F.
Barbagini
, E.
Calleja
, and M.
Strassburg
, “Group III nitride core-shell nano- and microrods for optoelectronic applications
,” Phys. Status Solidi (RRL)
7
, 800
(2013
).66.
B.
Zhao
, M. N.
Lockrey
, P.
Caroff
, N.
Wang
, L.
Li
, J.
Wong-Leung
, H. H.
Tan
, and C.
Jagadish
, “The effect of nitridation on the polarity and optical properties of GaN self-assembled nanorods
,” Nanoscale
10
, 11205
(2018
).67.
S. D.
Hersee
, X. Y.
Sun
, and X.
Wang
, “The controlled growth of GaN nanowires
,” Nano Lett.
6
, 1808
(2006
).68.
K.
Choi
, M.
Arita
, and Y.
Arakawa
, “Selective-area growth of thin GaN nanowires by MOCVD
,” J. Cryst. Growth
357
, 58
(2012
).69.
Y.-T.
Lin
, T.-W.
Yeh
, Y.
Nakajima
, and P. D.
Dapkus
, “Catalyst-free GaN nanorods synthesized by selective area growth
,” Adv. Funct. Mater.
24
, 3162
(2014
).70.
J.
Kamimura
, K.
Kishino
, and A.
Kikuchi
, “Dislocation reduction via selective-area growth of InN accompanied by lateral growth by RF-plasma-assisted molecular-beam epitaxy
,” Appl. Phys. Lett.
97
, 141913
(2010
).71.
M.
Zeghouane
, G.
Avit
, Y.
André
, T.
Taliercio
, P.
Ferret
, E.
Gil
, D.
Castelluci
, P.
Disseix
, J.
Leymarie
, E.
Tournié
, and A.
Trassoudaine
, “Morphological control of InN nanorods by selective area growth–hydride vapor-phase epitaxy
,” Cryst. Growth Des.
20
, 2232
(2020
).72.
W.
Choi
, S.
Fan
, P.
Mohseni
, M. L.
Lee
, and X.
Li
, “Selective area epitaxy of GaP nanowire array on Si (111) by MOCVD
,” in 2019 Compound Semiconductor Week
, Nara, Japan, 19–23 May 2019
, p 1
.73.
K. P.
Bassett
, P. K.
Mohseni
, and X.
Li
, “Evolution of GaAs nanowire geometry in selective area epitaxy
,” Appl. Phys. Lett.
106
, 133102
(2015
).74.
M.
Yao
, N.
Huang
, S.
Cong
, C.-Y.
Chi
, M. A.
Seyedi
, Y.-T.
Lin
, Y.
Cao
, M. L.
Povinelli
, P. D.
Dapkus
, and C.
Zhou
, “GaAs nanowire array solar cells with axial p–i–n junctions
,” Nano Lett.
14
, 3293
(2014
).75.
J.
Jin
, T.
Stoica
, S.
Trellenkamp
, Y.
Chen
, N.
Anttu
, V.
Migunov
, R. M. S.
Kawabata
, P. J. S.
Buenconsejo
, Y. M.
Lam
, F.
Haas
, H.
Hardtdegen
, D.
Grützmacher
, and B. E.
Kardynał
, “Dense, regular GaAs nanowire arrays by catalyst-free vapor phase epitaxy for light harvesting
,” ACS Appl. Mater. Interf.
8
, 22484
(2016
).76.
C. C.
Chang
, C. Y.
Chi
, M.
Yao
, N.
Huang
, C. C.
Chen
, J.
Theiss
, A. W.
Bushmaker
, S.
Lalumondiere
, T. W.
Yeh
, M. L.
Povinelli
, C.
Zhou
, P. D.
Dapkus
, and S. B.
Cronin
, “Electrical and optical characterization of surface passivation in GaAs nanowires
,” Nano Lett.
12
, 4484
(2012
).77.
J. N.
Shapiro
, A.
Lin
, C.
Ratsch
, and D. L.
Huffaker
, “Temperature dependence of stacking faults in catalyst-free GaAs nanopillars
,” Nanotechnology
24
, 475601
(2013
).78.
H.
Kim
, D.
Ren
, A. C.
Farrell
, and D. L.
Huffaker
, “Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium
,” Nanotechnology
29
, 085601
(2018
).79.
K.
Tomioka
, P.
Mohan
, J.
Noborisaka
, S.
Hara
, J.
Motohisa
, and T.
Fukui
, “Growth of highly uniform InAs nanowire arrays by selective-area MOVPE
,” J. Cryst. Growth
298
, 644
(2007
).80.
Z.
Liu
, C.
Merckling
, R.
Rooyackers
, O.
Richard
, H.
Bender
, Y.
Mols
, M.
Vila
, J.
Rubio-Zuazo
, G. R.
Castro
, N.
Collaert
, A.
Thean
, W.
Vandervorst
, and M.
Heyns
, “Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy
,” Phys. Rev. Mater.
1
, 074603
(2017
).81.
D.
Ren
, X.
Meng
, Z.
Rong
, M.
Cao
, A. C.
Farrell
, S.
Somasundaram
, K. M.
Azizur-Rahman
, B. S.
Williams
, and D. L.
Huffaker
, “Uncooled photodetector at short-wavelength infrared using InAs nanowire photoabsorbers on InP with p-n heterojunctions
,” Nano Lett.
18
, 7901
(2018
).82.
X.
Liu
, B. H.
Le
, S. Y.
Woo
, S.
Zhao
, A.
Pofelski
, G. A.
Botton
, and Z.
Mi
, “Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics
,” Opt. Express
25
, 30494
(2017
).83.
A.
Berg
, P.
Caroff
, N.
Shahid
, M. N.
Lockrey
, X.
Yuan
, M. T.
Borgström
, H. H.
Tan
, and C.
Jagadish
, “Growth and optical properties of In x Ga1−x P nanowires synthesized by selective-area epitaxy
,” Nano Res.
10
, 672
(2017
).84.
T.
Sato
, Y.
Kobayashi
, J.
Motohisa
, S.
Hara
, and T.
Fukui
, “SA-MOVPE of InGaAs nanowires and their compositions studied by micro-PL measurement
,” J. Cryst. Growth
310
, 5111
(2008
).85.
D.
Ren
, A. C.
Farrell
, B. S.
Williams
, and D. L.
Huffaker
, “Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates
,” Nanoscale
9
, 8220
(2017
).86.
A. C.
Farrell
, W.-J.
Lee
, P.
Senanayake
, M. A.
Haddad
, S. V.
Prikhodko
, and D. L.
Huffaker
, “High-quality InAsSb nanowires grown by catalyst-free selective-area metal–organic chemical vapor deposition
,” Nano Lett.
15
, 6614
(2015
).87.
B. H.
Le
, S.
Zhao
, X.
Liu
, S. Y.
Woo
, G. A.
Botton
, and Z.
Mi
, “Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation-free planar ultraviolet photonic device applications
,” Adv Mater.
28
, 8446
(2016
).88.
Z.
Bi
, F.
Lenrick
, J.
Colvin
, A.
Gustafsson
, O.
Hultin
, A.
Nowzari
, T.
Lu
, R.
Wallenberg
, R.
Timm
, A.
Mikkelsen
, B. J.
Ohlsson
, K.
Storm
, B.
Monemar
, and L.
Samuelson
, “InGaN platelets: synthesis and applications toward green and red light-emitting diodes
,” Nano Lett.
19
, 2832
(2019
).89.
K.
Chiba
, K.
Tomioka
, A.
Yoshida
, and J.
Motohisa
, “Composition controllability of InGaAs nanowire arrays in selective area growth with controlled pitches on Si platform
,” AIP Adv.
