The development of environmentally friendly, efficient, and universal access renewable energy technology is the key to achieve the goal of sustainable development. (Photo)electrochemical energy storage and conversion technology is an important part. Therefore, to realize the practical application of (photo)electrochemical energy technology, nanostructured catalytic materials need to be reasonably designed, synthesized, and modified. Ion beam technology is a powerful and versatile physical modification method. Modification of various catalytic materials from the surface to interface and thin films can be realized by controlling the species, energy, and fluence of implanted ions. Ion beam technology has its unique advantages, including its compulsivity of element doping and its high controllability, accuracy, and repeatability. It can realize arbitrary element doping and defect control of almost any material and finely control its concentration. This makes it possible for the ion beam technology to adapt to the modification requirements of catalytic materials to tailor the electronic structure, interface structure, and morphology of the materials more finely. Besides, a variety of strategies for material design can be realized using ion beams, including element doping, defect control, heterostructure construction, and micro/nanostructure formation, which may bring novel changes in catalytic materials. In this Review, we briefly introduce the principle of ion beam technology and introduce various ion beam technologies that can be applied to different catalytic material modification applications. We systematically review the research progress on the application of ion beam technology in photocatalytic, photoelectrocatalytic, and electrocatalytic materials for water splitting including bandgap engineering, defect engineering, heterostructure formation through ion doping, ion irradiation, ion sputtering, and their combined effects. The applications of ion beam technology on modification of fuel oxidation reaction and oxygen reduction reaction electrocatalysts for fuel cells are also introduced. The advantages of ion beam technology in the modification of catalytic materials are summarized. Several promising topics are proposed to look forward to the future development of ion beam technology in the field of catalytic materials.

1.
United Nations Department of Economic and Social Affairs (UN DESA), Sustainable Development Goal 7: Ensure Access to Affordable, Reliable, Sustainable an Modern Energy for All (
2017
).
2.
D.
Gielen
,
F.
Boshell
,
D.
Saygin
,
M. D.
Bazilian
,
N.
Wagner
, and
R.
Gorini
,
Energy Strategy Rev.
24
,
38
(
2019
).
3.
X. Y.
Chia
and
M.
Pumera
,
Nat. Catal.
1
(
12
),
909
(
2018
).
4.
J.
Kibsgaard
and
I.
Chorkendorff
,
Nat. Energy
4
(
6
),
430
(
2019
).
5.
J.
Zhang
,
C.
Liu
, and
B.
Zhang
,
Small Methods
3
(
9
),
1800481
(
2019
).
6.
Q.
Shi
,
C.
Zhu
,
D.
Du
, and
Y.
Lin
,
Chem. Soc. Rev.
48
(
12
),
3181
(
2019
).
7.
X.
Tian
,
P.
Zhao
, and
W.
Sheng
,
Adv. Mater.
31
(
31
),
1808066
(
2019
).
8.
X.
Yan
,
Z.
Jia
,
H.
Che
,
S.
Chen
,
P.
Hu
,
J.
Wang
, and
L.
Wang
,
Appl. Catal., B
234
,
19
(
2018
).
9.
T. Y.
Ma
,
J.
Ran
,
S.
Dai
,
M.
Jaroniec
, and
S. Z.
Qiao
,
Angew. Chem.
127
(
15
),
4729
(
2015
).
10.
A.
Dhara
,
B.
Show
,
A.
Baral
,
S.
Chabri
,
A.
Sinha
,
N. R.
Bandyopadhyay
, and
N.
Mukherjee
,
Sol. Energy
136
,
327
(
2016
).
11.
W.
Xia
,
R.
Zou
,
L.
An
,
D.
Xia
, and
S.
Guo
,
Energy Environ. Sci.
8
(
2
),
568
(
2015
).
12.
S.
Shin
,
Z.
Jin
,
D. H.
Kwon
,
R.
Bose
, and
Y. S.
Min
,
Langmuir
31
(
3
),
1196
(
2015
).
13.
M.
Zhou
,
Z.
Liu
,
Q.
Song
,
X.
Li
,
B.
Chen
, and
Z.
Liu
,
Appl. Catal., B
244
,
188
(
2019
).
14.
S. J.
Li
,
D.
Bao
,
M. M.
Shi
,
B. R.
Wulan
,
J. M.
Yan
, and
Q.
Jiang
,
Adv. Mater.
29
(
33
),
1700001
(
2017
).
15.
C.
