The world's growing hunger for artificial cold, on the one hand, and the ever more stringent climate targets, on the other, pose an enormous challenge to mankind. Novel, efficient, and environmentally friendly refrigeration technologies based on solid-state refrigerants can offer a way out of the problems arising from climate-damaging substances used in conventional vapor-compressors. Multicaloric materials stand out because of their large temperature changes, which can be induced by the application of different external stimuli such as a magnetic, electric, or a mechanical field. Despite the high potential for applications and the interesting physics of this group of materials, few studies focus on their investigation by direct methods. In this paper, we report on the advanced characterization of all relevant physical quantities that determine the multicaloric effect of a Ni-Mn-In Heusler compound. We have used a purpose-designed calorimeter to determine the isothermal entropy and adiabatic temperature changes resulting from the combined action of magnetic field and uniaxial stress on this metamagnetic shape-memory alloy. From these results, we can conclude that the multicaloric response of this alloy by appropriate changes of uniaxial stress and magnetic field largely outperforms the caloric response of the alloy when subjected to only a single stimulus. We anticipate that our findings can be applied to other multicaloric materials, thus inspiring the development of refrigeration devices based on the multicaloric effect.

1.
N.
Shah
,
N.
Khanna
,
N.
Karali
,
W. Y.
Park
,
Y.
Qu
, and
N.
Zhou
, Opportunities for Simultaneous Efficiency Improvement and Refrigerant Transition in Air Conditioning. (Energy Analysis and Environmental Impacts Division of the Lawrence Berkeley National Laboratory, International Energy Studies Group, China Energy Group, Report LBNL-2001021,
2017
), https://escholarship.org/uc/item/2r19r76z.
2.
European legislation to control F-gases
, https://ec.europa.eu/clima/policies/f-gas/legislation_en (accessed 30/4/2019).
3.
L.
Mañosa
,
A.
Planes
, and
M.
Acet
,
J. Mater. Chem. A
1
,
4925
(
2013
).
4.
X.
Moya
,
S.
Kar-Narayan
, and
N. D.
Mathur
,
Nature Mater.
13
,
439
(
2014
).
5.
V. K.
Pecharsky
and
K. A.
Gschneidner
,
Phys. Rev. Lett.
78
,
4494
(
1997
).
6.
A. S.
Mischenko
,
Q.
Zhang
,
J. F.
Scott
,
R. W.
Whatmore
, and
N. D.
Mathur
,
Science
311
,
1270
(
2006
).
7.
E.
Bonnot
,
R.
Romero
,
L.
Mañosa
,
E.
Vives
, and
A.
Planes
,
Phys. Rev. Lett.
100
,
125901
(
2008
).
8.
L.
Mañosa
,
D.
González-Alonso
,
A.
Planes
,
E.
Bonnot
,
M.
Barrio
,
J. L.
Tamarit
,
S.
Aksoy
, and
M.
Acet
,
Nature Mater.
9
,
478
(
2010
).
9.
C.
Cazorla
,
Appl. Phys. Rev.
6
,
041316
(
2019
).
10.
J.
Liu
,
T.
Gottschall
,
K. P.
Skokov
,
J. D.
Moore
, and
O.
Gutfleisch
,
Nature Mater.
11
,
620
(
2012
).
11.
E.
Stern-Taulats
,
T.
Castan
,
L.
Mañosa
,
A.
Planes
,
N. D.
Mathur
, and
X.
Moya
,
MRS Bull.
43
,
295
(
2018
).
12.
T.
Gottschall
,
A.
Gràcia-Condal
,
M.
Fries
,
A.
Taubel
,
L.
Pfeuffer
,
L.
Mañosa
,
A.
Planes
,
K.
Skokov
, and
O.
Gutfleisch
,
Nature Mater.
17
,
929
(
2018
).
13.
K. A.
Gschneidner
,
V. K.
Pecharsky
, and
A. O.
Tsokol
,
Rep. Prog. Phys.
68
,
1479
(
2005
).
14.
A.
Smith
,
C. R. H.
Bahl
,
R.
Bjork
,
K.
Engelbrecht
,
K. K.
Nielsen
, and
N.
Pryds
,
Adv. Energy Mater.
42
,
305
(
2012
).
15.
V.
Franco
,
J. S.
Blázquez
,
J. J.
Ipus
,
J. Y.
Law
,
L. M.
Moreno-Ramírez
, and
A.
Conde
,
Prog. Mater. Sci.
93
,
112
(
2018
).
16.
17.
L.
Mañosa
and
A.
Planes
,
Adv. Mater.
29
,
1603607
(
2017
).
19.
P.
Lloveras
 et al.
Nature Comm.
10
,
1803
(
2019
).
20.
D.
Cong
,
W.
Xion
,
A.
Planes
,
Y.
Ren
,
L.
Mañosa
,
P.
Cao
,
Z.
Nie
,
X.
Sun
,
Z.
Yang
,
X.
Hong
, and
Y.
Wang
,
Phys. Rev. Lett.
122
,
255703
(
2019
).
21.
A.
Czernuszewicz
,
J.
Kaleta
, and
D.
Lewandoswski
,
Energy Conv. Mgt.
178
,
335
(
2018
).
22.
A.
Planes
,
T.
Castán
, and
A.
Saxena
,
Philos. Mag.
94
,
1893
(
2014
).
23.
Y. Y.
Gong
,
D. H.
Wang
,
Q. Q.
Cao
,
E. K.
Liu
,
J.
Liu
, and
Y. W.
Du
,
Adv. Mater.
27
,
801
(
2015
).
24.
Y.
Liu
,
L. C.
Phillips
,
R.
Mattana
,
M.
Bibes
,
A.
Barthélémy
, and
B.
Dkhil
,
Nature Comm.
7
,
11614
(
2016
).
25.
F. X.
Liang
,
J. Z.
Hao
,
F. R.
Shen
,
H. B.
Zhou
,
J.
Wang
,
F. X.
Hu
,
J.
He
,
J. R.
Sun
, and
B. G.
Shen
,
APL Mater.
7
,
051102
(
2019
).
26.
E.
Stern-Taulats
,
T.
Castán
,
A.
Planes
,
L. H.
Lewis
,
R.
Barua
,
S.
Pramanick
,
S.
Majumdar
, and
L.
Mañosa
,
Phys. Rev. B
95
,
104424
(
2017
).
27.
A.
Gràcia-Condal
,
E.
Stern-Taulats
,
A.
Planes
, and
L.
Mañosa
,
Phys. Rev. Mater.
2
,
084413
(
2018
).
28.
T.
Gottschall
,
E.
Bykov
,
A.
Gràcia-Condal
,
B.
Beckmann
,
A.
Taubel
,
L.
Pfeuffer
,
O.
Gutfleisch
,
L.
Mañosa
,
A.
Planes
,
Y.
Skourski
, and
J.
Wosnitza
,
J. Appl. Phys.
127
,
185107
(
2020
).
29.
T.
Krenke
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
,
Phys. Rev. B
73
,
174413
(
2006
).
30.
A.
Planes
,
L.
Mañosa
, and
M.
Acet
,
J. Phys.: Condens. Matter
21
,
233201
(
2009
).
31.
S.
Aksoy
,
M.
Acet
,
P. P.
Deen
,
L.
Mañosa
, and
A.
Planes
,
Phys. Rev. B
79
,
212401
(
2009
).
32.
H.
Karaca
,
I.
Karaman
,
B.
Basaran
,
Y.
Ren
,
Y. I.
Chumlyakov
, and
H. J.
Maier
,
Adv. Funct. Mater.
19
,
983
(
2009
).
33.