7
, 125304
(2017
).90.
Y.
Kohashi
, S.
Sakita
, S.
Hara
, and J.
Motohisa
, “Pitch-independent realization of 30-nm-diameter InGaAs nanowire arrays by two-step growth method in selective-area metalorganic vapor-phase epitaxy
,” Appl. Phys. Express
6
, 025502
(2013
).91.
Y.
Kohashi
, T.
Sato
, K.
Ikejiri
, K.
Tomioka
, S.
Hara
, and J.
Motohisa
, “Influence of growth temperature on growth of InGaAs nanowires in selective-area metal–organic vapor-phase epitaxy
,” J. Cryst. Growth
338
, 47
(2012
).92.
S.
Morkotter
, S.
Funk
, M.
Liang
, M.
Döblinger
, S.
Hertenberger
, J.
Treu
, D.
Rudolph
, A.
Yadav
, J.
Becker
, M.
Bichler
, G.
Scarpa
, P.
Lugli
, I.
Zardo
, J. J.
Finley
, G.
Abstreiter
, and G.
Koblmüller
, “Role of microstructure on optical properties in high-uniformity In1−xGaxAs nanowire arrays: Evidence of a wider wurtzite band gap
,” Phys. Rev. B
87
, 205303
(2013
).93.
J.
Treu
, T.
Stettner
, M.
Watzinger
, S.
Morkötter
, M.
Döblinger
, S.
Matich
, K.
Saller
, M.
Bichler
, G.
Abstreiter
, J. J.
Finley
, J.
Stangl
, and G.
Koblmüller
, “Lattice-matched InGaAs-InAlAs core-shell nanowires with improved luminescence and photoresponse properties
,” Nano Lett.
15
, 3533
(2015
).94.
D.
Ren
, K. M.
Azizur-Rahman
, Z.
Rong
, B. C.
Juang
, S.
Somasundaram
, M.
Shahili
, A. C.
Farrell
, B. S.
Williams
, and D. L.
Huffaker
, “Room-temperature midwavelength infrared InAsSb nanowire photodetector arrays with Al2O3 passivation
,” Nano Lett.
19
, 2793
(2019
).95.
M.
Robson
, K. M.
Azizur-Rahman
, D.
Parent
, P.
Wojdylo
, D. A.
Thompson
, and R. R.
LaPierre
, “Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon
,” Nano Futures
1
, 035001
(2017
).96.
A. S.
Sokolovskii
, M. T.
Robson
, R. R.
LaPierre
, and V. G.
Dubrovskii
, “Modeling selective-area growth of InAsSb nanowires
,” Nanotechnology
30
, 285601
(2019
).97.
B.
Bauer
, A.
Rudolph
, M.
Soda
, A.
Fontcuberta i Morral
, J.
Zweck
, D.
Schuh
, and E.
Reiger
, “Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy
,” Nanotechnology
21
, 435601
(2010
).98.
S.
Plissard
, G.
Larrieu
, X.
Wallart
, and P.
Caroff
, “High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning
,” Nanotechnology
22
, 275602
(2011
).99.
S.
Plissard
, K. A.
Dick
, G.
Larrieu
, S.
Godey
, A.
Addad
, X.
Wallart
, and P.
Caroff
, “Gold-free growth of GaAs nanowires on silicon: arrays and polytypism
,” Nanotechnology
21
, 385602
(2010
).100.
A. M.
Munshi
, D. L.
Dheeraj
, V. T.
Fauske
, D. C.
Kim
, J.
Huh
, J. F.
Reinertsen
, L.
Ahtapodov
, K. D.
Lee
, B.
Heidari
, A. T. J.
van Helvoort
, B. O.
Fimland
, and H.
Weman
, “Position-Controlled Uniform GaAs Nanowires on Silicon using Nanoimprint Lithography
,” Nano Lett.
14
, 960
(2014
).101.
B.
Mandl
, A. W.
Dey
, J.
Stangl
, M.
Cantoro
, L.-E.
Wernersson
, G.
Bauer
, L.
Samuelson
, K.
Deppert
, and C.
Thelander
, “Self-seeded, position-controlled InAs nanowire growth on Si: a growth parameter study
,” J. Cryst. Growth
334
, 51
(2011
).102.
D.
Ren
, D. L.
Dheeraj
, C.
Jin
, J. S.
Nilsen
, J.
Huh
, J. F.
Reinertsen
, A. M.
Munshi
, A.
Gustafsson
, A. T. J.
van Helvoort
, H.
Weman
, and B.-O.
Fimland
, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays
,” Nano Lett.
16
, 1201
(2016
).103.
X.
Yang
, W.
Du
, X.
Ji
, X.
Zhang
, and T.
Yang
, “Defect-free InAsSb nanowire arrays on Si substrates grown by selective-area metal-organic chemical vapor deposition
,” Nanotechnology
29
, 405601
(2018
).104.
D.
Rudolph
, S.
Hertenberger
, S.
Bolte
, W.
Paosangthong
, D.
Spirkoska
, M.
Döblinger
, M.
Bichler
, J. J.
Finley
, G.
Abstreiter
, and G.
Koblmüller
, “Direct observation of a noncatalytic growth regime for GaAs nanowires
,” Nano Lett.
11
, 3848
(2011
).105.
L. E.
Jensen
, M. T.
Björk
, S.
Jeppesen
, A. I.
Persson
, B. J.
Ohlsson
, and L.
Samuelson
, “Role of surface diffusion in chemical beam epitaxy of InAs nanowires
,” Nano Lett.
4
, 1961
(2004
).106.
S.
Assali
, I.
Zardo
, S.
Plissard
, D.
Kriegner
, M. A.
Verheijen
, G.
Bauer
, A.
Meijerink
, A.
Belabbes
, F.
Bechstedt
, J. E. M.
Haverkort
, and E. P. A. M.
Bakkers
, “Direct band gap wurtzite gallium phosphide nanowires
,” Nano Lett.
13
, 1559
(2013
).107.
J.
Svensson
, A. W.
Dey
, D.
Jacobsson
, and L.-E.
Wernersson
, “III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si
,” Nano Lett.
15
, 7898
(2015
).108.
N. N.
Haider
, A.
Kelrich
, S.
Cohen
, and D.
Ritter
, “Controlled axial and radial growth of InP nanowires by metal-organic molecular beam epitaxy using the selective-area vapor-liquid-solid approach
,” Nanotechnology
29
, 415602
(2018
).109.
J.-P. P.
Kakko
, T.
Haggrén
, V.
Dhaka
, T.
Huhtio
, A.
Peltonen
, H.
Jiang
, E.
Kauppinen
, and H.
Lipsanen
, “Fabrication of dual-type nanowire arrays on a single substrate
,” Nano Lett.
15
, 1679
(2015
).110.
Y. A.
Greenberg
, A.
Kelrich
, Y.
Calahorra
, S.
Cohen
, and D.
Ritter
, “Tapering and crystal structure of indium phosphide nanowires grown by selective area vapor liquid solid epitaxy
,” J. Cryst. Growth
389
, 103
(2014
).111.
A.
Kelrich
, V. G.
Dubrovskii
, Y.
Calahorra
, S.
Cohen
, and D.
Ritter
, “Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE
,” Nanotechnology
26
, 085303
(2015
).112.
M.
Heiss
, E.
Russo-Averchi
, A.
Dalmau-Mallorqui
, G.
Tuetuencueoglu
, F.
Matteini
, D.
Rueffer
, S.
Conesa-Boj
, O.
Demichel
, E.
Alarcon-Llado
, and A.
Fontcuberta i Morral
, “III-V nanowire arrays: growth and light interaction
,” Nanotechnology
25
, 014015
(2014
).113.