Lécuyer
and
D. C.
Brock
,
Hist. Technol.
25
(
3
),
193
(
2009
).
16.
Z.
Li
and
F.
Chen
,
Appl. Phys. Rev.
4
(
1
),
011103
(
2017
).
17.
F.
Chen
,
Laser Photonics Rev.
6
(
5
),
622
(
2012
).
18.
R.
Li
,
C.
Pang
,
Z.
Li
, and
F.
Chen
,
Adv. Opt. Mater.
8
(
9
),
1902087
(
2020
).
19.
K.
Satoh
and
Y.
Oono
,
Quantum Beam Sci.
3
(
2
),
11
(
2019
).
20.
A.
Lanterne
,
T.
Desrues
,
C.
Lorfeuvre
,
M.
Coig
,
F.
Torregrosa
,
F.
Milési
,
L.
Roux
, and
S.
Dubois
,
Prog. Photovoltaics
27
(
12
),
1081
(
2019
).
21.
J.
Krugener
,
H. J.
Osten
,
F.
Kiefer
,
F.
Haase
, and
R.
Peibst
, paper
presented at the 2016 21st International Conference on Ion Implantation Technology (IIT)
,
2016
.
22.
S.
Dou
,
L.
Tao
,
R. L.
Wang
,
S. El.
Hankari
,
R.
Chen
, and
S. Y.
Wang
,
Adv. Mater.
30
(
21
),
1705850
(
2018
).
23.
C.
Borschel
and
C.
Ronning
, in
Ion Beam Modification of Solids
(
Springer
,
2016
), p.
475
.
24.
R.
Hellborg
,
H. J.
Whitlow
, and
Y.
Zhang
,
Ion Beams in Nanoscience and Technology
(
Springer Science and Business Media
,
2009
).
25.
S.
Som
,
S.
Dutta
,
V.
Kumar
, and
H. C.
Swart
, in
Emerging Synthesis Techniques for Luminescent Materials
(
IGI Global
,
2018
), p.
1
.
26.
L.
Raghavan
,
P.
Joy
,
B. V.
Vijaykumar
,
R.
Ramanujan
, and
M.
Anantharaman
,
Nucl. Instrum. Methods Phys. Res., Sect. B
396
,
68
(
2017
).
27.
C. A.
Volkert
and
A. M.
Minor
,
MRS Bull.
32
(
5
),
389
(
2007
).
28.
S.
Mändl
and
D.
Manova
,
Surf. Coat. Technol.
365
,
83
(
2019
).
29.
R. M.
Oliveira
,
M. S.
Vieira
, and
M. M.
Silva
,
Mater. Sci. Semicond. Process.
93
,
339
(
2019
).
30.
R.
Oliveira
,
M.
Vieira
,
M.
Ueda
, and
A.
Tóth
,
Vacuum
89
,
163
(
2013
).
31.
X. D.
Chen
,
C. C.
Ling
,
S.
Fung
,
C. D.
Beling
,
Y. F.
Mei
,
R. K. Y.
Fu
,
G. G.
Siu
, and
P. K.
Chu
,
Appl. Phys. Lett.
88
(
13
),
132104
(
2006
).
32.
R. E.
Evans
,
A.
Sipahigil
,
D. D.
Sukachev
,
A. S.
Zibrov
, and
M. D.
Lukin
,
Phys. Rev. Appl.
5
(
4
),
044010
(
2016
).
33.
S. B.
van Dam
,
M.
Walsh
,
M. J.
Degen
,
E.
Bersin
,
S. L.
Mouradian
,
A.
Galiullin
,
M.
Ruf
,
M.
IJspeert
,
T. H.
Taminiau
,
R.
Hanson
, and
D. R.
Englund
,
Phys. Rev. B
99
(
16
),
161203
(
2019
).
34.
M. M.
Milosevic
,
X.
Chen
,
W.
Cao
,
A. F.
Runge
,
Y.
Franz
,
C. G.
Littlejohns
,
S.
Mailis
,
A. C.
Peacock
,
D. J.
Thomson
, and
G. T.
Reed
,
IEEE J. Sel. Top. Quantum Electron.
24
(
4
),
1
(
2018
).
35.
E. E.
Kleinsasser
,
M. M.
Stanfield
,
J. K.
Banks
,
Z.
Zhu
,
W. D.
Li
,
V. M.
Acosta
,
H.
Watanabe
,
K. M.
Itoh
, and
K. M. C.
Fu
,
Appl. Phys. Lett.
