Artificial atoms like the nitrogen vacancy (NV) centers in diamond enable the realization of fully functional qubits in a solid at room temperature. The functionalities of all the parts needed to create a quantum computer, such as quantum error correction, couplings, quantum teleportation, and a quantum repeater, have already been experimentally demonstrated. These achievements are expected to influence the industrial development of quantum information technology as well as quantum sensing. Whereas quantum sensing has been established and a large number of organizations are working on new developments in this area, a quantum computer itself remains elusive due to technical reasons and limitations of the available materials. For example, only in recent months has it become possible to electrically readout the NV spin state at the level of a single center and significantly improve the scalability of NV center production. A number of ideas have been proposed to overcome the above-mentioned limitations. This paper summarizes the status of research in the area, details the most promising concepts for development, and discusses factors limiting progress as well as the most recent developments in the field.

1.
A.
Gruber
 et al., “
Magnetic-resonance on single molecules in an external magnetic-field: The Zeeman-Effect of a single-electron spin and determination of the orientation of individual molecules
,”
Chem. Phys. Lett.
242
(
4–5
),
465
470
(
1995
).
2.
J.
Wrachtrup
,
S. Y.
Kilin
, and
A. P.
Nizovtsev
, “
Quantum computation using the C-13 nuclear spins near the single NV defect center in diamond
,”
Opt. Spectrosc.
91
(
3
),
429
437
(
2001
).
3.
P.
Hemmer
and
J.
Wrachtrup
, “
Where is my quantum computer?
,”
Science
324
(
5926
),
473
474
(
2009
).
4.
J. R.
Weber
 et al., “
Quantum computing with defects
,”
Proc. Nat. Acad. Sci. USA
107
(
19
),
8513
8518
(
2010
).
5.
L.
Childress
 et al., “
Coherent dynamics of coupled electron and nuclear spin qubits in diamond
,”
Science
314
(
5797
),
281
285
(
2006
).
6.
F.
Jelezko
and
J.
Wrachtrup
, “
Read-out of single spins by optical spectroscopy
,”
J. Phys.-Condens. Matter
16
(
30
),
R1089
R1104
(
2004
).
7.
F.
Jelezko
 et al., “
Observation of coherent oscillations in a single electron spin
,”
Phys. Rev. Lett.
92
(
7
),
076401
(
2004
).
8.
F.
Jelezko
 et al., “
Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate
,”
Phys. Rev. Lett.
93
(
13
),
130501
(
2004
).
9.
P. C.
Maurer
 et al., “
Room-temperature quantum bit memory exceeding one second
,”
Science
336
(
6086
),
1283
1286
(
2012
).
10.
G.
Balasubramanian
 et al., “
Ultralong spin coherence time in isotopically engineered diamond
,”
Nat. Mater.
8
(
5
),
383
387
(
2009
).
11.
P.
Zoller
 et al., “
Quantum information processing and communication
,”
Eur. Phys. J. D
36
(
2
),
203
228
(
2005
).
12.
P.
Neumann
 et al., “
Quantum register based on coupled electron spins in a room-temperature solid
,”
Nat. Phys.
6
(
4
),
249
253
(
2010
).
13.
S.
Yang
 et al., “
High-fidelity transfer and storage of photon states in a single nuclear spin
,”
Nat. Photonics
10
(
8
),
507
(
2016
).
14.
T.
Staudacher
 et al., “
Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume
,”
Science
339
(
6119
),
561
563
(
2013
).
15.
S.
Schmitt
 et al., “
Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor
,”
Science
356
(
6340
),
832
836
(
2017
).
16.
I.
Schwartz
 et al., “
Blueprint for nanoscale NMR
,”
Sci. Rep.
9
,
6938
(
2019
).
17.
T.
Lühmann
 et al., “
Screening and engineering of colour centres in diamond
,”
J. Phys. D-Appl. Phys.
51
(
48
),
483002
(
2018
).
18.