A.
Kelrich
, Y.
Calahorra
, Y.
Greenberg
, A.
Gavrilov
, S.
Cohen
, and D.
Ritter
, “Shadowing and mask opening effects during selective-area vapor-liquid-solid growth of InP nanowires by metalorganic molecular beam epitaxy
,” Nanotechnology
24
, 475302
(2013
).114.
S. J.
Gibson
and R. R.
LaPierre
, “Model of patterned self-assisted nanowire growth
,” Nanotechnology
25
, 415304
(2014
).115.
K.
Tomioka
, T.
Tanaka
, S.
Hara
, K.
Hiruma
, and T.
Fukui
, “III–V nanowires on Si substrate: selective-area growth and device applications
,” IEEE J. Sel. Top. Quantum Electron.
17
, 1112
(2011
).116.
K.
Tomioka
and T.
Fukui
, “Recent progress in integration of III-V nanowire transistors on Si substrate by selective-area growth
,” J. Phys. D: Appl. Phys.
47
, 394001
(2014
).117.
K.
Tomioka
, Y.
Kobayashi
, J.
Motohisa
, S.
Hara
, and T.
Fukui
, “Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate
,” Nanotechnology
20
, 145302
(2009
).118.
K.
Tomioka
, J.
Motohisa
, S.
Hara
, and T.
Fukui
, “Control of InAs Nanowire Growth Directions on Si
,” Nano Lett.
8
, 3475
(2008
).119.
K.
Tomioka
, M.
Yoshimura
, and T.
Fukui
, “A III-V nanowire channel on silicon for high-performance vertical transistors
,” Nature
488
, 189
(2012
).120.
M.
Yao
, C.
Sheng
, M.
Ge
, C.-Y.
Chi
, S.
Cong
, A.
Nakano
, P. D.
Dapkus
, and C.
Zhou
, “Facile five-step heteroepitaxial growth of GaAs nanowires on silicon substrates and the twin formation mechanism
,” ACS Nano
10
, 2424
(2016
).121.
H.
Kim
, A. C.
Farrell
, P.
Senanayake
, W.-J.
Lee
, and D. L.
Huffaker
, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links
,” Nano Lett.
16
, 1833
(2016
).122.
Z.
Liu
, C.
Merckling
, R.
Rooyackers
, A.
Franquet
, O.
Richard
, H.
Bender
, M.
Vila
, J.
Rubio-Zuazo
, G. R.
Castro
, N.
Collaert
, A.
Thean
, W.
Vandervorst
, and M.
Heyns
, “The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy
,” J. Appl. Phys.
123
, 145301
(2018
).123.
S.
Hertenberger
, D.
Rudolph
, M.
Bichler
, J. J.
Finley
, G.
Abstreiter
, and G.
Koblmueller
, “Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy
,” J. Appl. Phys.
108
, 114316
(2010
).124.
P. D.
Kanungo
, H.
Schmid
, M. T.
Björk
, L. M.
Gignac
, C.
Breslin
, J.
Bruley
, C. D.
Bessire
, and H.
Riel
, “Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices
,” Nanotechnology
24
, 225304
(2013
).125.
M.
Borg
, L.
Gignac
, J.
Bruley
, A.
Malmgren
, S.
Sant
, C.
Convertino
, M. D.
Rossell
, M.
Sousa
, C.
Breslin
, H.
Riel
, K. E.
Moselund
, and H.
Schmid
, “Facet-selective group-III incorporation in InGaAs template assisted selective epitaxy
,” Nanotechnology
30
, 084004
(2019
).126.
K.
Kishino
and S.
Ishizawa
, “Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns
,” Nanotechnology
26
, 225602
(2015
).127.
S.-Y.
Bae
, B. O.
Jung
, K.
Lekhal
, S. Y.
Kim
, J. Y.
Lee
, D.-S.
Lee
, M.
Deki
, Y.
Honda
, and H.
Amano
, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal–organic vapor deposition
,” Cryst. Eng. Comm.
18
, 1505
(2016
).128.
S.
Conesa-Boj
, D.
Kriegner
, X.-L.
Han
, S.
Plissard
, X.
Wallart
, J.
Stangl
, A.
Fontcuberta i Morral
, and P.
Caroff
, “Gold-free ternary III–V antimonide nanowire arrays on silicon: twin-free down to the first bilayer
,” Nano Lett.
14
, 326
(2014
).129.
J. P.
Boulanger
, A. C. E.
Chia
, B.
Wood
, S.
Yazdi
, T.
Kasama
, M.
Aagesen
, and R. R.
LaPierre
, “Characterization of a Ga-assisted GaAs nanowire array solar cell on Si substrate
,” IEEE J. Photo.
6
, 661
(2016
).130.
D.
Pan
, M.
Fu
, X.
Yu
, X.
Wang
, L.
Zhu
, S.
Nie
, S.
Wang
, Q.
Chen
, P.
Xiong
, S.
von Molnár
, and J.
Zhao
, “Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm
,” Nano Lett.
14
, 1214
(2014
).131.
L.
Li
, D.
Pan
, Y.
Xue
, X.
Wang
, M.
Lin
, D.
Su
, Q.
Zhang
, X.
Yu
, H.
So
, D.
Wei
, B.
Sun
, P.
Tan
, A.
Pan
, and J.
Zhao
, “Near full-composition-range high-quality GaAs1-xSbx nanowires grown by molecular-beam epitaxy
,” Nano Lett.
17
, 622
(2017
).132.
S. R.
Plissard
, D. R.
Slapak
, M. A.
Verheijen
, M.
Hocevar
, G. W. G.
Immink
, I.
van Weperen
, S.
Nadj-Perge
, S. M.
Frolov
, L. P.
Kouwenhoven
, and E. P. A. M.
Bakkers
, “From InSb nanowires to nanocubes: looking for the sweet spot
,” Nano Lett.
12
, 1794
(2012
).133.
B.
Kunert
, Y.
Mols
, M.
Baryshniskova
, N.
Waldron
, A.
Schulze
, and R.
Langer
, “How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches
,” Semicond. Sci. Technol.
33
, 093002
(2018
).134.
M. G.
Mauk
, B. W.
Feyock
, and J. E.
Cotter
, “GaAs-on-silicon conformal vapor-phase epitaxy using reversible transport and selective etching reactions with water vapour
,” J. Cryst. Growth
225
, 528
(2001
).135.
W.
Metaferia
, H.
Kataria
, Y.-T.
Sun
, and S.
Lourdudoss
, “Growth of InP directly on Si by corrugated epitaxial lateral overgrowth
,” J. Phys. D: Appl. Phys.
48
, 045102
(2015
).136.
B.
Leung
, J.
Song
, Y.
Zhang
, and J.
Han
, “Evolutionary selection growth: towards template-insensitive preparation of single-crystal layers
,” Adv. Mater.
25
, 1285
(2013
).137.
Z.
Wang
, B.
Tian
, M.
Pantouvaki
, W.
Guo
, P.
Absil
, J.
Van Campenhout
, C.
Merckling
, and D.
Van Thourhout
, “Room-temperature InP distributed feedback laser array directly grown on silicon
,” Nat. Photon.
9
, 837
(2015
).138.
E.
Nakai
, M.
Yoshimura
, K.
Tomioka
, and T.
Fukui
, “GaAs/InGaP core–multishell nanowire-array-based solar cells
,” Jap. J. Appl. Phys.
52
, 055002
(2013
).139.
H.
Kim
, W.-J.
Lee
, T.-Y.
Chang
, and D. L.
Huffaker
, “Room-temperature InGaAs nanowire array band-edge lasers on patterned silicon-on-insulator platforms
,” Phys. Status Solidi (RRL)
13
, 1800489
(2019
).140.
