Recently, in healthcare sectors, specifically for personalized health monitoring, motion sensing, and human–machine interactions, the rising demand for stretchable and soft electronic devices is significant. In particular, stretchable, skin mountable, breathable, wearable, light weight, and highly sensitive sensors are needed for detecting subtle deformation arising from human physiological signals and have potential applications in health diagnosis. In this review, we discuss flexible, noninvasive, and wearable sensors based on micro/nanofibers with unique sensing capabilities for detecting human vital signs such as body motion, temperature, heartbeat, respiration rate, and blood glucose level, which have applications in both fitness-monitoring and medical diagnosis. Here, the latest successful examples of micro/nanofiber based flexible and wearable human vital signs monitoring sensors in the form of film, mat, yarn, fabric, textiles, etc., are outlined and discussed in detail. Discussion includes the fiber fabrication technique, sensing mechanism, device structure, sensor performance, and data processing. Some of the latest fabricated self-powered devices with integrated sensing platforms are also reviewed. Finally, this article reveals the existing challenges that are still to be overcome associated with wearable technologies for applications in health monitoring, diagnosis, and rehabilitation.

1.
See https://www.mordorintelligence.com/industry-reports/wearable-technology-market for “
Wearable Technology Market: Growth, Trends, and Forecast, 2020–2025
.”
2.
H.
Jin
,
Y. S.
Abu-Raya
, and
H.
Haick
, “
Advanced materials for health monitoring with skin-based wearable devices
,”
Adv. Healthcare Mater.
6
,
1700024
(
2017
).
3.
M.
Stoppa
and
A.
Chiolerio
, “
Wearable electronics and smart textiles: A critical review
,”
Sensors
14
,
11957
11992
(
2014
).
4.
S.
Yao
,
P.
Swetha
, and
Y.
Zhu
, “
Nanomaterial-enabled wearable sensors for healthcare
,”
Adv. Healthcare Mater.
7
,
1700889
(
2018
).
5.
W.
Zeng
 et al, “
Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications
,”
Adv. Mater.
26
,
5310
5336
(
2014
).
6.
J. V.
Hoof
,
G.
Demiris
, and
E. J. M.
Wouters
,
Handbook of Smart Homes, Health Care and Well-Being
(
Springer
,
Basel, Switzerland
,
2017
).
7.
S.
Majumder
 et al, “
Smart homes for elderly healthcare—Recent advances and research challenges
,”
Sensors
17
,
2496
(
2017
).
8.
World Health Organization (WHO)
, see https://www.who.int/world-health-day/2012/toolkit/background/en/ for “
Are you ready? What you need to know about ageing
.”
9.
C. D.
Mathers
and
D.
Loncar
, “
Projections of global mortality and burden of disease from 2002 to 2030
,”
PLoS Med.
3
,
e442
(
2006
).
10.
X.
Wang
,
Z.
Liu
, and
T.
Zhang
, “
Flexible sensing electronics for wearable/attachable health monitoring
,”
Small
13
,
1602790
(
2017
).
11.
M.
Ha
,
S.
Lim
, and
H.
Ko
, “
Wearable and flexible sensors for user-interactive health-monitoring devices
,”
J. Mater. Chem. B
6
,
4043
4064
(
2018
).
12.
L.
Wang
,
Z.
Lou
,
K.
Jiang
, and
G.
Shen
, “
Bio-multifunctional smart wearable sensors for medical devices
,”
Adv. Intell. Syst.
1
,
1900040
(
2019
).
13.
K.
Qi
 et al, “
A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring
,”
ACS Appl. Mater. Interfaces
9
,
42951
42960
(
2017
).
14.
S.
Wu
 et al, “
Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors
,”
ACS Appl. Mater. Interfaces
9
,
14207
14215
(
2017
).
15.
J. J.
Park
,
W. J.
Hyun
,
S. C.
Mun
,
Y. T.
Park
, and
O. O.
Park
, “
Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring
,”
ACS Appl. Mater. Interfaces
7
,
6317
6324
(
2015
).
16.
S. Y.
Hong
 et al, “
Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin
,”
Adv. Mater.
28
,
930
935
(
2016
).
17.
W.
He
 et al, “
Integrated textile sensor patch for real-time and multiplex sweat analysis
,”
Sci. Adv.
5
,
eaax0649
(
2019
).
18.
J.
Park
 et al, “
Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays
,”
Sci. Adv.
4
,
eaap9841
(
2018
).
19.
T.
Xu
 et al, “
Electrospun CuO-nanoparticles-modified polycaprolactone @ polypyrrole fibers: An application to sensing glucose in saliva
,”
Nanomaterials
8
,
133
(
2018
).
20.
C.
Deng
,
J.
Zhang
,
X.
Yu
,
W.
Zhang
, and
X.
Zhang
, “
Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization
,”
J. Chromatogr. B
810
,
269
275
(
2004
).
21.
M.
Jian
 et al, “
Advanced carbon materials for flexible and wearable sensors
,”
Sci. China Mater.
60
,
1026
1062
(
2017
).
22.
W. A. D. M.
Jayathilaka
 et al, “
Significance of nanomaterials in wearables: A review on wearable actuators and sensors
,”
Adv. Mater.
31
,
1805921
(
2019
).
23.
M.
Amjadi
,
K.-U.
Kyung
,
I.
Park
, and
M.
Sitti
, “
Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review
,”
Adv. Funct. Mater.
26
,
1678
1698
(
2016
).
24.
D.-H.
Kim
 et al, “
Epidermal electronics
,”
Science
333
,
838
843
(
2011
).
25.
R. C.
Webb
 et al, “
Ultrathin conformal devices for precise and continuous thermal characterization of human skin
,”
Nat. Mater.
12
,
938
944
(
2013
).
26.
J.