T. H.
Taminiau
, “
Quantum information and networks with spins in diamond
,” in Proceedings of
2014 Conference on Lasers and Electro-Optics
, San Jose, California (June 8–13,
2014
).
19.
F.
Jelezko
, “
Diamond based quantum technologies
,”
EPJ Web of Conferences
190
,
01003
(
2018
).
20.
H.
Kaufmann
 et al., “
Scalable creation of long-lived multipartite entanglement
,”
Phys. Rev. Lett.
119
(
15
),
150503
(
2017
).
21.
H.
Kaufmann
 et al., “
Fast ion swapping for quantum-information processing
,”
Phys. Rev. A
95
(
5
),
052319
(
2017
).
22.
F.
Arute
 et al., “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
(
7779
),
505
(
2019
).
23.
M.
Veldhorst
 et al., “
Silicon CMOS architecture for a spin-based quantum computer
,”
Nat. Communications
8
,
1766
(
2017
).
24.
T.
Teraji
, “
Isotopic enrichment of diamond using microwave plasma-assisted chemical vapor deposition with high carbon conversion efficiency
,”
Thin Solid Films
557
,
231
236
(
2014
).
25.
M. W.
Doherty
 et al., “
Theory of the ground-state spin of the NV center in diamond
,”
Phys. Rev. B
85
(
20
),
205023
(
2012
).
26.
P.
Neumann
 et al., “
Single-shot readout of a single nuclear spin
,”
Science
329
(
5991
),
542
544
(
2010
).
27.
R.
John
 et al., “
Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature
,”
New J. Phys.
19
,
053008
(
2017
).
28.
S. Y.
Lee
 et al., “
Readout and control of a single nuclear spin with a metastable electron spin ancilla
,”
Nat. Nanotechnol.
8
(
7
),
487
492
(
2013
).
29.
D. D.
Sukachev
 et al., “
Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout
,”
Phys. Rev. Lett.
119
(
22
),
223602
(
2017
).
30.
M. W.
Doherty
 et al., “
The nitrogen-vacancy colour centre in diamond
,”
Phys. Rep.
528
(
1
),
1
45
(
2013
).
31.
B. K.
Ofori-Okai
 et al., “
Spin properties of very shallow nitrogen vacancy defects in diamond
,”
Phys. Rev. B
86
(
8
),
081406
(
2012
).
32.
J.
Wrachtrup
and
F.
Jelezko
, “
Processing quantum information in diamond
,”
J. Phys.-Condens. Matter
18
(
21
),
S807
S824
(
2006
).
33.
P.
Balasubramanian
 et al., “
Discovery of ST1 centers in natural diamond
,”
Nanophotonics
8
(
11
),
1993
2002
(
2019
).
34.
D. A.
Broadway
 et al., “
Quantum probe hyperpolarisation of molecular nuclear spins
,”
Nat. Communications
9
,
1246
(
2018
).
35.
L.
Rondin
 et al., “
Magnetometry with nitrogen-vacancy defects in diamond
,”
Rep. Prog. Phys.
77
(
5
),
056503
(
2014
).
36.
J. P.
Tetienne
 et al., “
Magnetic-field-dependent photodynamics of single NV defects in diamond: An application to qualitative all-optical magnetic imaging
,”
New J. Phys.
14
,
103033
(
2012
).
37.
G. D.
Fuchs
 et al., “
Excited-state spin coherence of a single nitrogen-vacancy centre in diamond
,”
Nat. Phys.
6
(
9
),
668
672
(
2010
).
38.
G. D.
Fuchs
 et al., “
Gigahertz dynamics of a strongly driven single quantum spin
,”
Science
326
(
5959
),
1520
1522
(
2009
).
39.
J.
Tisler
 et al., “
Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule
,”
ACS Nano
5
(
10
),
7893
7898
(
2011
).
40.
P.
Tamarat
 et al., “
Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond
,”
New J. Phys.
10
,
045004
(
2008
).
41.
F.
