Switchable chemotaxis is vital for motile microorganisms seeking benefits or to avoid harm. Inspired by nature, and for the first time, we demonstrate an artificial enzyme-powered micromotor that can autonomously regulate the propulsion mechanism, as well as motion directionality, by solely sensing the change of fuel concentration (Cf) in its surroundings. The as-designed micromotors have a pot-like microstructure with ureases immobilized on the inner surface. With the confined effect of the pot-like microstructure and unique features of the urease catalytic reaction, the molecular products are further reacted into ions, and their propulsion mechanism can be reversibly adjusted between ionic diffusiophoresis and microbubble recoils when Cf changes. Consequently, the as-developed micromotors under magnetic field are able to self-turn back if the local Cf differs greatly in their surroundings, indicating the achievement of positive and negative chemotaxis by sensing local Cf. Meanwhile, the micromotors also show highly enhanced migration speed by microbubble ejection, up to 60 μm/s, around 30 body lengths per second at physiological urea concentrations. Furthermore, they have an outer surface of mesoporous silica which is easily functionalized for applications such as stimuli-responsive delivery-associated therapies. This work will promote “smart” artificial micro/nanomotors for in vivo biomedical applications.

1.
J.
Wang
,
Nanomachines: Fundamentals and Applications
(
Wiley-VCH
,
Weinheim
,
2013
).
2.
S.
Palagi
and
P.
Fischer
,
Nat. Rev. Mater.
3
,
113
(
2018
).
3.
M.
Guix
,
C. C.
Mayorga-Martinez
, and
A.
Merkoçi
,
Chem. Rev.
114
,
6285
(
2014
).
4.
J.
Wu
,
S.
Balasubramanian
,
D.
Kagan
,
K. M.
Manesh
,
S.
Campuzano
, and
J.
Wang
,
Nat. Commun.
1
,
36
(
2010
).
5.
M. S.
Draz
,
K. M.
Kochehbyoki
,
A.
Vasan
,
D.
Battalapalli
,
A.
Sreeram
,
M. K.
Kanakasabapathy
,
S.
Kallakuri
,
A.
Tsibris
,
D. R.
Kuritzkes
, and
H.
Shafiee
,
Nat. Commun.
9
,
4282
(
2018
).
6.
M.
Luo
,
Y.
Feng
,
T.
Wang
, and
J.
Guan
,
Adv. Funct. Mater.
28
,
1706100
(
2018
).
7.
A. C.
Hortelão
,
R.
Carrascosa
,
N.
Murillo-Cremaes
,
T.
Patiño
, and
S.
Sánchez
,
ACS Nano
13
,
429
(
2019
).
8.
M.
Wan
,
Q.
Wang
,
X.
Li
,
B.
Xu
,
D.
Fang
,
T.
Li
,
Y.
Yu
,
L.
Fang
,
Y.
Wang
,
M.
Wang
,
F.
Wang
,
C.
Mao
,
J.
Shen
, and
J.
Wei
,
Angew. Chem. Int. Ed.
59
,
14458
(
2020
).
9.
J.
Li
,
B. E.
de Ávila
,
W.
Gao
,
L.
Zhang
, and
J.
Wang
,
Sci. Robot.
2
,
eaam6431
(
2017
).
10.
L.
Xu
,
F.
Mou
,
H.
Gong
,
M.
Luo
, and
J.
Guan
, “
Light-driven micro/nanomotors: From fundamentals to applications
,”
Chem. Soc. Rev.
46
,
6905
6926
(
2017
).
11.
H. R.
Vutukuri
,
M.
Lisicki
,
E.
Lauga
, and
J.
Vermant
,
Nat. Commun.
11
,
2628
(
2020
).
12.
C.
Chen
,
F.
Mou
,
L.
Xu
,
S.
Wang
,
J.
Guan
,
Z.
Feng
,
Q.
Wang
,
L.
Kong
,
W.
Li
,
J.
Wang
, and
Q.
Zhang
,
Adv. Mater.
29
,
1603374
(
2017
).
13.
D.
Fan
,
Z.
Yin
,
R.