Yang
 et al, “
Wearable temperature sensor based on graphene nanowalls
,”
RSC Adv.
5
,
25609
25615
(
2015
).
27.
H.
Jin
,
T.-P.
Huynh
, and
H.
Haick
, “
Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: Toward disease prevention via wearable devices
,”
Nano Lett.
16
,
4194
4202
(
2016
).
28.
S.
Gong
 et al, “
A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
,”
Nat. Commun.
5
,
3132
(
2014
).
29.
S.-J.
Park
,
J.
Kim
,
M.
Chu
, and
M.
Khine
, “
Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement
,”
Adv. Mater. Technol.
1
,
1600053
(
2016
).
30.
J.
Jeon
,
H.-B.-R.
Lee
, and
Z.
Bao
, “
Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites
,”
Adv. Mater.
25
,
850
855
(
2013
).
31.
J.
Zhou
,
X.
Xu
,
H.
Yu
, and
G.
Lubineau
, “
Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion
,”
Nanoscale
9
,
604
612
(
2017
).
32.
S.
Yan
 et al, “
An ultra-sensitive, rapidly responsive strain sensor based on silver microflakes by simple process
,”
ChemistrySelect
4
,
4407
4415
(
2019
).
33.
M.
Zhang
 et al, “
A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application
,”
Nano Energy
13
,
298
305
(
2015
).
34.
L.
Guan
 et al, “
Stretchable-fiber-confined wetting conductive liquids as wearable human health monitors
,”
Adv. Funct. Mater.
26
,
4511
4517
(
2016
).
35.
A.
Zucchelli
,
M. L.
Focarete
,
C.
Gualandi
, and
S.
Ramakrishna
, “
Electrospun nanofibers for enhancing structural performance of composite materials
,”
Polym. Adv. Technol.
22
,
339
349
(
2011
).
36.
Y.
Zhang
, “
Electrospun nanofibers with tunable electrical conductivity
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2013
).
37.
A.
Chinnappan
,
C.
Baskar
,
S.
Baskar
,
G.
Ratheesh
, and
S.
Ramakrishna
, “
An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics
,”
J. Mater. Chem. C
5
,
12657
12673
(
2017
).
38.
N.
Hedin
,
V.
Sobolev
,
L.
Zhang
,
Z.
Zhu
, and
H.
Fong
, “
Electrical properties of electrospun carbon nanofibers
,”
J. Mater. Sci.
46
,
6453
6456
(
2011
).
39.
S.
Ramakrishna
 et al, “
Electrospun nanofibers: Solving global issues
,”
Mater. Today
9
,
40
50
(
2006
).
40.
W. E.
Teo
and
S.
Ramakrishna
, “
A review on electrospinning design and nanofibre assemblies
,”
Nanotechnology
17
,
R89
R106
(
2006
).
41.
T. Q.
Trung
and
N.-E.
Lee
, “
Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare
,”
Adv. Mater.
28
,
4338
4372
(
2016
).
42.
K.
Maity
and
D.
Mandal
, “
All-organic high-performance piezoelectric nanogenerator with multilayer assembled electrospun nanofiber mats for self-powered multifunctional sensors
,”
ACS Appl. Mater. Interfaces
10
,
18257
18269
(
2018
).
43.
G.
Zhao
 et al, “
Piezoelectric polyacrylonitrile nanofiber film-based dual-function self-powered flexible sensor
,”
ACS Appl. Mater. Interfaces
10
,
15855
15863
(
2018
).
44.
K.
Dong
 et al, “
A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
,”
ACS Nano
11
,
9490
9499
(
2017
).
45.
S.
Jung
,
J.
Lee
,
T.
Hyeon
,
M.
Lee
, and
D.-H.
Kim
, “
Fabric-based integrated energy devices for wearable activity monitors
,”
Adv. Mater.
26
,
6329
6334
(
2014
).
46.
S. H.
Ji
,
Y. S.
Cho
, and
J. S.
Yun
, “
Wearable core-shell piezoelectric nanofiber yarns for body movement energy harvesting
,”
Nanomaterials
9
,
555
559
(
2019
).
47.
S. H.
Ji
,
W.
Lee
, and
J. S.
Yun
, “
All-in-one piezo-triboelectric energy harvester module based on piezoceramic nanofibers for wearable devices
,”
ACS Appl. Mater. Interfaces
12
,
18609
18616
(
2020
).
48.
X.
Chen
,
S.
Xu
,
N.
Yao
, and
Y.
Shi
, “
1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers
,”
Nano Lett.
10
,
2133
2137
(
2010
).
49.
X.
Zhang
,
L.
Ji
,
O.
Toprakci
,
Y.
Liang
, and
M.
Alcoutlabi
, “
Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries
,”
Polym. Rev.
51
,
239
264
(
2011
).
50.
K.
Bachtin
 et al, “
Activation and degradation of electrospun LiFePO4 battery cathodes
,”
J. Power Sources
396
,
386
394
(
2018
).
51.
S.-H.
Wang
,
P.-L.
Kuo
,
C.-T.
Hsieh
, and
H.
Teng
, “
Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries
,”
ACS Appl. Mater. Interfaces
6
,
19360
19370
(
2014
).
52.
X.
Liu
 et al, “
Electrospun PU@GO separators for advanced lithium ion batteries
,”
J. Membr. Sci.
555
,
1
6
(
2018
).
53.
S.
Santangelo
, “
Electrospun nanomaterials for energy applications: Recent advances
,”
Appl. Sci.
9
,
1049
(
2019
).
54.
J.
Liang
 et al, “
MoS2-based all-purpose fibrous electrode and self-powering energy fiber for efficient energy harvesting and storage
,”
Adv. Energy Mater.
7
,
1601208
(
2017
).
55.
Y.
Zhang
,
M.
Xie
,
V.