Dolde
 et al., “
High-fidelity spin entanglement using optimal control
,”
Nat. Communications
5
,
3371
(
2014
).
42.
F.
Dolde
 et al., “
Room-temperature entanglement between single defect spins in diamond
,”
Nat. Phys.
9
(
3
),
139
143
(
2013
).
43.
Y.
Chou
,
S. Y.
Huang
, and
H. S.
Goan
, “
Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond
,”
Phys. Rev. A
91
(
5
),
052315
(
2015
).
44.
Y.
Chu
 et al., “
All-optical control of a single electron spin in diamond
,”
Phys. Rev. A
91
(
2
),
021801
(
2015
).
45.
T.
Yamamoto
 et al., “
Extending spin coherence times of diamond qubits by high-temperature annealing
,”
Phys. Rev. B
88
(
7
),
075206
(
2013
).
46.
F. F.
de Oliveira
 et al., “
Tailoring spin defects in diamond by lattice charging
,”
Nat. Communications
8
,
15409
(
2017
).
47.
T.
Lühmann
 et al., “
Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond
,”
Nat. Communications
10
,
4956
(
2019
).
48.
T.
Vogel
,
J.
Meijer
, and
A.
Zaitsev
, “
Highly effective p-type doping of diamond by MeV ion implantation of boron
,”
Diamond Related Mater.
13
(
10
),
1822
1825
(
2004
).
49.
E.
Gheeraert
 et al., “
n-type doping of diamond by sulfur and phosphorus
,”
Diamond Related Mater.
11
(
3–6
),
289
295
(
2002
).
50.
Y.
Yamazaki
 et al. “
Defect creation in diamond by hydrogen plasma treatment at room temperature
,”
Phys. B-Condens. Matter
376–377
,
327
330
(
2006
).
51.
S.
Salustro
 et al., “
Hydrogen atoms in the diamond vacancy defect
:
A quantum mechanical vibrational analysis,” Carbon
129
,
349
356
(
2018
).
52.
S. H.
Connell
 et al., “
Hydrogen and hydrogen-like defects in diamond
,”
Mater. Sci. Forum
258–263
,
751
756
(
1997
).
53.
J. C.
Arnault
 et al., “
Enhanced deuterium diffusion in boron doped monocrystalline diamond films using bias-assisted MPCVD
,”
Phys. Lett. A
374
(
31–32
),
3254
3257
(
2010
).
54.
J.
Barjon
 et al., “
Hydrogen-induced passivation of boron acceptors in monocrystalline and polycrystalline diamond
,”
Phys. Chem. Chem. Phys.
13
(
24
),
11511
11516
(
2011
).
55.
N. B.
Manson
 et al., “
NV–N+ pair centre in 1b diamond
,”
New J. Phys.
20
,
113037
(
2018
).
56.
T.
Mittiga
 et al., “
Imaging the local charge environment of nitrogen-vacancy centers in diamond
,”
Phys. Rev. Lett.
121
(
24
),
246402
(
2018
).
57.
C.
Schreyvogel
 et al., “
Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions
,”
Beilstein J. Nanotechnol.
7
,
1727
1735
(
2016
).
58.
M.
Pfender
 et al., “
Protecting a diamond quantum memory by charge state control
,”
Nano Lett.
17
(
10
),
5931
5937
(
2017
).
59.
C.
Schreyvogel
 et al., “
Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond
,”
Sci. Rep.
4
,
3634
(
2015
).
60.
M. V.
Hauf
 et al., “
Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures
,”
Nano Lett.
14
(
5
),
2359
2364
(
2014
).
61.
D. P.
DiVincenzo
, “
The physical implementation of quantum computation
,”
Fortschritte Der Phys.-Prog. Phys.
48
(
9–11
),
771
783
(
2000
).
62.
A.
Barenco
 et al., “
Elementary gates for quantum computation
,”
Phys. Rev. A
52
(
5
),
3457
3467
(
1995
).
63.
