The emerging internet of things requires autonomous and ubiquitous on-chip devices with wireless interconnectivity. On-chip power is required to meet the miniaturization requirement, and an integrated on-chip micro-supercapacitor has enormous potential to meet this requirement owing to its high-power density and long cycle life. However, the two-dimensional expansion of the current co-planer design paradigm of micro-supercapacitors, such as the interdigital layout, hinders the on-chip integration density, resulting in a significant consumption of precious chip footprint and an insufficient energy density. This article reports on the use of a three-dimensional framework along with a hybrid printing strategy to fabricate devices entirely without any post-processing, and highly integrated three-dimensional micro-supercapacitors were printed as proof of concept. The micro-supercapacitors exhibit more than 25 times areal capacitance than the interdigital ones (76 mF/cm2 vs 2.9 mF/cm2) due to their three-dimensional feature. Moreover, it can provide new functions to achieve adjustable voltage and capacitance flexibility within one device's footprint area. This approach can also enable devices on different substrates. An ultraviolet sensor was integrated with and powered by the three-dimensional micro-supercapacitors on polyimide to demonstrate the compact on-chip application. The three-dimensional framework offers a general solution to the on-chip integration challenges of micro-supercapacitors. Moreover, it can be extended to new materials or even other electronics units, highlighting the promise of further miniaturized and powerful micro-electronics.

1.
K.
Pan
,
Y.
Fan
,
T.
Leng
,
J.
Li
,
Z.
Xin
,
J.
Zhang
,
L.
Hao
,
J.
Gallop
,
K. S.
Novoselov
, and
Z.
Hu
, “
Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications
,”
Nat Commun
9
,
5197
(
2018
).
2.
J.
Shi
,
S.
Liu
,
L.
Zhang
,
B.
Yang
,
L.
Shu
,
Y.
Yang
,
M.
Ren
,
Y.
Wang
,
J.
Chen
,
W.
Chen
,
Y.
Chai
, and
X.
Tao
, “
Smart textile‐integrated microelectronic systems for wearable applications
,”
Adv Mater
32
,
1901958
(
2020
).
3.
A.
Sarycheva
,
A.
Polemi
,
Y.
Liu
,
K.
Dandekar
,
B.
Anasori
, and
Y.
Gogotsi
, “
2D titanium carbide (MXene) for wireless communication
,”
Sci Adv
4
,
eaau0920
(
2018
).
4.
M.
Han
,
H.
Wang
,
Y.
Yang
,
C.
Liang
,
W.
Bai
,
Z.
Yan
,
H.
Li
,
Y.
Xue
,
X.
Wang
,
B.
Akar
,
H.
Zhao
,
H.
Luan
,
J.
Lim
,
I.
Kandela
,
G. A.
Ameer
,
Y.
Zhang
,
Y.
Huang
, and
J. A.
Rogers
, “
Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants
,”
Nat Electron
2
,
26
35
(
2019
).
5.
Y.
Liu
,
J.
Zhang
, and
L.-M.
Peng
, “
Three-dimensional integration of plasmonics and nanoelectronics
,”
Nat Electron
1
,
644
651
(
2018
).
6.
Z.
Huang
,
Y.
Hao
,
Y.
Li
,
H.
Hu
,
C.
Wang
,
A.
Nomoto
,
T.
Pan
,
Y.
Gu
,
Y.
Chen
,
T.
Zhang
,
W.
Li
,
Y.
Lei
,
N.
Kim
,
C.
Wang
,
L.
Zhang
,
J. W.
Ward
,
A.
Maralani
,
X.
Li
,
M. F.
Durstock
,
A.
Pisano
,
Y.
Lin
, and
S.
Xu
, “
Three-dimensional integrated stretchable electronics
,”
Nat Electron
1
,
473
480
(
2018
).
7.
N. A.
Kyeremateng
,
T.
Brousse
, and
D.
Pech
, “
Microsupercapacitors as miniaturized energy-storage components for on-chip electronics
,”
Nat Nanotechnol
12
,
7
15
(
2017
).
8.
C.
Lethien
,
J. L.
Bideau
, and
T.
Brousse
, “
Challenges and prospects of 3D micro-supercapacitors for powering the internet of things
,”
Energ Environ Sci
12
,
96
115
(
2019
).
9.
M. F.
El-Kady
and
R. B.
Kaner
, “
Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage
,”
Nat Commun
4
,
1475
(
2013
).
10.
K. H.
Lee
,
S. S.
Lee
,
D. B.
Ahn
,
J.
Lee
,
D.