The spread in temperature of the martensitic transtion implies that the surfaces separating martensite from austenite are not truly two-dimensional (planes) but rather they have a certain thickness. This effect is not considered here.

34.
J. Z.
Hao
,
F. X.
Hu
,
Z. B.
Yu
,
F. R.
Shen
,
H. B.
Zhou
,
Y. H.
Gao
,
K. M.
Qiao
,
J.
Li
,
C.
Zhang
,
W. H.
Liang
,
J.
Wang
,
J.
He
,
J. R.
Sun
, and
B. G.
Shen
,
Chin. Phys. B
29
,
047504
(
2020
).
35.
T.
Kihara
,
X.
Xu
,
W.
Ito
,
R.
Kainuma
, and
M.
Tokunaga
,
Phys. Rev. B
90
,
214409
(
2014
).
36.
T.
Gottschall
,
K. P.
Skokov
,
D.
Benke
,
M. E.
Gruner
, and
O.
Guttfleisch
,
Phys. Rev. B
93
,
184431
(
2016
).
37.
A.
Gràcia-Condal
,
E.
Stern-Taulats
,
A.
Planes
,
E.
Vives
, and
L.
Mañosa
,
Phys. Status Solidi B
255
,
1700422
(
2018
).
38.
T.
Stöter
,
M.
Antlauf
,
L.
Opherden
,
T.
Gottschall
,
J.
Hornung
,
J.
Gronemann
,
T.
Herrmannsdörfer
,
S.
Granovsky
,
M.
Schwarz
,
M.
Doerr
,
H.-H.
Klauss
,
E.
Kroke
, and
J.
Wositza
,
Phys. Rev. B
100
,
054403
(
2019
).

Supplementary Material

You do not currently have access to this content.