D. P.
Divincenzo
, “
Quantum computation
,”
Science
270
(
5234
),
255
261
(
1995
).
64.
K.
Groot-Berning
 et al., “
Deterministic single-ion implantation of rare-earth ions for nanometer-resolution color-center generation
,”
Phys. Rev. Lett.
123
(
10
),
106802
(
2019
).
65.
J.
Harrison
,
M. J.
Sellars
, and
N. B.
Manson
, “
Optical spin polarisation of the N-V centre in diamond
,”
J. Luminescence
107
(
1–4
),
245
248
(
2004
).
66.
J.
Harrison
,
M. J.
Sellars
, and
N. B.
Manson
, “
Measurement of the optically induced spin polarisation of N-V centre in diamond
,”
Diamond Related Mater.
15
(
4–8
),
586
588
(
2006
).
67.
A. P.
Nizovtsev
 et al., “
Non-flipping 13C spins near an NV center in diamond: Hyperfine and spatial characteristics by density functional theory simulation of the C510 [NV]H252 cluster
,”
New J. Phys.
20
,
023022
(
2018
).
68.
H.
Morishita
 et al., “
Extension of the coherence time by generating MW dressed states in a single NV in diamond
,”
Sci. Rep.
9
,
13318
(
2019
).
69.
E. D.
Herbschleb
 et al., “
Ultra-long coherence times amongst room-temperature solid-state spins
,”
Nat. Communications
10
,
3766
(
2019
).
70.
M. H.
Abobeih
 et al., “
One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment
,”
Nat. Communications
9
,
2552
(
2018
).
71.
H.
Bernien
 et al., “
Heralded entanglement between solid-state qubits separated by three metres
,”
Nature
497
(
7447
),
86
90
(
2013
).
72.
T.
Plakhotnik
,
M. W.
Doherty
, and
N. B.
Manson
, “
Electron-phonon processes of the nitrogen-vacancy center in diamond
,”
Phys. Rev. B
92
(
8
),
081203
(
2015
).
73.
L. M.
Oberg
 et al., “
Spin coherent quantum transport of electrons between defects in diamond
,”
Nanophotonics
8
(
11
),
1975
1984
(
2019
).
74.
M. W.
Doherty
 et al., “
Towards a room-temperature spin quantum bus in diamond via electron photoionization, transport, and capture
,”
Phys. Rev. X
6
(
4
),
041035
(
2016
).
75.
C. E.
Bradley
 et al., “
A ten-qubit solid-state spin register with quantum memory up to one minute
,”
Phys. Rev. X
9
(
3
),
031045
(
2019
).
76.
M. H.
Abobeih
 et al., “
Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor
,”
Nature
576
(
7787
),
411
(
2019
).
77.
D. D.
Awschalom
 et al., “
Quantum technologies with optically interfaced solid-state spins
,”
Nat. Photonics
12
(
9
),
516
527
(
2018
).
78.
X.
Rong
 et al., “
Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions
,”
Nat. Communications
6
,
8748
(
2015
).
79.
Y.
Wang
 et al., “
Quantum simulation of helium hydride cation in a solid-state spin register
,”
AC Nano
9
(
8
),
7769
7774
(
2015
).
80.
J. F.
Haase
 et al., “
Soft quantum control for highly selective interactions among joint quantum systems
,”
Phys. Rev. Lett.
121
(
5
),
050402
(
2018
).
81.
A.
Sipahigil
 et al., “
An integrated diamond nanophotonics platform for quantum-optical networks
,”
Science
354
(
6314
),
847
850
(
2016
).
82.
J. T.
Muhonen
 et al., “
Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking
,”
J. Phys.-Condens. Matter
27
(
15
),
154205
(
2015
).
83.
J. T.
Muhonen
 et al., “
Storing quantum information for 30 seconds in a nanoelectronic device
,”
Nat. Nanotechnol.
9
(
12
),
986
991
(
2014
).
84.
M.