Adamaki
,
H.
Khanbareh
, and
C. R.
Bowen
, “
Control of electro-chemical processes using energy harvesting materials and devices
,”
Chem. Soc. Rev.
46
,
7757
7786
(
2017
).
56.
J.
Xue
,
T.
Wu
,
Y.
Dai
, and
Y.
Xia
, “
Electrospinning and electrospun nanofibers: Methods, materials, and applications
,”
Chem. Rev.
119
,
5298
5415
(
2019
).
57.
N.
Ashammakhi
 et al, “
Minimally invasive and regenerative therapeutics
,”
Adv. Mater.
31
,
1804041
(
2019
).
58.
R.
Ravichandran
 et al, “
Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering
,”
Nanotechnology
23
,
385102
(
2012
).
59.
Y.
Khan
,
A. E.
Ostfeld
,
C. M.
Lochner
,
A.
Pierre
, and
A. C.
Arias
, “
Monitoring of vital signs with flexible and wearable medical devices
,”
Adv. Mater.
28
,
4373
4395
(
2016
).
60.
S.
Choi
,
H.
Lee
,
R.
Ghaffari
,
T.
Hyeon
, and
D. H.
Kim
, “
Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials
,”
Adv. Mater.
28
,
4203
4218
(
2016
).
61.
A.
Eatemadi
,
H.
Daraee
,
N.
Zarghami
,
H.
Melat Yar
, and
A.
Akbarzadeh
, “
Nanofiber: Synthesis and biomedical applications
,”
Artif. Cells Nanomed., Biotechnol.
44
,
111
121
(
2016
).
62.
S.-H.
Park
,
H. B.
Lee
,
S. M.
Yeon
,
J.
Park
, and
N. K.
Lee
, “
Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates
,”
ACS Appl. Mater. Interfaces
8
,
24773
24781
(
2016
).
63.
S. J.
Kim
 et al, “
High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection
,”
ACS Appl. Mater. Interfaces
10
,
3921
3928
(
2018
).
64.
Z.
Wei
,
M.
Wan
,
T.
Lin
, and
L.
Dai
, “
Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process
,”
Adv. Mater.
15
,
136
139
(
2003
).
65.
J.
Wang
 et al, “
Self-assembled peptide nanofibers on graphene oxide as a novel nanohybrid for biomimetic mineralization of hydroxyapatite
,”
Carbon
89
,
20
30
(
2015
).
66.
Z.
Wang
,
S.
Wu
,
J.
Wang
,
A.
Yu
, and
G.
Wei
, “
Carbon nanofiber-based functional nanomaterials for sensor applications
,”
Nanomaterials
9
,
1045
(
2019
).
67.
J.
He
 et al, “
Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning
,”
Fibers Polym.
14
,
1857
1863
(
2013
).
68.
A.
Ghorbani-Choghamarani
and
Z.
Taherinia
, “
Synthesis of peptide nanofibers decorated with palladium nanoparticles and its application as an efficient catalyst for the synthesis of sulfides via reaction of aryl halides with thiourea or 2-mercaptobenzothiazole
,”
RSC Adv.
6
,
59410
59421
(
2016
).
69.
Z.
Ma
,
M.
Kotaki
,
R.
Inai
, and
S.
Ramakrishna
, “
Potential of nanofiber matrix as tissue-engineering scaffolds
,”
Tissue Eng.
11
,
101
109
(
2005
).
70.
I.
Alghoraibi
and
S.
Alomari
, “
Different methods for nanofiber design and fabrication
,”
Handbook of Nanofibers
(
Springer International Publishing
,
2019
), pp.
79
124
.
71.
S. K.
Ghosh
 et al, “
Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring
,”
Nano Energy
36
,
166
175
(
2017
).
72.
H.
Wu
 et al, “
Electrospun metal nanofiber webs as high-performance transparent electrode
,”
Nano Lett.
10
,
4242
4248
(
2010
).
73.
Z. H.
Liu
,
C. T.
Pan
,
L. W.
Lin
, and
H. W.
Lai
, “
Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning
,”
Sens. Actuators, A
193
,
13
24
(
2013
).
74.
A.
Aziz
 et al, “
Core–shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 gas sensing
,”
ACS Appl. Mater. Interfaces
10
,
43817
43823
(
2018
).
75.
J.
Yoon
,
H.-S.
Yang
,
B.-S.
Lee
, and
W.-R.
Yu
, “
Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications
,” Adv. Mater.
30
,
1704765
(
2018
).
76.
A.
Khalf
,
K.
Singarapu
, and
S. V.
Madihally
, “
Cellulose acetate core–shell structured electrospun fiber: Fabrication and characterization
,”
Cellulose
22
,
1389
1400
(
2015
).
77.
M.-F.
Lin
,
J.
Xiong
,
J.
Wang
,
K.
Parida
, and
P. S.
Lee
, “
Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications
,”
Nano Energy
44
,
248
255
(
2018
).
78.
N. G.
Rim
,
C. S.
Shin
, and
H.
Shin
, “
Current approaches to electrospun nanofibers for tissue engineering
,”
Biomed. Mater.
8
,
014102
(
2013
).
79.
S. K.
Tiwari
and
S. S.
Venkatraman
, “
Importance of viscosity parameters in electrospinning: Of monolithic and core–shell fibers
,”
Mater. Sci. Eng. C
32
,
1037
1042
(
2012
).
80.
D.
Sun
,
C.
Chang
,
S.
Li
, and
L.
Lin
, “
Near-field electrospinning
,”
Nano Lett.
6
,
839
842
(
2006
).
81.
Y. K.
Fuh
,
B. S.
Wang
, and
C.-Y.
Tsai
, “
Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array
,”
Sci. Rep.
7
,
6759
(
2017
).
82.
X.