L. E.
Black
, A.
Cavalli
, M. A.
Verheijen
, J. E. M.
Haverkort
, E.
Bakkers
, and W. M. M.
Kessels
, “Effective surface passivation of InP nanowires by atomic-layer-deposited Al2O3 with POx interlayer
,” Nano Lett.
17
, 6287
(2017
).141.
M.
Hetzl
, J.
Winnerl
, L.
Francaviglia
, M.
Kraut
, M.
Döblinger
, S.
Matich
, A.
Fontcuberta i Morral
, and M.
Stutzmann
, “Surface passivation and self-regulated shell growth in selective area-grown GaN–(Al,Ga)N core–shell nanowires
,” Nanoscale
9
, 7179
(2017
).142.
J.
Treu
, M.
Bormann
, H.
Schmeiduch
, M.
Döblinger
, S.
Morkötter
, S.
Matich
, P.
Wiecha
, K.
Saller
, B.
Mayer
, M.
Bichler
, M. C.
Amann
, J. J.
Finley
, G.
Abstreiter
, and G.
Koblmüller
, “Enhanced luminescence properties of InAs-InAsP core-shell nanowires
,” Nano Lett.
13
, 6070
(2013
).143.
R.
Liu
, W.
Yao
, R.
Chen
, M.
Jansson
, J. L.
Pan
, I. A.
Buyanova
, J.
Xiang
, S. A.
Dayeh
, and C. W.
Tu
, “Self-catalyzed core-shell GaAs/GaNAs nanowires grown on patterned Si (111) by gas-source molecular beam epitaxy
,” Appl. Phys. Lett.
111
, 072106
(2017
).144.
T. W.
Yeh
, Y. T.
Lin
, L. S.
Stewart
, P. D.
Dapkus
, R.
Sarkissian
, J. D.
O'Brien
, B.
Ahn
, and S. R.
Nutt
, “InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays
,” Nano Lett.
12
, 3257
(2012
).145.
G.
Mariani
, Z.
Zhou
, A.
Scofield
, and D. L.
Huffaker
, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators
,” Nano Lett.
13
, 1632
(2013
).146.
H. I.
Hauge
, S.
Conesa-Boj
, M. A.
Verheijen
, S.
Koelling
, and E. P.
Bakkers
, “Single-crystalline hexagonal silicon-germanium
,” Nano Lett.
17
, 85
(2017
).147.
J.
Ho
, J.
Tatebayashi
, S.
Sergent
, C. F.
Fong
, Y.
Ota
, S.
Iwamoto
, and Y.
Arakawa
, “A nanowire-based plasmonic quantum dot laser
,” Nano Lett.
16
, 2845
(2016
).148.
J.
Ledig
, X.
Wang
, S.
Fündling
, H.
Schuhmann
, M.
Seibt
, U.
Jahn
, H. H.
Wehmann
, and A.
Waag
, “Characterization of the internal properties of InGaN/GaN core–shell LEDs
,” Phys. Status Solidi A
213
, 11
(2016
).149.
X.
Wang
, U.
Jahn
, M.
Mandl
, T.
Schimpke
, J.
Hartmann
, J.
Ledig
, M.
Straßburg
, H. H.
Wehmann
, and A.
Waag
, “Growth and characterization of mixed polar GaN columns and core–shell LEDs
,” Phys. Status Solidi (A)
212
, 727
(2015
).150.
T.
Schimpke
, M.
Mandl
, I.
Stoll
, B.
Pohl-Klein
, D.
Bichler
, F.
Zwaschka
, J.
Strube-Knyrim
, B.
Huckenbeck
, B.
Max
, M.
Müller
, P.
Veit
, F.
Bertram
, J.
Christen
, J.
Hartmann
, A.
Waag
, H.-J.
Lugauer
, and M.
Strassburg
, “Phosphor-converted white light from blue-emitting InGaN microrod LEDs
,” Phys. Status Solidi (A)
213
, 1577
(2016
).151.
Y.-H.
Ra
, R.
Navamathavan
, S.
Kang
, and C.-R.
Lee
, “Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m- and r-planes of a single n-GaN nanowire using metalorganic chemical vapor deposition
,” J. Mater. Chem. C
2
, 2692
(2014
).152.
M. D.
Brubaker
, K. L.
Genter
, A.
Roshko
, P. T.
Blanchard
, B. T.
Spann
, T. E.
Harvey
, and K. A.
Bertness
, “UV LEDs based on p-i-n core-shell AlGaN/GaN nanowire heterostructures grown by N-polar selective area epitaxy
,” Nanotechnology
30
, 234001
(2019
).153.
J.
Ajayan
, D.
Nirmal
, T.
Ravichandran
, P.
Mohankumar
, P.
Prajoon
, L.
Arivazhagan
, and C. K.
Sarkar
, “InP high electron mobility transistors for submillimetre wave and terahertz frequency applications: A review
,” AEU-Int. J. Electron. Communications
94
, 199
(2018
).154.
J. R.
Chang
, S. P.
Chang
, Y. J.
Li
, Y. J.
Cheng
, K. P.
Sou
, J. K.
Huang
, H. C.
Kuo
, and C. Y.
Chang
, “Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars
,” Appl. Phys. Lett.
100
, 261103
(2012
).155.
Y. H.
Ra
and C. R.
Lee
, “Core-shell tunnel junction nanowire white-light-emitting diode
,” Nano Lett
20
, 4162
(2020
).156.
I.
Yang
, Z.
Li
, J.
Wong-Leung
, Y.
Zhu
, Z.
Li
, N.
Gagrani
, L.
Li
, M. N.
Lockrey
, N.
Hieu
, Y.
Lu
, H. H.
Tan
, C.
Jagadish
, and L.
Fu
, “Multiwavelength single nanowire InGaAs/InP quantum well light-emitting diodes
,” Nano Lett.
19
, 3821
(2019
).157.
I.
Yang
, S.
Kim
, M.
Niihori
, A.
Alabadla
, Z.
Li
, L.
Li
, M. N.
Lockrey
, D.-Y.
Choi
, I.
Aharonovich
, J.
Wong-Leung
, H. H.
Tan
, C.
Jagadish
, and L.
Fu
, “Highly uniform InGaAs/InP quantum well nanowire array-based light emitting diodes
,” Nano Energy
71
, 104576
(2020
).158.
H. P. T.
Nguyen
, K.
Cui
, S.
Zhang
, M.
Djavid
, A.
Korinek
, G. A.
Botton
, and Z.
Mi
, “Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes
,” Nano Lett.
12
, 1317
(2012
).159.
J. N.
Shapiro
, A.
Lin
, P. S.
Wong
, A. C.
Scofield
, C.
Tu
, P. N.
Senanayake
, G.
Mariani
, B. L.
Liang
, and D. L.
Huffaker
, “InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy
,” Appl. Phys. Lett.
97
, 243102
(2010
).160.
J.
Tatebayashi
, Y.
Ota
, S.
Ishida
, M.
Nishioka
, S.
Iwamoto
, and Y.
Arakawa
, “Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire
,” Appl. Phys. Lett.
105
, 103104
(2014
).161.
J.
Tatebayashi
, S.
Kako
, J.
Ho
, Y.
Ota
, S.
Iwamoto
, and Y.
Arakawa
, “Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications
,” J. Cryst. Growth
468
, 144
(2017
).162.
A.
Alhodaib
, Y. J.
Noori
, P. J.
Carrington
, A. M.
Sanchez
, M. D.
Thompson
, R. J.
Young
, A.
Krier
, and A. R. J.
Marshall
, “Room-temperature mid-infrared emission from faceted InAsSb multi quantum wells embedded in InAs nanowires
,” Nano Lett.