108
(
20
),
202401
(
2016
).
36.
A.
Shypylenko
,
A.
Pshyk
,
B.
Grześkowiak
,
K.
Medjanik
,
B.
Peplinska
,
K.
Oyoshi
,
A.
Pogrebnjak
,
S.
Jurga
, and
E.
Coy
,
Mater. Des.
110
,
821
(
2016
).
37.
R.
Tu
,
W.
Jin
,
M.
Wang
,
S.
Han
,
A. E.-F.
Abomohra
, and
W.-M.
Wu
,
J. Appl. Phycol.
28
(
4
),
2159
(
2016
).
38.
C. D.
Cress
,
S. W.
Schmucker
,
A. L.
Friedman
,
P.
Dev
,
J. C.
Culbertson
,
J. W.
Lyding
, and
J. T.
Robinson
,
ACS Nano
10
(
3
),
3714
(
2016
).
39.
A. P.
van Troostwijk
and
J.
Deiman
,
Obs. Phys.
35
,
369
(
1789
).
40.
A.
Fujishima
and
K.
Honda
,
Nature
238
(
5358
),
37
(
1972
).
42.
Z.
Wang
,
C.
Li
, and
K.
Domen
,
Chem. Soc. Rev.
48
(
7
),
2109
(
2019
).
43.
J.
Wen
,
J.
Xie
,
X.
Chen
, and
X.
Li
,
Appl. Surf. Sci.
391
,
72
(
2017
).
44.
T.
Di
,
Q.
Xu
,
W.
Ho
,
H.
Tang
,
Q.
Xiang
, and
J.
Yu
,
ChemCatChem
11
(
5
),
1394
(
2019
).
45.
M.
Xiao
,
Z.
Wang
,
M.
Lyu
,
B.
Luo
,
S.
Wang
,
G.
Liu
,
H. M.
Cheng
, and
L.
Wang
,
Adv. Mater.
31
(
38
),
1801369
(
2019
).
46.
J.
Su
,
G. D.
Li
,
X. H.
Li
, and
J. S.
Chen
,
Adv. Sci.
6
(
7
),
1801702
(
2019
).
47.
F.
Yang
,
D.
Liu
,
Y.
Li
,
L.
Cheng
, and
J.
Ye
,
Appl. Catal., B
240
,
64
(
2019
).
48.
K.
Dai
,
J. L.
Lv
,
J. F.
Zhang
,
C. H.
Liang
, and
G. P.
Zhu
,
J. Alloys Compd.
778
,
215
(
2019
).
49.
Z.
Guan
,
Y.
Wu
,
P.
Wang
,
Q.
Zhang
,
Z.
Wang
,
Z.
Zheng
,
Y.
Liu
,
Y.
Dai
,
M.-H.
Whangbo
, and
B.
Huang
,
Appl. Catal., B
245
,
522
(
2019
).
50.
T.
Wu
,
P.
Niu
,
Y.
Yang
,
L. C.
Yin
,
J.
Tan
,
H.
Zhu
,
J. T.
Irvine
,
L.
Wang
,
G.
Liu
, and
H. M.
Cheng
,
Adv. Funct. Mater.
29
(
25
),
1901943
(
2019
).
51.
H.
Yamashita
,
M.
Harada
,
J.
Misaka
,
M.
Takeuchi
,
B.
Neppolian
, and
M.
Anpo
,
Catal. Today
84
(
3–4
),
191
(
2003
).
52.
M.
Anpo
,
Y.
Ichihashi
,
M.
Takeuchi
, and
H.
Yamashita
,
Res. Chem. Intermed.
24
(
2
),
143
(
1998
).
53.
H.
Yamashita
,
M.
Honda
,
M.
Harada
,
Y.
Ichihashi
,
M.
Anpo
,
T.
Hirao
,
N.
Itoh
, and
N.
Iwamoto
,
J. Phys. Chem. B
102
(
52
),
10707
(
1998
).
54.
H.
Yamashita
,
Y.
Ichihashi
,
M.
Takeuchi
,
S.
Kishiguchi
, and
M.
Anpo
,
J. Synchrotron Radiat.
6
(
3
),
451
(
1999
).
55.
M.
Anpo
,
S.
Kishiguchi
,
Y.
Ichihashi
,
M.
Takeuchi
,
H.
Yamashita
,
K.
Ikeue
,
B.
Morin
,
A.
Davidson
, and
M.
Che
,
Res. Chem. Intermed.