Shi
 et al, “
Electrospinning of nanofibers and their applications for energy devices
,”
J. Nanomater.
2015
,
1
20
.
83.
A. R.
Nagle
 et al, “
A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays
,”
Nanotechnology
30
,
195301
(
2019
).
84.
Y.
Zhou
 et al, “
Carbon nanofiber yarns fabricated from co-electrospun nanofibers
,”
Mater. Des.
95
,
591
598
(
2016
).
85.
J.-X.
He
,
K.
Qi
,
Y.-M.
Zhou
, and
S.-Z.
Cui
, “
Fabrication of continuous nanofiber yarn using novel multi-nozzle bubble electrospinning
,”
Polym. Int.
63
,
1288
1294
(
2014
).
86.
S.
Chawla
,
M.
Naraghi
, and
A.
Davoudi
, “
Effect of twist and porosity on the electrical conductivity of carbon nanofiber yarns
,”
Nanotechnology
24
,
255708
(
2013
).
87.
W.
Li
 et al, “
A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes
,”
Adv. Energy Mater.
1
,
382
386
(
2011
).
88.
C.
Yan
,
G.
Chen
,
X.
Zhou
,
J.
Sun
, and
C.
Lv
, “
Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries
,”
Adv. Funct. Mater.
26
,
1428
1436
(
2016
).
89.
H.-W.
Liang
 et al, “
Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications
,”
Angew. Chem., Int. Ed.
51
,
5101
5105
(
2012
).
90.
G.
Che
,
B. B.
Lakshmi
,
C. R.
Martin
,
E. R.
Fisher
, and
R. S.
Ruoff
, “
Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method
,”
Chem. Mater.
10
,
260
267
(
1998
).
91.
W.
Zhang
 et al, “
Supramolecular self-assembly bioinspired synthesis of luminescent gold nanocluster-embedded peptide nanofibers for temperature sensing and cellular imaging
,”
Bioconjugate Chem.
28
,
2224
2229
(
2017
).
92.
C.
Li
 et al, “
Amyloid-hydroxyapatite bone biomimetic composites
,”
Adv. Mater.
26
,
3207
3212
(
2014
).
93.
S. C. B.
Mannsfeld
 et al, “
Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
,”
Nat. Mater.
9
,
859
864
(
2010
).
94.
W.
Zhong
 et al, “
A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability
,”
Nanoscale
8
,
12105
12112
(
2016
).
95.
J.
Park
 et al, “
Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures
,”
ACS Nano
8
,
12020
12029
(
2014
).
96.
J.
Park
 et al, “
Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins
,”
ACS Nano
8
,
4689
4697
(
2014
).
97.
M.
Ha
 et al, “
Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins
,”
Adv. Funct. Mater.
25
,
2841
2849
(
2015
).
98.
M.-J.
Yin
,
Z.
Yin
,
Y.
Zhang
,
Q.
Zheng
, and
A. P.
Zhang
, “
Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors
,”
Nano Energy
58
,
96
104
(
2019
).
99.
H.-J.
Kim
 et al, “
Silk nanofiber-networked bio-triboelectric generator: Silk bio-TEG
,”
Adv. Energy Mater.
6
,
1502329
(
2016
).
100.
R. S.
Timsit
, “
Electrical contact resistance: Properties of stationary interfaces
,”
IEEE Trans. Compon. Package Technol.
22
,
85
98
(
1999
).
101.
N.
Liu
 et al, “
Electrospun PEDOT:PSS-PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity
,”
J. Mater. Chem.
21
,
18962
18966
(
2011
).
102.
X.
Xiao
 et al, “
High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films
,”
Adv. Mater.
23
,
5440
5444
(
2011
).
103.
C. L.
Choong
 et al, “
Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array
,”
Adv. Mater.
26
,
3451
3458
(
2014
).
104.
J.
Cai
,
S.
Chawla
, and
M.
Naraghi
, “
Piezoresistive effect of individual electrospun carbon nanofibers for strain sensing
,”
Carbon
77
,
738
746
(
2014
).
105.
S.
Beeby
,
G.
Ensell
,
M.
Kraft
, and
N.
White
,
MEMS Mechanical Sensors
(
Cambridge University Press
,
2004
).
106.
X.
Li
 et al, “
Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor
,”
ACS Nano
14
,
9605
(
2020
).
107.
X.
Liao
 et al, “
Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor
,”
Adv. Funct. Mater.
25
,
2395
2401
(
2015
).
108.
Q.
Wang
,
M.
Jian
,
C.
Wang
, and
Y.
Zhang
, “
Carbonized silk nanofiber membrane for transparent and sensitive electronic skin
,”
Adv. Funct. Mater.
27
,
1605657
(
2017
).
109.
H. A. K.
Toprakci
,
S. K.
Kalanadhabhatla
,
R. J.
Spontak
, and
T. K.
Ghosh
, “
Polymer nanocomposites containing carbon nanofibers as soft printable sensors exhibiting strain-reversible piezoresistivity
,”
Adv. Funct. Mater.
23
,
5536
5542
(
2013
).
110.
O. Y.
Kweon
,
S. J.
Lee
, and
J. H.
Oh
, “
Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers
,”
NPG Asia Mater.
10
,
540
551
(
2018
).
111.
H.
Park
 et al, “
Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars
,”
ACS Nano
9
,
9974
9985
(
2015
).
112.
Y.
Zhou
 et al, “
Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor
,”
Sci. Rep.
7
,
12949
(
2017
).
113.
H.
Ren
 et al, “
Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors
,”
ACS Nano
13
,
5541
5548
(
2019
).
114.
A.
Chiolerio
 et al, “
Inkjet-printed PEDOT:PSS electrodes on plasma-modified PDMS nanocomposites: Quantifying plasma treatment hardness
,”
RSC Adv.