18
, 235
(2018
).163.
S. N.
Dorenbos
, H.
Sasakura
, M. P. v
Kouwen
, N.
Akopian
, S.
Adachi
, N.
Namekata
, M.
Jo
, J.
Motohisa
, Y.
Kobayashi
, K.
Tomioka
, T.
Fukui
, S.
Inoue
, H.
Kumano
, C. M.
Natarajan
, R. H.
Hadfield
, T.
Zijlstra
, T. M.
Klapwijk
, V.
Zwiller
, and I.
Suemune
, “Position controlled nanowires for infrared single photon emission
,” Appl. Phys. Lett.
97
, 171106
(2010
).164.
X.
Yuan
, N.
Wang
, Z.
Tian
, F.
Zhang
, L.
Li
, M.
Lockrey
, J.
He
, C.
Jagadish
, and H. H.
Tan
, “Facet-dependent growth of InAsP quantum wells in InP nanowire and nanomembrane arrays
,” Nanoscale Horiz.
5
, 1530
(2020
).165.
W.
Kim
, L.
Güniat
, A. F. i
Morral
, and V.
Piazza
, “Doping challenges and pathways to industrial scalability of III–V nanowire arrays
,” Appl. Phys. Rev.
8
, 011304
(2021
).166.
F.
Ishizaka
, Y.
Hiraya
, K.
Tomioka
, J.
Motohisa
, and T.
Fukui
, “Growth of AII-wurtzite InP/AIInP core-multishell nanowire array
,” Nano Lett.
17
, 1350
(2017
).167.
F.
Ishizaka
, Y.
Hiraya
, K.
Tomioka
, J.
Motohisa
, and T.
Fukui
, “Growth and characterization of wurtzite InP/AlGaP core-multishell nanowires with AlGaP quantum well structures
,” Jap. J. Appl. Phys.
56
, 010311
(2017
).168.
F.
Ishizaka
, Y.
Hiraya
, K.
Tomioka
, and T.
Fukui
, “Growth of wurtzite GaP in InP/GaP core–shell nanowires by selective-area MOVPE
,” J. Cryst. Growth
411
, 71
(2015
).169.
E. M. T.
Fadaly
, A.
Dijkstra
, J. R.
Suckert
, D.
Ziss
, M. A. J.
van Tilburg
, C.
Mao
, Y.
Ren
, V. T.
van Lange
, K.
Korzun
, S.
Kolling
, M. A.
Verheijen
, D.
Busse
, C.
Rödl
, J.
Furthmüller
, F.
Bechstedt
, J.
Stangl
, J. J.
Finley
, S.
Botti
, J. E. M.
Haverkort
, and E.
Bakkers
, “Direct-bandgap emission from hexagonal Ge and SiGe alloys
,” Nature
580
, 205
(2020
).170.
A. F. I.
Morral
, “Nanostructured alloys light the way to silicon-based photonics
,” Nature
580
, 180
(2020
).171.
D. J. O.
Göransson
, M.
Heurlin
, B.
Dalelkhan
, S.
Abay
, M. E.
Messing
, V. F.
Maisi
, M. T.
Borgström
, and H. Q.
Xu
, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section
,” Appl. Phys. Lett.
114
, 053108
(2019
).172.
C.
Liu
, T. L.
Hughes
, X. L.
Qi
, K.
Wang
, and S. C.
Zhang
, “Quantum spin Hall effect in inverted type-II semiconductors
,” Phys. Rev. Lett.
100
, 236601
(2008
).173.
J.
Knoch
and J.
Appenzeller
, “Modeling of high-performance p-type III–V heterojunction tunnel FETs
,” IEEE Electr. Dev. Lett.
31
, 305
(2010
).174.
B. M.
Borg
, K. A.
Dick
, B.
Ganjipour
, M. E.
Pistol
, L. E.
Wernersson
, and C.
Thelander
, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors
,” Nano Lett.
10
, 4080
(2010
).175.
T.
Rieger
, D.
Grützmacher
, and M. I.
Lepsa
, “Misfit dislocation free InAs/GaSb core-shell nanowires grown by molecular beam epitaxy
,” Nanoscale
7
, 356
(2015
).176.
X.
Ji
, X.
Yang
, W.
Du
, H.
Pan
, and T.
Yang
, “Selective-area MOCVD growth and carrier-transport-type control of InAs(Sb)/GaSb core-shell nanowires
,” Nano Lett.
16
, 7580
(2016
).177.
J.
Hartmann
, F.
Steib
, H.
Zhou
, J.
Ledig
, S.
Fündling
, F.
Albrecht
, T.
Schimpke
, A.
Avramescu
, T.
Varghese
, H.-H.
Wehmann
, M.
Straßburg
, H.-J.
Lugauer
, and A.
Waag
, “High aspect ratio GaN fin microstructures with nonpolar sidewalls by continuous mode metalorganic vapor phase epitaxy
,” Cryst. Growth Des.
16
, 1458
(2016
).178.
J.
Winnerl
, M.
Kraut
, S.
Artmeier
, and M.
Stutzmann
, “Selectively grown GaN nanowalls and nanogrids for photocatalysis: growth and optical properties
,” Nanoscale
11
, 4578
(2019
).179.
Y.-B.
Park
, J.
Gim
, R.
Yalisove
, R.
Hovden
, and Z.
Mi
, “Heteroepitaxy of fin-shaped InGaN nanoridge using molecular beam epitaxy
,” Cryst. Growth Des.
18
, 5750
(2018
).180.
M.
Bollani
, A.
Fedorov
, M.
Albani
, S.
Bietti
, R.
Bergamaschini
, F.
Montalenti
, A.
Ballabio
, L.
Miglio
, and S.
Sanguinetti
, “Selective area epitaxy of GaAs/Ge/Si nanomembranes: a morphological study
,” Crystals
10
, 57
(2020
).181.
S.
Arab
, P. D.
Anderson
, C.-Y.
Chi
, P. D.
Dapkus
, M. L.
Povinelli
, and S. B.
Cronin
, “Observation of asymmetric nanoscale optical cavity in GaAs nanosheets
,” ACS Photon.
2
, 1124
(2015
).182.
S.
Arab
, C.-Y.
Chi
, T.
Shi
, Y.
Wang
, D. P.
Dapkus
, H. E.
Jackson
, L. M.
Smith
, and S. B.
Cronin
, “Effects of surface passivation on twin-free GaAs nanosheets
,” ACS Nano
9
, 1336
(2015
).183.
G.
Tutuncuoglu
, M.
de la Mata
, D.
Deiana
, H.
Potts
, F.
Matteini
, J.
Arbiol
, and A.
Fontcuberta i Morral
, “Towards defect-free 1-D GaAs/AlGaAs heterostructures based on GaAs nanomembranes
,” Nanoscale
7
, 19453
(2015
).184.
S.
Philipp
, M.
Svenja
, T. N.
Vico
, R.
Steffen
, M.
Kirsten
, and S.
Heinz
, “Wurtzite InP microdisks: from epitaxy to room-temperature lasing
,” Nanotechnology
32
, 075605
(2020
).185.
J.
Wang
, S. R.
Plissard
, M. A.
Verheijen
, L.-F.
Feiner
, A.
Cavalli
, and E. P. A. M.
Bakkers
, “Reversible Switching of InP Nanowire Growth Direction by Catalyst Engineering
,” Nano Lett.
13
, 3802
(2013
).186.
S. R.
Plissard
, I.
van Weperen
, D.
Car
, M. A.
Verheijen
, G. W. G.
Immink
, J.
Kammhuber
, L. J.
Cornelissen
, D. B.