27
,
459
(
2001
).
56.
M.
Takeuchi
,
M.
Matsuoka
, and
M.
Anpo
,
Res. Chem. Intermed.
38
(
6
),
1261
(
2012
).
57.
M.
Jaraiz
,
G.
Gilmer
,
J.
Poate
, and
T. D.
De La Rubia
,
Appl. Phys. Lett.
68
(
3
),
409
(
1996
).
58.
N.
Tureson
,
M.
Marteau
,
T.
Cabioch
,
N.
Van Nong
,
J.
Jensen
,
J.
Lu
,
G.
Greczynski
,
D.
Fournier
,
N.
Singh
,
A.
Soni
,
L.
Belliard
,
P.
Eklund
, and
A. L.
Febvrier
,
Phys. Rev. B
98
(
20
),
205307
(
2018
).
59.
W.
Ren
,
J.
Cheng
,
H.
Ou
,
C.
Huang
,
M. M.
Titirici
, and
X.
Wang
,
ChemSusChem
12
(
14
),
3257
(
2019
).
60.
Y. C.
Zhang
,
N.
Afzal
,
L.
Pan
,
X.
Zhang
, and
J. J.
Zou
,
Adv. Sci.
6
(
10
),
1900053
(
2019
).
61.
J. M.
Cai
,
A.
Cao
,
J. J.
Huang
,
W. F.
Jin
,
J.
Zhang
,
Z.
Jiang
, and
X. G.
Li
,
Appl. Catal., B
267
,
118378
(
2020
).
62.
Y. H.
Chew
,
J. Y.
Tang
,
L. J.
Tan
,
B. W. J.
Choi
,
L. L.
Tan
, and
S. P.
Chai
,
Chem. Commun.
55
(
44
),
6265
(
2019
).
63.
Y.
Li
,
Z.
Tang
,
J.
Zhang
, and
Z.
Zhang
,
J. Phys. Chem. C
120
(
18
),
9750
(
2016
).
64.
S. K.
Cushing
,
F. K.
Meng
,
J. Y.
Zhang
,
B. F.
Ding
,
C. K.
Chen
,
C. J.
Chen
,
R. S.
Liu
,
A. D.
Bristow
,
J.
Bright
,
P.
Zheng
, and
N.
Wu
,
ACS Catal.
7
(
3
),
1742
(
2017
).
65.
S.
Khan
,
H.
Cho
,
D.
Kim
,
S. S.
Han
,
K. H.
Lee
,
S.-H.
Cho
,
T.
Song
, and
H.
Choi
,
Appl. Catal., B
206
,
520
(
2017
).
66.
Y.
Shiraishi
,
Y.
Kofuji
,
H.
Sakamoto
,
S.
Tanaka
,
S.
Ichikawa
, and
T.
Hirai
,
ACS Catal.
5
(
5
),
3058
(
2015
).
67.
E. M.
Samsudin
and
S. B. A.
Hamid
,
Appl. Surf. Sci.
391
,
326
(
2017
).
68.
P.
Niu
,
G.
Liu
, and
H. M.
Cheng
,
J. Phys. Chem. C
116
(
20
),
11013
(
2012
).
69.
X.
Li
,
G.
Hartley
,
A. J.
Ward
,
P. A.
Young
,
A. F.
Masters
, and
T.
Maschmeyer
,
J. Phys. Chem. C
119
(
27
),
14938
(
2015
).
70.
Q.
Liang
,
Z.
Li
,
Z. H.
Huang
,
F.
Kang
, and
Q. H.
Yang
,
Adv. Funct. Mater.
25
(
44
),
6885
(
2015
).
71.
Q.
Tay
,
P.
Kanhere
,
C. F.
Ng
,
S.
Chen
,
S.
Chakraborty
,
A. C. H.
Huan
,
T. C.
Sum
,
R.
Ahuja
, and
Z.
Chen
,
Chem. Mater.
27
(
14
),
4930
(
2015
).
72.
H.
Yu
,
R.
Shi
,
Y.
Zhao
,
T.
Bian
,
Y.
Zhao
,
C.
Zhou
,
G. I.
Waterhouse
,
L. Z.
Wu
,
C. H.
Tung
, and
T.
Zhang
,
Adv. Mater.
29
(
16
),
1605148
(
2017
).
73.
Z.
Mo
,
H.
Xu
,
Z.
Chen
,
X.
She
,
Y.
Song
,
J.
Wu
,
P.
Yan
,
L.