4
,
51477
51485
(
2014
).
115.
W.
Zhong
 et al, “
Ultrasensitive wearable pressure sensors assembled by surface-patterned polyolefin elastomer nanofiber membrane interpenetrated with silver nanowires
,”
ACS Appl. Mater. Interfaces
10
,
42706
42714
(
2018
).
116.
Y.
Cheng
,
R.
Wang
,
J.
Sun
, and
L.
Gao
, “
A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion
,”
Adv. Mater.
27
,
7365
7371
(
2015
).
117.
Q.
Zheng
,
B.
Shi
,
Z.
Li
, and
Z. L.
Wang
, “
Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems
,”
Adv. Sci.
4
,
1700029
(
2017
).
118.
K.
Roy
 et al, “
A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers
,”
ACS Appl. Nano Mater.
2
,
2013
2025
(
2019
).
119.
Y.
Kuang
and
M.
Zhu
, “
Evaluation and validation of equivalent properties of macro fibre composites for piezoelectric transducer modelling
,”
Compos. Part B: Eng.
158
,
189
197
(
2019
).
120.
X.
Lu
,
H.
Qu
, and
M.
Skorobogatiy
, “
Piezoelectric microstructured fibers via drawing of multimaterial preforms
,”
Sci. Rep.
7
,
2907
(
2017
).
121.
X.
Wang
 et al, “
Recent progress in electronic skin
,”
Adv. Sci.
2
,
1500169
(
2015
).
122.
A.
Chiolerio
 et al, “
Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites
,”
J. Mater. Sci.
48
,
6943
6951
(
2013
).
123.
M.
Laurenti
 et al, “
Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped zinc oxide
,”
Sci. Rep.
7
,
41957
(
2017
).
124.
M. M.
Alam
,
A.
Sultana
, and
D.
Mandal
, “
Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator
,”
ACS Appl. Energy Mater.
1
,
3103
3112
(
2018
).
125.
W.
Deng
 et al, “
Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures
,”
Nano Energy
55
,
516
525
(
2019
).
126.
Z.
Li
and
Z. L.
Wang
, “
Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor
,”
Adv. Mater.
23
,
84
89
(
2011
).
127.
Y. K.
Fuh
and
B. S.
Wang
, “
Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition
,”
Nano Energy
30
,
677
683
(
2016
).
128.
Y.-K.
Fuh
,
P.-C.
Chen
,
Z.-M.
Huang
, and
H.-C.
Ho
, “
Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers
,”
Nano Energy
11
,
671
677
(
2015
).
129.
T.
Huang
 et al, “
Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors
,”
ACS Appl. Mater. Interfaces
10
,
30732
30740
(
2018
).
130.
A.
Damilano
 et al, “
A robust capacitive digital read-out circuit for a scalable tactile skin
,”
IEEE Sens. J.
17
,
2682
2695
(
2017
).
131.
W.
Yang
 et al, “
A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins
,”
Adv. Mater. Technol.
3
,
1700241
(
2018
).
132.
P.
Cataldi
 et al, “
Carbon nanofiber versus graphene-based stretchable capacitive touch sensors for artificial electronic skin
,”
Adv. Sci.
5
,
1700587
(
2018
).
133.
Y.
Ai
 et al, “
All rGO-on-PVDF-nanofibers based self-powered electronic skins
,”
Nano Energy
35
,
121
127
(
2017
).
134.
J.
Wang
,
R.
Suzuki
,
M.
Shao
,
F.
Gillot
, and
S.
Shiratori
, “
Capacitive pressure sensor with wide-range, bendable, and high sensitivity based on the bionic komochi konbu structure and Cu/Ni nanofiber network
,”
ACS Appl. Mater. Interfaces
11
,
11928
11935
(
2019
).
135.
Z.
Wang
 et al, “
Flexible and washable poly(ionic liquid) nanofibrous membrane with moisture proof pressure sensing for real-life wearable electronics
,”
ACS Appl. Mater. Interfaces
11
,
27200
27209
(
2019
).
136.
X.
You
 et al, “
Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli
,”
J. Mater. Chem. C
6
,
12981
12991
(
2018
).
137.
G.
Zhu
 et al, “
Triboelectric-generator-driven pulse electrodeposition for micropatterning
,”
Nano Lett.
12
,
4960
4965
(
2012
).
138.
F.-R.
Fan
 et al, “
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
,”
Nano Lett.
12
,
3109
3114
(
2012
).
139.
H.-Y.
Mi
 et al, “
High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing
,”
Nano Energy
48
,
327
336
(
2018
).
140.
S.
Zhao
 et al, “
All-nanofiber-based ultralight stretchable triboelectric nanogenerator for self-powered wearable electronics
,”
ACS Appl. Energy Mater.
1
,
2326
2332
(
2018
).
141.
R.
Cao
 et al, “
Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring
,”
Nano Res.
11
,
3771
3779
(
2018
).
142.
B.
Zhang
 et al, “
Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring
,”
ACS Nano
11
,
7440
7446
(
2017
).
143.
X.
Wang
 et al, “
A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics
,”
Adv. Mater.
30
,
1706738
(
2018
).
144.
X.
Li
 et al, “
3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor
,”
ACS Nano
8
,
10674
10681
(
2014
).
145.
X.
Wang
 et al, “
A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices
,”
Sci. Rep.
6
,
36409
(
2016
).
146.
X.
Chen
 et al, “
Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring
,”
Nano Energy
38
,
43
50
(
2017
).
147.
W.
Seung
 et al, “
Nanopatterned textile-based wearable triboelectric nanogenerator
,”
ACS Nano
9
,
3501
3509
(
2015
).
148.
K. N.
Kim
 et al, “
Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments
,”
ACS Nano
9
,
6394
6400
(
2015
).
149.
Y.-C.