Szombati
, A.
Geresdi
, S. M.
Frolov
, L. P.
Kouwenhoven
, and E. P. A. M.
Bakkers
, “Formation and electronic properties of InSb nanocrosses
,” Nat. Nanotech.
8
, 859
(2013
).187.
F.
Krizek
, T.
Kanne
, D.
Razmadze
, E.
Johnson
, J.
Nygård
, C. M.
Marcus
, and P.
Krogstrup
, “Growth of InAs wurtzite nanocrosses from hexagonal and cubic basis
,” Nano Lett.
17
, 6090
(2017
).188.
D.
Dalacu
, A.
Kam
, D. G.
Austing
, and P. J.
Poole
, “Droplet dynamics in controlled InAs nanowire interconnections
,” Nano Lett.
13
, 2676
(2013
).189.
T.
Rieger
, D.
Rosenbach
, D.
Vakulov
, S.
Heedt
, T.
Schapers
, D.
Grutzmacher
, and M. I.
Lepsa
, “Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates
,” Nano Lett.
16
, 1933
(2016
).190.
S. A.
Khan
, C.
Lampadaris
, A.
Cui
, L.
Stampfer
, Y.
Liu
, S. J.
Pauka
, M. E.
Cachaza
, E. M.
Fiordaliso
, J. H.
Kang
, S.
Korneychuk
, T.
Mutas
, J. E.
Sestoft
, F.
Krizek
, R.
Tanta
, M. C.
Cassidy
, T. S.
Jespersen
, and P.
Krogstrup
, “Highly transparent gatable superconducting shadow junctions
,” ACS Nano
14
, 14605
(2020
).191.
S.
Conesa-Boj
, E.
Russo-Averchi
, A.
Dalmau-Mallorqui
, J.
Trevino
, E. F.
Pecora
, C.
Forestiere
, A.
Handin
, M.
Ek
, L.
Zweifel
, L. R.
Wallenberg
, D.
Rüffer
, M.
Heiss
, D.
Troadec
, L.
Dal Negro
, P.
Caroff
, and A.
Fontcuberta i Morral
, “Vertical ‘III–V’ V-shaped nanomembranes epitaxially grown on a patterned Si[001] substrate and their enhanced light scattering
,” ACS Nano
6
, 10982
(2012
).192.
M.
Friedl
, K.
Cerveny
, P.
Weigele
, G.
Tütüncüoglu
, S.
Martí-Sánchez
, C.
Huang
, T.
Patlatiuk
, H.
Potts
, Z.
Sun
, M. O.
Hill
, L.
Güniat
, W.
Kim
, M.
Zamani
, V. G.
Dubrovskii
, J.
Arbiol
, L. J.
Lauhon
, D. M.
Zumbühl
, and A.
Fontcuberta i Morral
, “Template-assisted scalable nanowire networks
,” Nano Lett.
18
, 2666
(2018
).193.
F.
Krizek
, J. E.
Sestoft
, P.
Aseev
, S. M.-S.
Anchez
, S.
Vaitiekenas
, L.
Casparis
, S. A.
Khan
, Y.
Liu
, T.
Stankevic
, A. M.
Whiticar
, A.
Fursina
, F.
Boekhout
, R.
Koops
, E.
Uccelli
, L. P.
Kouwenhoven
, C. M.
Marcus
, J.
Arbiol
, and P.
Krogstrup
, “Field effect enhancement in buffered quantum nanowire networks
,” Phys. Rev. Mater.
2
, 093401
(2018
).194.
L.
Desplanque
, A.
Bucamp
, D.
Troadec
, G.
Patriarche
, and X.
Wallart
, “In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate
,” Nanotechnology
29
, 305707
(2018
).195.
K.
Peng
, P.
Parkinson
, L.
Fu
, Q.
Gao
, N.
Jiang
, Y. N.
Guo
, F.
Wang
, H. J.
Joyce
, J. L.
Boland
, H. H.
Tan
, C.
Jagadish
, and M. B.
Johnston
, “Single nanowire photoconductive terahertz detectors
,” Nano Lett.
15
, 206
(2015
).196.
K.
Peng
, P.
Parkinson
, J. L.
Boland
, Q.
Gao
, Y. C.
Wenas
, C. L.
Davies
, Z.
Li
, L.
Fu
, M. B.
Johnston
, H. H.
Tan
, and C.
Jagadish
, “Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors
,” Nano Lett.
16
, 4925
(2016
).197.
K.
Peng
, D.
Jevtics
, F.
Zhang
, S.
Sterzl
, D. A.
Damry
, M. U.
Rothmann
, B.
Guilhabert
, M. J.
Strain
, H. H.
Tan
, L. M.
Herz
, L.
Fu
, M. D.
Dawson
, A.
Hurtado
, C.
Jagadish
, and M. B.
Johnston
, “Three-dimensional cross-nanowire networks recover full terahertz state
,” Science
368
, 510
(2020
).198.
D.
Jevtics
, A.
Hurtado
, B.
Guilhabert
, J.
McPhillimy
, G.
Cantarella
, Q.
Gao
, H. H.
Tan
, C.
Jagadish
, M. J.
Strain
, and M. D.
Dawson
, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate
,” Nano Lett.
17
, 5990
(2017
).199.
W. Z.
Xu
, F. F.
Ren
, D.
Jevtics
, A.
Hurtado
, L.
Li
, Q.
Gao
, J.
Ye
, F.
Wang
, B.
Guilhabert
, L.
Fu
, H.
Lu
, R.
Zhang
, H. H.
Tan
, M. D.
Dawson
, and C.
Jagadish
, “Vertically emitting indium phosphide nanowire lasers
,” Nano Lett.
18
, 3414
(2018
).200.
T.
Hamano
and H.
Hirayama
, “New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy
,” Jap. J. Appl. Phys.
36
, L286
(1997
).201.
J.
Takeda
, M.
Akabori
, J.
Motohisa
, and T.
Fukui
, “Formation of AlxGa1-xAs periodic array of micro-hexagonal pillars and air holes by selective area MOVPE
,” Appl. Surf. Sci.
190
, 236
(2002
).202.
M.
Akabori
, J.
Takeda
, J.
Motohisa
, and T.
Fukui
, “InGaAs nano-pillar array formation on partially masked InP(III)B by selective area metal-organic vapour phase epitaxial growth for two-dimensional photonic crystal application
,” Nanotechnology
14
, 1071
(2003
).203.
O.
Painter
, R. K.
Lee
, A.
Scherer
, A.
Yariv
, J. D.
O'Brien
, P. D.
Dapkus
, and I.
Kim
, “Two-dimensional photonic band-gap defect mode laser
,” Science
284
, 1819
(1999
).204.
M.
Boroditsky
, T. F.
Krauss
, R.
Coccioli
, R.
Vrijen
, R.
Bhat
, and E.
Yablonovitch
, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals
,” Appl. Phys. Lett.
75
, 1036
(1999
).205.
A. C.
Scofield
, J. N.
Shapiro
, A.
Lin
, A. D.
Williams
, P. S.
Wong
, B. L.
Liang
, and D. L.
Huffaker
, “Bottom-up photonic crystal cavities formed by patterned III-V nanopillars
,” Nano Lett.
11
, 2242
(2011
).206.
H.
Kim
, W. J.
Lee
, A. C.
Farrell
, J. S. D.
Morales
, P.
Senanayake
, S. V.
Prikhodko
, T. J.
Ochalski
, and D. L.
Huffaker
, “Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature
,” Nano Lett.
17
, 3465
(2017
).207.
H.
Kim
, T.-Y.
Chang
, W.-J.
Lee
, and D. L.