Cheong
,
F. Q.
Zhu
,
R. C.
Cammarata
,
C. L.
Chien
, and
A.
Levchenko
,
Nat. Nanotechnol.
5
,
545
(
2010
).
14.
W.
Wang
,
L. A.
Castro
,
M.
Hoyos
, and
T. E.
Mallouk
,
ACS Nano
6
,
6122
(
2012
).
15.
J.
Yu
,
B.
Wang
,
X.
Du
,
Q.
Wang
, and
L.
Zhang
,
Nat. Commun.
9
,
3260
(
2018
).
16.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
,
Nature
437
,
862
(
2005
).
17.
S.
Tottori
,
L.
Zhang
,
F.
Qiu
,
K.
Krawczyk
,
A.
Franco-Obregón
, and
B. J.
Nelson
,
Adv. Mater.
24
,
811
(
2012
).
18.
Z.
Wu
,
J.
Troll
,
H. H.
Jeong
,
Q.
Wei
,
M.
Stang
,
F.
Ziemssen
,
Z.
Wang
,
M.
Dong
,
S.
Schnichels
,
T.
Qiu
, and
P.
Fischer
,
Sci. Adv.
4
,
eaat4388
(
2018
).
19.
K. K.
Dey
and
A.
Sen
,
J. Am. Chem. Soc.
139
,
7666
(
2017
).
20.
T.
Patiño
,
X.
Arqué
,
R.
Mestre
,
L.
Palacios
, and
S.
Sánchez
,
Acc. Chem. Res.
51
,
2662
(
2018
).
21.
Y.
Tu
,
F.
Peng
,
X.
Sui
,
Y.
Men
,
P. B.
White
,
J. C. M.
van Hest
, and
D. A.
Wilson
,
Nat. Chem.
9
,
480
(
2017
).
22.
B. V. V. S.
Pavan Kumar
,
A. J.
Patil
, and
S.
Mann
,
Nat. Chem.
10
,
1154
(
2018
).
23.
M.
You
,
C.
Chen
,
L.
Xu
,
F.
Mou
, and
J.
Guan
,
Acc. Chem. Res.
51
,
3006
(
2018
).
24.
Y.
Hong
,
N. M. K.
Blackman
,
N. D.
Kopp
,
A.
Sen
, and
D.
Velegol
,
Phys. Rev. Lett.
99
,
178103
(
2007
).
25.
F.
Peng
,
Y.
Tu
,
J. C. M.
van Hest
, and
D. A.
Wilson
,
Angew. Chem. Int. Ed.
54
,
11662
(
2015
).
26.
A.
Joseph
,
C.
Contini
,
D.
Cecchin
,
S.
Nyberg
,
L.
Ruiz-Perez
,
J.
Gaitzsch
,
G.
Fullstone
,
X.
Tian
,
J.
Azizi
,
J.
Preston
,
G.
Volpe
, and
G.
Battaglia
,
Sci. Adv.
3
,
e1700362
(
2017
).
27.
Y.
Ji
,
X.
Lin
,
Z.
Wu
,
Y.
Wu
,
W.
Gao
, and
Q.
He
,
Angew. Chem. Int. Ed.
58
,
12200
(
2019
).
28.
S. L.
Porter
,
G. H.
Wadhams
, and
J. P.
Armitage
,
Nat. Rev. Microbiol.
9
,
153
(
2011
).
29.
H. C.
Berg
,
Annu. Rev. Biophys. Bioeng.
4
,
119
(
1975
).
30.
A.
Somasundar
,
S.
Ghosh
,
F.
Mohajerani
,
L. N.
Massenburg
,
T.
Yang
,
P. S.
Cremer
,
D.
Velegol
, and
A.
Sen
,
Nat. Nanotechnol.
14
,
1129
(
2019
).
31.
X.
Ma
,
S.
Jang
,
M. N.
Popescu
,
W. E.
Uspal
,
A.
Miguel-López
,
K.
Hahn
,
D. P.
Kim
, and
S.
Sánchez
,
ACS Nano
10
,
8751
(
2016
).
32.
S.