Lai
 et al, “
Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing
,”
Adv. Funct. Mater.
27
,
1604462
(
2017
).
150.
Y.
Wang
 et al, “
Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring
,”
Carbon
126
,
360
371
(
2018
).
151.
X.
Liao
 et al, “
A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection
,”
Adv. Funct. Mater.
26
,
3074
3081
(
2016
).
152.
A.
Ostadfar
,
Biofluid Mechanics: Principles and Applications
(
Elsevier/Academic Press
,
2016
), pp.
113
116
.
153.
A.
Taebi
,
B.
Solar
,
A.
Bomar
,
R.
Sandler
, and
H.
Mansy
, “
Recent advances in seismocardiography
,”
Vibration
2
,
64
86
(
2019
).
154.
S.
Rolfe
, “
The importance of respiratory rate monitoring
,”
Br. J. Nurs.
28
,
504
508
(
2019
).
155.
E.
Getnet Tsega
,
V. K.
Katiyar
, and
P.
Gupta
, “
Breathing patterns of healthy human response to different levels of physical activity
,”
J. Biomed. Eng. Technol.
7
,
1
4
(
2019
).
156.
M.
Seiffert
,
F.
Holstein
,
R.
Schlosser
, and
J.
Schiller
, “
Next generation cooperative wearables: generalized activity assessment computed fully distributed within a wireless body area network
,”
IEEE Access
5
,
16793
16807
(
2017
).
157.
N.
Gueugneau
,
T.
Pozzo
,
C.
Darlot
, and
C.
Papaxanthis
, “
Daily modulation of the speed–accuracy trade-off
,”
Neuroscience
356
,
142
150
(
2017
).
158.
J.
Suckale
and
M.
Solimena
, “
Pancreas islets in metabolic signaling-focus on the beta-cell
,”
Front. Biosci.
13
,
7156
(
2008
).
159.
M.
Alsahli
and
J. E.
Gerich
, “
Glucose physiology, normal
,”
Encyclopedia of Endocrine Diseases
(
Elsevier
,
2014
), Vol.
2
, pp.
72
86
.
160.
H. C.
Koydemir
and
A.
Ozcan
, “
Wearable and implantable sensors for biomedical applications
,”
Annu. Rev. Anal. Chem.
11
,
127
146
(
2018
).
161.
Y.
Gao
,
L.
Zhang
,
M.
Du
, and
M. I.
Vai
, “
Design of human motion detection based on the human body communication
,” in
TENCON 2015-2015 IEEE Region 10 Conference
(
IEEE
,
2015
), pp.
1
4
.
162.
P. L.
Sheridan
,
J.
Solomont
,
N.
Kowall
, and
J. M.
Hausdorff
, “
Influence of executive function on locomotor function: Divided attention increases gait variability in Alzheimer's disease
,”
J. Am. Geriatr. Soc.
51
,
1633
1637
(
2003
).
163.
P. R.
Cavanagh
,
B. A.
Lipsky
,
A. W.
Bradbury
, and
G.
Botek
, “
Treatment for diabetic foot ulcers
,”
Lancet
366
,
1725
1735
(
2005
).
164.
N.
Nazmi
,
M.
Azizi
,
A.
Rahman
,
S.
Yamamoto
, and
S.
Anom
, “
Walking gait event detection based on electromyography signals using artificial neural network
,”
Biomed. Signal Process. Control
47
,
334
343
(
2019
).
165.
R. G.
Scalisi
 et al, “
Inkjet printed flexible electrodes for surface electromyography
,”
Org. Electron.
18
,
89
94
(
2015
).
166.
S.
Ryu
 et al, “
Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion
,”
ACS Nano
9
,
5929
5936
(
2015
).
167.
H. H.
Shi
,
N.
Khalili
,
T.
Morrison
, and
H. E.
Naguib
, “
Self-assembled nanorod structures on nanofibers for textile electrochemical capacitor electrodes with intrinsic tactile sensing capabilities
,”
ACS Appl. Mater. Interfaces
10
,
19037
19046
(
2018
).
168.
J.
Lee
 et al, “
Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics
,”
Adv. Mater.
27
,
2433
2439
(
2015
).
169.
Y.
Ding
,
J.
Yang
,
C. R.
Tolle
, and
Z.
Zhu
, “
A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring
,”
RSC Adv.
6
,
79114
79120
(
2016
).
170.
Y.
Lu
,
M. C.
Biswas
,
Z.
Guo
,
J.-W.
Jeon
, and
E. K.
Wujcik
, “
Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors
,”
Biosens. Bioelectron.
123
,
167
177
(
2019
).
171.
F.
Ramsteiner
and
T.
Armbrust
, “
Fatigue crack growth in polymers
,”
Polym. Test.
20
,
321
327
(
2001
).
172.
A. K.
Yetisen
,
J. L.
Martinez-Hurtado
,
B.
Ünal
,
A.
Khademhosseini
, and
H.
Butt
, “
Wearables in medicine
,”
Adv. Mater.
30
,
1706910
(
2018
).
173.
A. J.
Bandodkar
,
W.
Jia
, and
J.
Wang
, “
Tattoo-based wearable electrochemical devices: A review
,”
Electroanalysis
27
,
562
572
(
2015
).
174.
A. J.
Bandodkar
and
J.
Wang
, “
Non-invasive wearable electrochemical sensors: A review
,”
Trends Biotechnol.
32
,
363
371
(
2014
).
175.
S.
Zhao
 et al, “
Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features
,”
ACS Appl. Mater. Interfaces
9
,
12147
12164
(
2017
).
176.
Kenry
,
J. C.
Yeo
, and
C. T.
Lim
, “
Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications
,”
Microsyst. Nanoeng.
2
,
16043
(
2016
).
177.