Huffaker
, “III–V nanowire array telecom lasers on (001) silicon-on-insulator photonic platforms
,” Appl. Phys. Lett.
115
, 213101
(2019
).208.
Y.
Han
, W. K.
Ng
, Y.
Xue
, Q.
Li
, K. S.
Wong
, and K. M.
Lau
, “Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator
,” Opt. Lett.
44
, 767
(2019
).209.
Y.
Han
and K. M.
Lau
, “III–V lasers selectively grown on (001) silicon
,” J. Appl. Phys.
128
, 200901
(2020
).210.
S.
Sergent
, B.
Damilano
, S.
Vézian
, S.
Chenot
, M.
Takiguchi
, T.
Tsuchizawa
, H.
Taniyama
, and M.
Notomi
, “Subliming GaN into ordered nanowire arrays for ultraviolet and visible nanophotonics
,” ACS Photonics
6
, 3321
(2019
).211.
V. N.
Trukhin
, A. D.
Bouravleuv
, I. A.
Mustafin
, J. P.
Kakko
, T.
Huhtio
, G. E.
Cirlin
, and H.
Lipsanen
, “Generation of terahertz radiation in ordered arrays of GaAs nanowires
,” Appl. Phys. Lett.
106
, 252104
(2015
).212.
A.
Arlauskas
, J.
Treu
, K.
Saller
, I.
Beleckaitė
, G.
Koblmüller
, and A.
Krotkus
, “Strong terahertz emission and its origin from catalyst-free InAs nanowire arrays
,” Nano Lett.
14
, 1508
(2014
).213.
K.
Tomioka
, F.
Izhizaka
, and T.
Fukui
, “Selective-area growth of InAs nanowires on Ge and vertical transistor application
,” Nano Lett.
15
, 7253
(2015
).214.
K.
Storm
, G.
Nylund
, L.
Samuelson
, and A. P.
Micolich
, “Realizing lateral wrap-gated nanowire FETs: controlling gate length with chemistry rather than lithography
,” Nano Lett.
12
, 1
(2012
).215.
D. C.
Elias
, A.
Sivananthan
, C.
Zhang
, S.
Keller
, H.-W.
Chiang
, J. J. M.
Law
, B. J.
Thibeault
, W. J.
Mitchell
, S.
Lee
, A. D.
Carter
, C.-Y.
Huang
, V.
Chobpattana
, S.
Stemmer
, S. P.
Denbaars
, L. A.
Coldren
, and M. J. W.
Rodwell
, “Formation of InGaAs fins by atomic layer epitaxy on InP sidewalls
,” Jap. J. Appl. Phys.
53
, 065503
(2014
).216.
L.
Desplanque
, M.
Fahed
, X.
Han
, V. K.
Chinni
, D.
Troadec
, M. P.
Chauvat
, P.
Ruterana
, and X.
Wallart
, “Influence of nanoscale faceting on the tunneling properties of near broken gap InAs/AlGaSb heterojunctions grown by selective area epitaxy
,” Nanotechnology
25
, 465302
(2014
).217.
K.
Tomioka
and T.
Fukui
, “Tunnel field-effect transistor using InAs nanowire/Si heterojunction
,” Appl. Phys. Lett.
98
, 083114
(2011
).218.
R. M.
Lutchyn
, E. P. A. M.
Bakkers
, L. P.
Kouwenhoven
, P.
Krogstrup
, C. M.
Marcus
, and Y.
Oreg
, “Majorana zero modes in superconductor-semiconductor heterostructures
,” Nat. Rev. Mater.
3
, 52
(2018
).219.
D.
Aasen
, M.
Hell
, R. V.
Mishmash
, A.
Higginbotham
, J.
Danon
, M.
Leijnse
, T. S.
Jespersen
, J. A.
Folk
, C. M.
Marcus
, K.
Flensberg
, and J.
Alicea
, “Milestones toward Majorana-based quantum computing
,” Phys. Rev. X
6
, 031016
(2016
).220.
J.
Alicea
, Y.
Oreg
, G.
Refael
, F.
von Oppen
, and M. P. A.
Fisher
, “Non-Abelian statistics and topological quantum information processing in 1D wire networks
,” Nat. Phys.
7
, 412
(2011
).221.
T.
Karzig
, C.
Knapp
, R. M.
Lutchyn
, P.
Bonderson
, M. B.
Hastings
, C.
Nayak
, J.
Alicea
, K.
Flensberg
, S.
Plugge
, Y.
Oreg
, C. M.
Marcus
, and M. H.
Freedman
, “Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes
,” Phys. Rev. B
95
, 235305
(2017
).222.
G. C.
Ménard
, G. L. R.
Anselmetti
, E. A.
Martinez
, D.
Puglia
, F. K.
Malinowski
, J. S.
Lee
, S.
Choi
, M.
Pendharkar
, C. J.
Palmstrøm
, K.
Flensberg
, C. M.
Marcus
, L.
Casparis
, and A. P.
Higginbotham
, “Conductance-matrix symmetries of a three-terminal hybrid device
,” Phys. Rev. Lett.
124
, 036802
(2020
).223.
G. L. R.
Anselmetti
, E. A.
Martinez
, G. C.
Ménard
, D.
Puglia
, F. K.
Malinowski
, J. S.
Lee
, S.
Choi
, M.
Pendharkar
, C. J.
Palmstrøm
, C. M.
Marcus
, L.
Casparis
, and A. P.
Higginbotham
, “End-to-end correlated subgap states in hybrid nanowires
,” Phys. Rev. B
100
, 205412
(2019
).224.
P. M.
Wu
, N.
Anttu
, H. Q.
Xu
, L.
Samuelson
, and M. E.
Pistol
, “Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning
,” Nano Lett.
12
, 1990
(2012
).225.
L.
Cao
, P.
Fan
, A. P.
Vasudev
, J. S.
White
, Z.
Yu
, W.
Cai
, J. A.
Schuller
, S.
Fan
, and M. L.
Brongersma
, “Semiconductor nanowire optical antenna solar absorbers
,” Nano Lett.
10
, 439
(2010
).226.
M. L.
Brongersma
, Y.
Cui
, and S.
Fan
, “Light management for photovoltaics using high-index nanostructures
,” Nat. Mater.
13
, 451
(2014
).227.
S.-K.
Kim
, R. W.
Day
, J. F.
Cahoon
, T. J.
Kempa
, K.-D.
Song
, H.-G.
Park
, and C. M.
Lieber
, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design
,” Nano Lett.
12
, 4971
(2012
).228.
G.
Otnes
and M. T.
Borgström
, “Towards high efficiency nanowire solar cells
,” Nano Today
12
, 31
(2017
).229.
I.
Åberg
, G.
Vescovi
, D.
Asoli
, U.
Naseem
, J. P.
Gilboy
, C.
Sundvall
, A.
Dahlgren
, K. E.
Svensson
, N.
Anttu
, M. T.
Björk
, and L.
Samuelson
, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun
,” IEEE J. Photovolt.
6
, 185
(2016
).230.
D.
van Dam
, N. J. J.
van Hoof
, Y.
Cui
, P. J.
van Veldhoven
, E. P. A. M.
Bakkers
, J.
Gómez Rivas
, and J. E. M.
Haverkort
, “High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium–tin–oxide Mie scatterers
,” ACS Nano
10
, 11414
(2016
).231.
W.
Shockley
and H. J.
Queisser
, “Detailed balance limit of efficiency of p‐n junction solar cells
,” J. Appl. Phys.
32
, 510
(1961
).232.
A.
Polman
, M.
Knight
, E. C.
Garnett
, B.
Ehrler
, and W. C.
Sinke
, “Photovoltaic materials: present efficiencies and future challenges
,” Science
352
, aad4424
(2016
).233.