Byun
, and
S. Y.
Lee
, “
Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing
,”
Sci Adv
6
,
eaaz1692
(
2020
).
11.
W.
Yang
,
L.
He
,
X.
Tian
,
M.
Yan
,
H.
Yuan
,
X.
Liao
,
J.
Meng
,
Z.
Hao
, and
L.
Mai
, “
Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density
,”
Small
13
,
1700639
(
2017
).
12.
C. W.
Shen
,
S. X.
Xu
,
Y. X.
Xie
,
M.
Sanghadasa
,
X. H.
Wang
, and
L. W.
Lin
, “
A review of on-chip micro supercapacitors for integrated self-powering systems
,”
J Microelectromech S
26
,
949
965
(
2017
).
13.
K.
Sim
,
S.
Chen
,
Z.
Li
,
Z.
Rao
,
J.
Liu
,
Y.
Lu
,
S.
Jang
,
F.
Ershad
,
J.
Chen
,
J.
Xiao
, and
C.
Yu
, “
Three-dimensional curvy electronics created using conformal additive stamp printing
,”
Nat Electron
2
,
471
479
(
2019
).
14.
W.
Huang
,
J.
Zhou
,
P. J.
Froeter
,
K.
Walsh
,
S.
Liu
,
M. D.
Kraman
,
M.
Li
,
J. A.
Michaels
,
D. J.
Sievers
,
S.
Gong
, and
X.
Li
, “
Three-dimensional radio-frequency transformers based on a self-rolled-up membrane platform
,”
Nat Electron
1
,
305
313
(
2018
).
15.
J. H.
Martin
,
B. D.
Yahata
,
J. M.
Hundley
,
J. A.
Mayer
,
T. A.
Schaedler
, and
T. M.
Pollock
, “
3D printing of high-strength aluminium alloys
,”
Nature
549
,
365
369
(
2017
).
16.
J. U.
Lind
,
T. A.
Busbee
,
A. D.
Valentine
,
F. S.
Pasqualini
,
H.
Yuan
,
M.
Yadid
,
S.-J.
Park
,
A.
Kotikian
,
A. P.
Nesmith
,
P. H.
Campbell
,
J. J.
Vlassak
,
J. A.
Lewis
, and
K. K.
Parker
, “
Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing
,”
Nat Mater
16
,
303
309
(
2017
).
17.
Z. C.
Eckel
,
C.
Zhou
,
J. H.
Martin
,
A. J.
Jacobsen
,
W. B.
Carter
, and
T. A.
Schaedler
, “
Additive manufacturing of polymer-derived ceramics
,”
Science
351
,
58
62
(
2016
).
18.
M.
Cheng
,
Y.
Jiang
,
W.
Yao
,
Y.
Yuan
,
R.
Deivanayagam
,
T.
Foroozan
,
Z.
Huang
,
B.
Song
,
R.
Rojaee
,
T.
Shokuhfar
,
Y.
Pan
,
J.
Lu
, and
R.
Shahbazian-Yassar
, “
Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-Ion batteries
,”
Adv Mater
30
,
1800615
(
2018
).
19.
B.
Yao
,
S.
Chandrasekaran
,
J.
Zhang
,
W.
Xiao
,
F.
Qian
,
C.
Zhu
,
E. B.
Duoss
,
C. M.
Spadaccini
,
M. A.
Worsley
, and
Y.
Li
, “
Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading
,”
Joule
3
,
459
470
(
2019
).
20.
K.
Fu
,
Y. B.
Wang
,
C. Y.
Yan
,
Y. G.
Yao
,
Y. A.
Chen
,
J. Q.
Dai
,
S.
Lacey
,
Y. B.
Wang
,
J. Y.
Wan
,
T.
Li
,
Z. Y.
Wang
,
Y.
Xu
, and
L. B.
Hu
, “
Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries
,”
Adv Mater
28
,
2587
2594
(
2016
).
21.
K.
Shen
,
H.
Mei
,
B.
Li
,
J.
Ding
, and
S.
Yang
, “
3D printing sulfur copolymer-graphene architectures for Li-S batteries
,”
Adv Energy Mater
8
,
1701527
(
2018
).
22.
N.
Kamboj
,
T.
Purkait
,
M.
Das
,
S.
Sarkar
,
K. S.
Hazra
, and
R. S.
Dey
, “
Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device
,”
Energ Environ Sci
12
,
2507
2517
(
2019
).
23.
C. J.
Zhang
,
L.
McKeon
,
M. P.
Kremer
,
S. H.
Park
,
O.
Ronan
,
A.
Seral-Ascaso
,
S.
Barwich
,
C. O.
Coileáin
,
N.