W. B.
White
 et al, “
Average daily blood pressure, not office blood pressure, is associated with progression of cerebrovascular disease and cognitive decline in older people
,”
Circulation
124
,
2312
2319
(
2011
).
178.
J. N.
Cohn
 et al, “
Noninvasive pulse wave analysis for the early detection of vascular disease
,”
Hypertension
26
,
503
508
(
1995
).
179.
J. B.
Borges
 et al, “
Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome
,”
Am. J. Respir. Crit. Care Med.
174
,
268
278
(
2006
).
180.
D. E.
O'Donnell
, “
Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease
,”
Proc. Am. Thorac. Soc.
3
,
180
184
(
2006
).
181.
L.-G.
Larsson
,
A.
Lindberg
,
K. A.
Franklin
, and
B.
Lundback
, “
Symptoms related to obstructive sleep apnoea are common in subjects with asthma, chronic bronchitis and rhinitis in a general population
,”
Respir. Med.
95
,
423
429
(
2001
).
182.
K.
Malinauskas
,
P.
Palevicius
,
M.
Ragulskis
,
V.
Ostasevicius
, and
R.
Dauksevicius
, “
Validation of noninvasive MOEMS-assisted measurement system based on CCD sensor for radial pulse analysis
,”
Sensors
13
,
5368
5380
(
2013
).
183.
K.
Mohri
,
T.
Kondo
,
H.
Sugino
,
J.
Yamasaki
, and
K.
Yoshino
, “
Non-contact linear displacement sensors using amorphous-core multivibrators for mechanocardiography
,”
IEEE Trans. Magn.
21
,
2071
2073
(
1985
).
184.
A.
Tricoli
,
N.
Nasiri
, and
S.
De
, “
Wearable and miniaturized sensor technologies for personalized and preventive medicine
,”
Adv. Funct. Mater.
27
,
1605271
(
2017
).
185.
K.
Takei
,
W.
Honda
,
S.
Harada
,
T.
Arie
, and
S.
Akita
, “
Toward flexible and wearable human-interactive health-monitoring devices
,”
Adv. Healthcare Mater.
4
,
487
500
(
2015
).
186.
S. S.
Evans
,
E. A.
Repasky
, and
D. T.
Fisher
, “
Fever and the thermal regulation of immunity: The immune system feels the heat
,”
Nat. Rev. Immunol.
15
,
335
349
(
2015
).
187.
C. L.
Lim
,
C.
Byrne
, and
J. K. W.
Lee
, “
Human thermoregulation and measurement of body temperature in exercise and clinical settings
,”
Ann. Acad. Med. Singapore
37
,
347
353
(
2008
).
188.
H.
Barcroft
and
O. G.
Edholm
, “
The effect of temperature on blood flow and deep temperature in the human forearm
,”
J. Physiol.
102
,
5
20
(
1943
).
189.
C.
Wang
,
K.
Xia
,
M.
Zhang
,
M.
Jian
, and
Y.
Zhang
, “
An all-silk-derived dual-mode e-skin for simultaneous temperature–pressure detection
,”
ACS Appl. Mater. Interfaces
9
,
39484
39492
(
2017
).
190.
M.-H.
You
 et al, “
A self-powered flexible hybrid piezoelectric–pyroelectric nanogenerator based on non-woven nanofiber membranes
,”
J. Mater. Chem. A
6
,
3500
3509
(
2018
).
191.
H. S.
Jo
 et al, “
Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires
,”
Nanoscale
10
,
19825
19834
(
2018
).
192.
Y.
Yang
and
W.
Gao
, “
Wearable and flexible electronics for continuous molecular monitoring
,”
Chem. Soc. Rev.
48
,
1465
1491
(
2019
).
193.
H.
Jiyong
,
Z.
Yinda
,
Z.
Hele
,
G.
Yuanyuan
, and
Y.
Xudong
, “
Mixed effect of main electrospinning parameters on the β-phase crystallinity of electrospun PVDF nanofibers
,”
Smart Mater. Struct.
26
,
085019
(
2017
).
194.
J.
Zhong
 et al, “
Fiber-based generator for wearable electronics and mobile medication
,”
ACS Nano
8
,
6273
6280
(
2014
).
195.
See https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=B40BB7F3A78C73FF8CE3E84E6817F112?sequence=1 for “
WHO Global Report,
Global Report on Diabetes, World Health Organization,
2016
.”
196.
Z.
Jiang
 et al, “
Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers
,”
Ceram. Int.
42
,
15881
15888
(
2016
).
197.
S.-J.
Choi
 et al, “
Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets
,”
ACS Appl. Mater. Interfaces
6
,
2588
2597
(
2014
).
198.
W.
Liu
 et al, “
A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection
,”
NPG Asia Mater.
10
,
293
308
(
2018
).
199.
L.
Wang
,
A.
Teleki
,
S. E.
Pratsinis
, and
P. I.
Gouma
, “
Ferroelectric WO3 nanoparticles for acetone selective detection
,”
Chem. Mater.
20
,
4794
4796
(
2008
).
200.
A. M.
Diskin
,
P.
Španěl
, and
D.
Smith
, “
Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days
,”
Physiol. Meas.
24
,
107
119
(
2003
).
201.
Y. M.
Sabri
 et al, “
Soot template TiO2 fractals as a photoactive gas sensor for acetone detection
,”
Sens. Actuators, B
275
,
215
222
(
2018
).
202.
S.
Malik
,
R.
Khadgawat
,
S.
Anand
, and
S.
Gupta
, “
Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva
,”
Springerplus
5
,
701
(
2016
).
203.
V. E.
Coyle
 et al, “
Co3O4 needles on Au honeycomb as a non-invasive electrochemical biosensor for glucose in saliva
,”
Biosens. Bioelectron.
141
,
111479
(
2019
).
204.
Y.