J. E. M.
Haverkort
, E. C.
Garnett
, and E. P. A. M.
Bakkers
, “Fundamentals of the nanowire solar cell: optimization of the open circuit voltage
,” Appl. Phys. Rev.
5
, 031106
(2018
).234.
V.
Raj
, K.
Vora
, L.
Fu
, H. H.
Tan
, and C.
Jagadish
, “High-efficiency solar cells from extremely low minority carrier lifetime substrates using radial junction nanowire architecture
,” ACS Nano
13
, 12015
(2019
).235.
A.
Prajapati
, J.
Llobet
, M.
Antunes
, S.
Martins
, H.
Fonseca
, C.
Calaza
, J.
Gaspar
, and G.
Shalev
, “Opportunities for enhanced omnidirectional broadband absorption of the solar radiation using deep subwavelength structures
,” Nano Energy
70
, 104553
(2020
).236.
G.
Otnes
, E.
Barrigón
, C.
Sundvall
, K. E.
Svensson
, M.
Heurlin
, G.
Siefer
, L.
Samuelson
, I.
Åberg
, and M. T.
Borgström
, “Understanding InP nanowire array solar cell performance by nanoprobe-enabled single nanowire measurements
,” Nano Lett
18
, 3038
(2018
).237.
N.
Huang
, C.
Lin
, and M. L.
Povinelli
, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon
,” J. Appl. Phys.
112
, 064321
(2012
).238.
M.
Yao
, S.
Cong
, S.
Arab
, N.
Huang
, M. L.
Povinelli
, S. B.
Cronin
, P. D.
Dapkus
, and C.
Zhou
, “Tandem solar cells using GaAs nanowires on Si: design, fabrication, and observation of voltage addition
,” Nano Lett.
15
, 7217
(2015
).239.
P.
Espinet-Gonzalez
, E.
Barrigón
, G.
Otnes
, G.
Vescovi
, C.
Mann
, R. M.
France
, A. J.
Welch
, M. S.
Hunt
, D.
Walker
, M. D.
Kelzenberg
, I.
Åberg
, M. T.
Borgström
, L.
Samuelson
, and H. A.
Atwater
, “Radiation tolerant nanowire array solar cells
,” ACS Nano
13
, 12860
(2019
).240.
W.-J.
Lee
, P.
Senanayake
, A. C.
Farrell
, A.
Lin
, C.-H.
Hung
, and D. L.
Huffaker
, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light
,” Nano Lett.
16
, 199
(2016
).241.
S. J.
Gibson
, B.
van Kasteren
, B.
Tekcan
, Y.
Cui
, D.
van Dam
, J. E. M.
Haverkort
, E. P. A. M.
Bakkers
, and M. E.
Reimer
, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection
,” Nat. Nanotech.
14
, 473
(2019
).242.
K.
Chiba
, A.
Yoshida
, K.
Tomioka
, and J.
Motohisa
, “Vertical InGaAs nanowire array photodiodes on Si
,” ACS Photonics
6
, 260
(2019
).243.
S. D.
Hersee
, M.
Fairchild
, A. K.
Rishinaramangalam
, M. S.
Ferdous
, L.
Zhang
, P. M.
Varangis
, B. S.
Swartzentruber
, and A. A.
Talin
, “GaN nanowire light emitting diodes based on templated and scalable nanowire growth process
,” Electron. Lett.
45
, 75
(2009
).244.
Y. J.
Hong
, C.-H.
Lee
, A.
Yoon
, M.
Kim
, H.-K.
Seong
, H. J.
Chung
, C.
Sone
, Y. J.
Park
, and G.-C.
Yi
, “Visible-color-tunable light-emitting diodes
,” Adv. Mater.
23
, 3284
(2011
).245.
Y.
Zhao
, Q.
Yan
, C.-Y.
Huang
, S.-C.
Huang
, P. S.
Hsu
, S.
Tanaka
, C.-C.
Pan
, Y.
Kawaguchi
, K.
Fujito
, C. G. V. d
Walle
, J. S.
Speck
, S. P.
DenBaars
, S.
Nakamura
, and D.
Feezell
, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells
,” Appl. Phys. Lett.
100
, 201108
(2012
).246.
K.
Wu
, T.
Wei
, D.
Lan
, X.
Wei
, H.
Zheng
, Y.
Chen
, H.
Lu
, K.
Huang
, J.
Wang
, Y.
Luo
, and J.
Li
, “Phosphor-free nanopyramid white light-emitting diodes grown on {101¯1} planes using nanospherical-lens photolithography
,” Appl. Phys. Lett.
103
, 241107
(2013
).247.
Y.
Nakajima
, Y.
Lin
, and P. D.
Dapkus
, “Efficient yellow and green emitting InGaN/GaN nanostructured QW materials and LEDs
,” Phys. Status Solidi
213
, 2452
(2016
).248.
M.
Tchernycheva
, P.
Lavenus
, H.
Zhang
, A. V.
Babichev
, G.
Jacopin
, M.
Shahmohammadi
, F. H.
Julien
, R.
Ciechonski
, G.
Vescovi
, and O.
Kryliouk
, “InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact
,” Nano Lett.
14
, 2456
(2014
).249.
V.
Gautam
, S.
Naureen
, N.
Shahid
, Q.
Gao
, Y.
Wang
, D.
Nisbet
, C.
Jagadish
, and V. R.
Daria
, “Engineering highly interconnected neuronal networks on nanowire scaffolds
,” Nano Lett.
17
, 3369
(2017
).250.
J.
Tournet
, Y.
Lee
, S. K.
Karuturi
, H. H.
Tan
, and C.
Jagadish
, “III–V semiconductor materials for solar hydrogen production: status and prospects
,” ACS Energy Lett.
5
, 611
(2020
).251.
A.
Standing
, S.
Assali
, L.
Gao
, M. A.
Verheijen
, D.
van Dam
, Y.
Cui
, P. H. L.
Notten
, J. E. M.
Haverkort
, and E. P. A. M.
Bakkers
, “Efficient water reduction with gallium phosphide nanowires
,” Nat. Commun.
6
, 7824
(2015
).252.
L.
Gao
, Y.
Cui
, J.
Wang
, A.
Cavalli
, A.
Standing
, T. T. T.
Vu
, M. A.
Verheijen
, J. E. M.
Haverkort
, E. P. A. M.
Bakkers
, and P. H. L.
Notten
, “Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts
,” Nano Lett.
14
, 3715
(2014
).253.
G.
Liu
, S. K.
Karuturi
, A. N.
Simonov
, M.
Fekete
, H.
Chen
, N.
Nasiri
, N. H.
Le
, P.
Reddy Narangari
, M.
Lysevych
, T. R.
Gengenbach
, A.
Lowe
, H. H.
Tan
, C.
Jagadish
, L.
Spiccia
, and A.
Tricoli
, “Robust sub-monolayers of Co3O4 nano-islands: a highly transparent morphology for efficient water oxidation catalysis
,” Adv. Energy Mater.
6
, 1600697
(2016
).254.
S. T.
Gill
, J.
Damasco
, B. E.
Janicek
, M. S.
Durkin
, V.
Humbert
, S.
Gazibegovic
, D.
Car
, E. P. A. M.
Bakkers
, P. Y.
Huang
, and N.
Mason
, “Selective-area superconductor epitaxy to ballistic semiconductor nanowires
,” Nano Lett.
18
, 6121
(2018
).255.
S.
Nadj-Perge
, S. M.
Frolov
, E. P.
Bakkers
, and L. P.
Kouwenhoven
, “Spin-orbit qubit in a semiconductor nanowire
,” Nature
468
, 1084
(2010
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.