Sengupta
,
D.
Patra
,
I.
Ortiz-Rivera
,
A.
Agrawal
,
S.
Shklyaev
,
K. K.
Dey
,
U.
Córdova-Figueroa
,
T. E.
Mallouk
, and
A.
Sen
,
Nat. Chem.
6
,
415
(
2014
).
33.
N. E.
Dixon
,
P. W.
Riddles
,
C.
Gazzola
,
R. L.
Blakeley
, and
B.
Zerner
,
J. Biochem.
58
,
1335
(
1980
).
34.
X.
Wang
,
W.
Conway
,
D.
Fernandes
,
G.
Lawrance
,
R.
Burns
,
G.
Puxty
, and
M.
Maeder
,
J. Phys. Chem. A.
115
,
6405
(
2011
).
35.
F.
Mou
,
D.
Pan
,
C.
Chen
,
Y.
Gao
,
L.
Xu
, and
J.
Guan
,
Adv. Funct. Mater.
25
,
6173
(
2015
).
36.
F.
Mou
,
Y.
Li
,
C.
Chen
,
W.
Li
,
Y.
Yin
,
H.
Ma
, and
J.
Guan
,
Small
11
,
2564
(
2015
).
37.
W.
Huang
,
M.
Manjare
, and
Y.
Zhao
,
J. Phys. Chem. C.
117
,
21590
(
2013
).
38.
39.
X.
Arqué
,
A.
Romero-Rivera
,
F.
Feixas
,
T.
Patiño
,
S.
Osuna
, and
S.
Sánchez
,
Nat. Commun.
10
,
2826
(
2019
).
40.
H.
Lineweaver
and
D.
Burk
,
J Am Chem. Soc.
56
,
658
(
1934
).
41.
S. D.
Cesareo
and
S. R.
Langton
,
FEMS Microbiol. Lett.
99
,
15
(
1992
).
42.
M.
Luo
,
S.
Li
,
J.
Wan
,
C.
Yang
,
B.
Chen
, and
J.
Guan
,
Langmuir
36
,
7005
(
2020
).
43.
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
,
CRC Handbook of Chemistry and Physics
, 97th ed. (
CRC Press
,
Boca Raton
,
2016
−2017).
44.
S. D.
Lubetkin
,
Langmuir
19
,
2575
(
2003
).
45.
J. L.
Anderson
,
Ann. Rev. Fluid. Mech.
21
,
61
(
1989
).
46.
D.
Xu
,
C.
Zhou
,
C.
Zhan
,
Y.
Wang
,
Y.
You
,
X.
Pan
,
J.
Jiao
,
R.
Zhang
,
Z.
Dong
,
W.
Wang
, and
X.
Ma
,
Adv. Funct. Mater.
29
,
1807727
(
2019
).
47.
X.
Ma
,
A. C.
Hortelao
,
A.
Miguel-López
, and
S.
Sánchez
,
J. Am. Chem. Soc.
138
,
13782
(
2016
).
48.
X.
Zhan
,
J.
Wang
,
Z.
Xiong
,
X.
Zhang
,
Y.
Zhou
,
J.
Zheng
,
J.
Chen
,
S.-P.
Feng
, and
J.
Tang
,
Nat. Commun.
10
,
3921
(
2019
).
49.
F.
Mou
,
C.
Chen
,
H.
Ma
,
Y.
Yin
,
Q.
Wu
, and
J.
Guan
,
Angew. Chem. Int. Ed.
52
,
7208
(
2013
).
50.
C.
Chen
,
E.
Karshalev
,
J.
Guan
, and
J.
Wang
,
Small
14
,
1704252
(
2018
).
51.
R. K.
Kankala
,
Y.-H.
Han
,
J.
Na
,
C.-H.
Lee
,
Z.
Sun
,
S.-B.
Wang
,
T.
Kimura
,
Y. S.
Ok
,
Y.
Yamauchi
,
A.-Z.
Chen
, and
K. C.-W.
Wu
,
Adv. Mater.
32
,
1907035
(
2020
).

Supplementary Material

You do not currently have access to this content.