Du
,
W.
Zhang
, and
M.
Wang
, “
Sensing of salivary glucose using nano-structured biosensors
,”
Biosensors
6
,
10
(
2016
).
205.
A.
Soni
and
S. K.
Jha
, “
A paper strip based non-invasive glucose biosensor for salivary analysis
,”
Biosens. Bioelectron.
67
,
763
768
(
2015
).
206.
M. X.
Chu
 et al, “
Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment
,”
Talanta
83
,
960
965
(
2011
).
207.
D. K.
Sen
and
G. S.
Sarin
, “
Tear glucose levels in normal people and in diabetic patients
,”
Br. J. Ophthalmol.
64
,
693
695
(
1980
).
208.
J. D.
Lane
,
D. M.
Krumholz
,
R. A.
Sack
, and
C.
Morris
, “
Tear glucose dynamics in diabetes mellitus
,”
Curr. Eye Res.
31
,
895
901
(
2006
).
209.
G.-Z.
Chen
,
I.-S.
Chan
, and
D. C. C.
Lam
, “
Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring
,”
Sens. Actuators, A
203
,
112
118
(
2013
).
210.
Y.-T.
Liao
,
H.
Yao
,
A.
Lingley
,
B.
Parviz
, and
B. P.
Otis
, “
A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring
,”
IEEE J. Solid-State Circuits
47
,
335
344
(
2012
).
211.
J.
Kim
 et al, “
Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics
,”
Nat. Commun.
8
,
14997
(
2017
).
212.
Z.
Sonner
 et al, “
The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications
,”
Biomicrofluidics
9
,
031301
(
2015
).
213.
J.
Moyer
,
D.
Wilson
,
I.
Finkelshtein
,
B.
Wong
, and
R.
Potts
, “
Correlation between sweat glucose and blood glucose in subjects with diabetes
,”
Diabetes Technol. Ther.
14
,
398
402
(
2012
).
214.
A.
Mena-Bravo
and
M. D.
Luque de Castro
, “
Sweat: A sample with limited present applications and promising future in metabolomics
,”
J. Pharm. Biomed. Anal.
90
,
139
147
(
2014
).
215.
Y.
Chen
 et al, “
Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring
,”
Sci. Adv.
3
,
e1701629
(
2017
).
216.
Y.-L.
Liu
 et al, “
A stretchable electrochemical sensor for inducing and monitoring cell mechanotransduction in real time
,”
Angew. Chem., Int. Ed.
56
,
9454
9458
(
2017
).
217.
J.
Kim
,
R.
Kumar
,
A. J.
Bandodkar
, and
J.
Wang
, “
Advanced materials for printed wearable electrochemical devices: A review
,”
Adv. Electron. Mater.
3
,
1600260
(
2017
).
218.
Z.-H.
Jin
 et al, “
Conductive polymer-coated carbon nanotubes to construct stretchable and transparent electrochemical sensors
,”
Anal. Chem.
89
,
2032
2038
(
2017
).
219.
K. J.
Kubota
,
J. A.
Chen
, and
M. A.
Little
, “
Machine learning for large-scale wearable sensor data in Parkinson's disease: Concepts, promises, pitfalls, and futures
,”
Mov. Disord.
31
,
1314
1326
(
2016
).
220.
K.
Rajan
,
E.
Garofalo
, and
A.
Chiolerio
, “
Wearable intrinsically soft, stretchable, flexible devices for memories and computing
,”
Sensors
18
,
367
316
(
2018
).
221.
L.
Persano
 et al, “
High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)
,”
Nat. Commun.
4
,
1633
(
2013
).
222.
T.
Yilmaz
,
R.
Foster
, and
Y.
Hao
, “
Detecting vital signs with wearable wireless sensors
,”
Sensors
10
,
10837
10862
(
2010
).
223.
L.
Zhang
,
Y.
Tang
, and
L.
Tong
, “
Micro-/nanofiber optics: Merging photonics and material science on nanoscale for advanced sensing technology
,”
iScience
23
,
100810
(
2020
).
224.
L.
Zhang
 et al, “
Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers
,”
Opto-Electron. Adv.
3
,
19002201
19002207
(
2020
).
225.
J.
Li
,
J.
Chen
, and
F.
Xu
, “
Sensitive and wearable optical microfiber sensor for human health monitoring
,”
Adv. Mater. Technol.
3
,
1800296
(
2018
).
226.
A.
Nag
,
S. C.
Mukhopadhyay
, and
J.
Kosel
, “
Wearable flexible sensors: A review
,”
IEEE Sens. J.
17
,
3949
3960
(
2017
).
227.
A.
Zanella
,
N.
Bui
,
A.
Castellani
,
L.
Vangelista
, and
M.
Zorzi
, “
Internet of things for smart cities
,”
IEEE Internet Things J.
1
,
22
32
(
2014
).
228.
J.
Lee
,
H.-A.
Kao
, and
S.
Yang
, “
Service innovation and smart analytics for industry 4.0 and big data environment
,”
Procedia CIRP
16
,
3
8
(
2014
).
229.
K.
Suzuki
 et al, “
Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for human motion detection
,”
ACS Sens.
1
,
817
825
(
2016
).
230.
M.
Zhang
,
C.
Wang
,
Q.
Wang
,
M.
Jian
, and
Y.
Zhang
, “
Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors
,”
ACS Appl. Mater. Interfaces
8
,
20894
20899
(
2016
).
231.
M.
Lee
 et al, “
A hybrid piezoelectric structure for wearable nanogenerators
,”
Adv. Mater.
24
,
1759
1764
(
2012
).
232.
H. J.
Sim
 et al, “
Stretchable triboelectric fiber for self-powered kinematic sensing textile
,”
Sci. Rep.
6
,
35153
(
2016
).
You do not currently have access to this content.