Kjaergaard
 et al., “
Superconducting qubits: Current state of play
,”
Annu. Rev. Condens. Matter Phys.
11
,
369
395
(
2020
).
85.
R.
Barends
 et al., “
Superconducting quantum circuits at the surface code threshold for fault tolerance
,”
Nature
508
(
7497
),
500
503
(
2014
).
86.
J. M.
Nichol
 et al., “
High-fidelity entangling gate for double-quantum-dot spin qubits
,”
NPJ Quantum Inf.
3
,
3
(
2017
).
87.
W.
Huang
 et al., “
Fidelity benchmarks for two-qubit gates in silicon
,”
Nature
569
(
7757
),
532
(
2019
).
88.
A.
Reiserer
 et al., “
Robust quantum-network memory using decoherence-protected subspaces of nuclear spins
,”
Phys. Rev. X
6
(
2
),
021040
(
2016
).
89.
T. H.
Taminiau
 et al., “
Universal control and error correction in multi-qubit spin registers in diamond
,”
Nat. Nanotechnol.
9
(
3
),
171
176
(
2014
).
90.
J.
Cramer
 et al., “
Repeated quantum error correction on a continuously encoded qubit by real-time feedback
,”
Nat. Communications
7
,
11526
(
2016
).
91.
G.
Waldherr
 et al., “
Quantum error correction in a solid-state hybrid spin register
,”
Nature
506
(
7487
),
204
(
2014
).
92.
J.
Casanova
,
Z. Y.
Wang
, and
M. B.
Plenio
, “
Noise-resilient quantum computing with a nitrogen-vacancy center and nuclear spins
,”
Phys. Rev. Lett.
117
(
13
),
130502
(
2016
).
93.
A. P.
Nizovtsev
 et al., “
Quantum registers based on single NV + n C-13 centers in diamond: I. The spin Hamiltonian method
,”
Opt. Spectrosc.
108
(
2
),
230
238
(
2010
).
94.
J. H.
Shim
 et al., “
Robust dynamical decoupling for arbitrary quantum states of a single NV center in diamond
,”
Epl
99
(
4
),
40004
(
2012
).
95.
P.
Jamonneau
 et al., “
Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond [93, 024305 (2016)]
,”
Phys. Rev. B
99
(
24
),
249903
(
2019
).
96.
R.
Wunderlich
 et al., “
Optically induced cross relaxation via nitrogen-related defects for bulk diamond 13C hyperpolarization
,”
Phys. Rev. B
96
(
22
),
220407
(
2017
).
97.
N. Y.
Yao
 et al., “
Scalable architecture for a room temperature solid-state quantum information processor
,”
Nat. Communications
3
,
800
(
2012
).
98.
T.
Gaebel
 et al., “
Room-temperature coherent coupling of single spins in diamond
,”
Nat. Phys.
2
(
6
),
408
413
(
2006
).
99.
T. D.
Ladd
 et al., “
Quantum computers
,”
Nature
464
(
7285
),
45
53
(
2010
).
100.
D. J.
Klionsky
 et al., “
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition
,”
Autophagy
12
(
1
),
1
222
(
2016
).
101.
S.
Castelletto
 et al., “
Advances in diamond nanofabrication for ultrasensitive devices
,”
Microsystems Nanoengineering
3
,
17061
(
2017
).
102.
T.
Schenkel
 et al., “
Deterministic doping and the exploration of spin qubits
,”
API Conf. Proc.
1640
,
124
(
2015
).
103.
M. S. J.
Barson
 et al., “
The fine structure of the neutral nitrogen-vacancy center in diamond
,”
Nanophotonics
8
(
11
),
1985
1991
(
2019
).
104.
C.
Grezes
 et al., “
Towards a spin-ensemble quantum memory for superconducting qubits
,”
C. R. Phys.
17
(
7
),
693
704
(
2016
).
105.
T.
Douce
 et al., “
Coupling a single nitrogen-vacancy center to a superconducting flux qubit in the far-off-resonance regime
,”
Phys. Rev. A
92
(
5
),
052335
(
2015
).