McEvoy
,
H. C.
Nerl
,
B.
Anasori
,
J. N.
Coleman
,
Y.
Gogotsi
, and
V.
Nicolosi
, “
Additive-free MXene inks and direct printing of micro-supercapacitors
,”
Nat Commun
10
,
1795
(
2019
).
24.
T. S.
Wei
,
B. Y.
Ahn
,
J.
Grotto
, and
J. A.
Lewis
, “
3D printing of customized Li-Ion batteries with thick electrodes
,”
Adv Mater
30
,
1703027
(
2018
).
25.
D.
Cao
,
Y.
Xing
,
K.
Tantratian
,
X.
Wang
,
Y.
Ma
,
A.
Mukhopadhyay
,
Z.
Cheng
,
Q.
Zhang
,
Y.
Jiao
,
L.
Chen
, and
H.
Zhu
, “
3D printed high-performance lithium metal microbatteries enabled by nanocellulose
,”
Adv Mater
31
,
1807313
(
2019
).
26.
M.
Kaempgen
,
C. K.
Chan
,
J.
Ma
,
Y.
Cui
, and
G.
Gruner
, “
Printable thin film supercapacitors using single-walled carbon nanotubes
,”
Nano Lett
9
,
1872
1876
(
2009
).
27.
B.
Derby
, “
Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution
,”
Annu Rev Mater Res
40
,
395
414
(
2010
).
28.
H.
Lee
,
S. M.
Dellatore
,
W. M.
Miller
, and
P. B.
Messersmith
, “
Mussel-inspired surface chemistry for multifunctional coatings
,”
Science
318
,
426
430
(
2007
).
29.
Z.
Fang
,
H. R.
Yu
,
Y. Y.
Dang
,
N.
Gao
,
N. N.
Ma
,
J. X.
Peng
,
K. Y.
Xie
, and
L. B.
Li
, “
Electrochemical and printable properties of polydopamine decorated carbon nanotube ink
,”
Sci. Adv. Mater.
9
,
2039
2044
(
2017
).
30.
K. H.
Choi
,
J.
Yoo
,
C. K.
Lee
, and
S. Y.
Lee
, “
All-inkjet-printed, solid-state flexible supercapacitors on paper
,”
Energ Environ Sci
9
,
2812
2821
(
2016
).
31.
J.
Orangi
,
F.
Hamade
,
V. A.
Davis
, and
M.
Beidaghi
, “
3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities
,”
ACS Nano
14
,
640
650
(
2020
).
32.
M.
Wu
,
Y.
Li
,
B.
Yao
,
J.
Chen
,
C.
Li
, and
G.
Shi
, “
A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film
,”
J Mater Chem A
4
,
16213
16218
(
2016
).
33.
J. Z.
Hu
,
K. Y.
Xie
,
X. Y.
Liu
,
S. H.
Guo
,
C.
Shen
,
X. R.
Liu
,
X. H.
Li
,
J. G.
Wang
, and
B. Q.
Wei
, “
Dramatically enhanced ion conductivity of gel polymer electrolyte for supercapacitor via h-BN nanosheets doping
,”
Electrochim Acta
227
,
455
461
(
2017
).
34.
W.
Yu
,
H.
Zhou
,
B. Q.
Li
, and
S.
Ding
, “
3D printing of carbon nanotubes-based microsupercapacitors
,”
ACS Appl Mater Inter
9
,
4597
4604
(
2017
).
35.
S. K.
Kim
,
H. J.
Koo
,
A.
Lee
, and
P. V.
Braun
, “
Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors
,”
Adv Mater
26
,
5108
5112
(
2014
).
36.
L.
Zhang
,
D.
DeArmond
,
N. T.
Alvarez
,
R.
Malik
,
N.
Oslin
,
C.
McConnell
,
P. K.
Adusei
,
Y.-Y.
Hsieh
, and
V.
Shanov
, “
Flexible micro-supercapacitor based on graphene with 3D structure
,”
Small
13
,
1603114
(
2017
).
37.
L.
Li
,
Z.
Lou
,
W.
Han
,
D.
Chen
,
K.
Jiang
, and
G.
Shen
, “
Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes
,”
Adv Mater Technol
2
,
1600282
(
2017
).
38.
K. Y.
Jiang
,
I. A.
Baburin
,
P.
Han
,
C. Q.
Yang
,
X. B.
Fu
,
Y. F.
Yao
,
J. T.
Li
,
E.
Cánovas
,
G.
Seifert
,
J. S.
Chen
,
M.
Bonn
,
X. L.
Feng
, and
X. D.
Zhuang
, “
Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density
,”
Adv Func Mater
30
,
1908243
(
2020
).