106.
F. M.
Hrubesch
 et al., “
Efficient electrical spin readout of NV - Centers in diamond
,”
Phys. Rev. Lett.
118
(
3
),
037601
(
2017
).
107.
P.
Siyushev
 et al., “
Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond
,”
Science
363
(
6428
),
728
(
2019
).
108.
J. M.
Smith
 et al., “
Colour centre generation in diamond for quantum technologies
,”
Nanophotonics
8
(
11
),
1889
1906
(
2019
).
109.
T.
Shinada
 et al., “
Opportunity of single atom control for quantum processing in silicon and diamond
,” in Proceedings of
2014 IEEE Silicon Nanoelectronics Workshop (SNW)
, Honolulu, HI (
2014
), pp. 1–2.
110.
D. N.
Jamieson
 et al., “
Deterministic doping
,”
Mater. Sci. Semicond. Process.
62
,
23
30
(
2017
).
111.
J.
Meijer
 et al., “
Concept of deterministic single ion doping with sub-nm spatial resolution
,”
Appl. Phys. A
83
(
2
),
321
327
(
2006
).
112.
J.
Meijer
 et al., “
Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution
,”
Appl. Phys. A
91
(
4
),
567
571
(
2008
).
113.
W.
Schnitzler
 et al., “
Deterministic ultracold ion source targeting the Heisenberg limit
,”
Phys. Rev. Lett.
102
(
7
),
070501
(
2009
).
114.
T.
Herzig
 et al., “
Creation of quantum centers in silicon using spatial selective ion implantation of high lateral resolution
,” in
22nd International Conference on Ion Implantation Technology (IIT),
Würzburg, Germany, 16–21 Sept.
2018
(IEEE, 2018), pp. 136–139.
115.
P.
Racke
 et al., “
Nanoscale ion implantation using focussed highly charged ions
,”
New J. Phys.
22
(
8
),
083028
(
2020
).
116.
S.
Chakravarthi
 et al., “
Window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers
,”
Phys. Rev. Mater.
4
(
2
),
023402
(
2020
).
117.
S.
Onoda
 et al., “
Diffusion of vacancies created by high-energy heavy ion strike into diamond
,”
Phys. Status Solidi A
214
(
11
),
1700160
(
2017
).
118.
S. T.
Alsid
 et al., “
Photoluminescence decomposition analysis: A technique to characterize N-V creation in diamond
,”
Phys. Rev. Appl.
12
(
4
),
044003
(
2019
).
119.
S.
Pezzagna
 et al., “
Nanoscale engineering and optical addressing of single spins in diamond
,”
Small
6
(
19
),
2117
2121
(
2010
).
120.
B.
Hensen
 et al., “
Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres
,”
Nature
526
(
7575
),
682
686
(
2015
).
121.
N.
Bar-Gill
 et al., “
Solid-state electronic spin coherence time approaching one second
,”
Nat. Communications
4
,
1743
(
2013
).
122.
T.
Yamamoto
 et al., “
Strongly coupled diamond spin qubits by molecular nitrogen implantation
,”
Phys. Rev. B
88
(
20
),
201201
(
2013
).
123.
S. B.
van Dam
 et al., “
Multipartite entanglement generation and contextuality tests using nondestructive three-qubit parity measurements
,”
Phys. Rev. Lett.
123
(
5
),
050401
(
2019
).
124.
N.
Kalb
 et al., “
Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks
,”
Phys. Rev. A
97
(
6
),
062330
(
2018
).
125.
T.
van der Sar
 et al., “
Decoherence-protected quantum gates for a hybrid solid-state spin register
,”
Nature
484
(
7392
),
82
86
(
2012
).
126.
Z.-Y.
Wang
 et al., “
Delayed entanglement echo for individual control of a large number of nuclear spins
,”
Nat. Communications
8
,
14660
(
2017
).
You do not currently have access to this content.