39.
A.
Ferris
,
D.
Bourrier
,
S.
Garbarino
,
D.
Guay
, and
D.
Pech
, “
3D interdigitated microsupercapacitors with record areal cell capacitance
,”
Small
15
,
1901224
(
2019
).
40.
M. F.
El-Kady
,
M.
Ihns
,
M.
Li
,
J. Y.
Hwang
,
M. F.
Mousavi
,
L.
Chaney
,
A. T.
Lech
, and
R. B.
Kaner
, “
Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage
,”
Proc Natl Acad Sci
112
,
4233
4238
(
2015
).
41.
E.
Eustache
,
C.
Douard
,
A.
Demortière
,
V.
De Andrade
,
M.
Brachet
,
J. L.
Bideau
,
T.
Brousse
, and
C.
Lethien
, “
High areal energy 3D-interdigitated micro-supercapacitors in aqueous and ionic liquid electrolytes
,”
Adv Mater Technol
2
,
1700126
(
2017
).
42.
C.
Yang
,
K. S.
Schellhammer
,
F.
Ortmann
,
S.
Sun
,
R.
Dong
,
M.
Karakus
,
Z.
Mics
,
M.
Löffler
,
F.
Zhang
,
X.
Zhuang
,
E.
Cánovas
,
G.
Cuniberti
,
M.
Bonn
, and
X.
Feng
, “
Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance
,”
Angew Chem Int Ed
56
,
3920
3924
(
2017
).
43.
K.-H.
Lee
,
D. B.
Ahn
,
J.-H.
Kim
,
J.-W.
Lee
, and
S.-Y.
Lee
, “
Printed built-in power sources
,”
Matter
2
,
345
359
(
2020
).
44.
Y.
Lin
,
J.
Chen
,
M. M.
Tavakoli
,
Y.
Gao
,
Y.
Zhu
,
D.
Zhang
,
M.
Kam
,
Z.
He
, and
Z.
Fan
, “
Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates
,”
Adv Mater
31
,
1804285
(
2019
).
45.
J.
Park
,
D. B.
Ahn
,
J.
Kim
,
E.
Cha
,
B. S.
Bae
,
S. Y.
Lee
, and
J. U.
Park
, “
Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations
,”
Sci Adv
5
,
eaay0764
(
2019
).
46.
C.
Chen
,
J.
Cao
,
Q.
Lu
,
X.
Wang
,
L.
Song
,
Z.
Niu
, and
J.
Chen
, “
Foldable all-solid-state supercapacitors integrated with photodetectors
,”
Adv Func Mater
27
,
1604639
(
2017
).
47.
J.
Yun
,
Y.
Lim
,
H.
Lee
,
G.
Lee
,
H.
Park
,
S. Y.
Hong
,
S. W.
Jin
,
Y. H.
Lee
,
S.-S.
Lee
, and
J. S.
Ha
, “
A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper
,”
Adv Func Mater
27
,
1700135
(
2017
).
48.
J.
Wang
,
V. K.
Bandari
,
D.
Karnaushenko
,
Y.
Li
,
F.
Li
,
P.
Zhang
,
S.
Baunack
,
D. D.
Karnaushenko
,
C.
Becker
,
M.
Faghih
,
T.
Kang
,
S.
Duan
,
M.
Zhu
,
X.
Zhuang
,
F.
Zhu
,
X.
Feng
, and
O. G.
Schmidt
, “
Self-assembly of integrated tubular microsupercapacitors with improved electrochemical performance and self-protective function
,”
ACS Nano
13
,
8067
8075
(
2019
).
49.
L.
Li
,
C.
Fu
,
Z.
Lou
,
S.
Chen
,
W.
Han
,
K.
Jiang
,
D.
Chen
, and
G.
Shen
, “
Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application
,”
Nano Energy
41
,
261
268
(
2017
).
50.
J.
Hu
,
T.
Li
, and
B.
Wei
, “
Bidirectional correlation between mechanics and electrochemistry of poly(vinyl alcohol)-based gel polymer electrolytes
,”
J Phys Chem Lett
8
,
6106
6112
(
2017
).
51.
D. C.
Marcano
,
D. V.
Kosynkin
,
J. M.
Berlin
,
A.
Sinitskii
,
Z.
Sun
,
A.
Slesarev
,
L. B.
Alemany
,
W.
Lu
, and
J. M.
Tour
, “
Improved synthesis of graphene oxide
,”
ACS Nano
4
,
4806
4814
(
2010
).

Supplementary Material

You do not currently have access to this content.