Xu
,
Y.
Lei
,
S.
Yuan
, and
H.
Li
,
Appl. Catal., B
225
,
154
(
2018
).
74.
Y.
Li
,
M.
Yang
,
Y.
Xing
,
X.
Liu
,
Y.
Yang
,
X.
Wang
, and
S.
Song
,
Small
13
(
33
),
1701552
(
2017
).
75.
H. Z.
Wu
,
L. M.
Liu
, and
S. J.
Zhao
,
Appl. Surf. Sci.
358
,
363
(
2015
).
76.
Y.
Kang
,
Y.
Yang
,
L. C.
Yin
,
X.
Kang
,
G.
Liu
, and
H. M.
Cheng
,
Adv. Mater.
27
(
31
),
4572
(
2015
).
77.
G. H.
Dong
,
W. K.
Ho
, and
C. Y.
Wang
,
J. Mater. Chem. A
3
(
46
),
23435
(
2015
).
78.
X.
Wang
,
L.
Wu
,
Z.
Wang
,
H.
Wu
,
X.
Zhou
,
H.
Ma
,
H.
Zhong
,
Z.
Xing
,
G.
Cai
,
C.
Jiang
, and
F.
Ren
,
Sol. RRL
3
(
4
),
1800298
(
2019
).
79.
N.
Liu
,
V.
Häublein
,
X.
Zhou
,
U.
Venkatesan
,
M.
Hartmann
,
M.
Mačković
,
T.
Nakajima
,
E.
Spiecker
,
A.
Osvet
,
L.
Frey
, and
P.
Schmuki
,
Nano Lett.
15
(
10
),
6815
(
2015
).
80.
X.
Zhou
,
V.
Häublein
,
N.
Liu
,
N. T.
Nguyen
,
E. M.
Zolnhofer
,
H.
Tsuchiya
,
M. S.
Killian
,
K.
Meyer
,
L.
Frey
, and
P.
Schmuki
,
Angew. Chem.-Int. Ed.
55
(
11
),
3763
(
2016
).
81.
T.
Daniel
,
S.
Nishanthi
,
K.
Mohanraj
, and
G.
Sivakumar
,
Vacuum
161
,
138
(
2019
).
82.
S.
Grigorescu
,
B.
Baerhausen
,
L.
Wang
,
A.
Mazare
,
J. E.
Yoo
,
R.
Hahn
, and
P.
Schmuki
,
Electrochem. Commun.
51
,
85
(
2015
).
83.
J.
Pan
,
Z.
Wang
,
Q.
Chen
,
J.
Hu
, and
J.
Wang
,
Nanoscale
6
(
22
),
13565
(
2014
).
84.
J.
Han
,
X.
Zong
,
X.
Zhou
, and
C.
Li
,
RSC Adv.
5
(
14
),
10790
(
2015
).
85.
A. J.
Haider
,
Z. N.
Jameel
, and
I. H.
Al-Hussaini
,
Energy Proc.
157
,
17
(
2019
).
86.
Q.
Liu
,
R.
Mo
,
X.
Li
,
S.
Yang
,
J.
Zhong
, and
H.
Li
,
Appl. Surf. Sci.
464
,
544
(
2019
).
87.
Y. X.
Fang
,
X. C.
Li
,
Y.
Wang
,
C.
Giordano
, and
X. C.
Wang
,
Appl. Catal., B
268
,
118398
(
2020
).
88.
A. A.
Aboud
,
M.
Shaban
, and
N.
Revaprasadu
,
RSC Adv.
9
(
14
),
7729
(
2019
).
89.
R.
Sharma
,
M.
Khanuja
,
S. N.
Sharma
, and
O. P.
Sinha
,
Int. J. Hydrogen Energy
42
(
32
),
20638
(
2017
).
90.
Z. B.
Dong
,
D. Y.
Ding
,
T.
Li
, and
C. Q.
Ning
,
Appl. Surf. Sci.
443
,
321
(
2018
).
91.
M.
Wang
,
F.
Ren
,
G.
Cai
,
Y.
Liu
,
S.
Shen
, and
L.
Guo
,
Nano Res.
7
(
3
),
353
(
2014
).
92.
L.
Cai
,
F.
Ren
,
M.
Wang
,
G. X.
Cai
,
Y. B.
Chen
,
Y. C.
Liu
,
S. H.
Shen
, and
L. J.
Guo
,
Int. J. Hydrogen Energy
40
(
3
),
1394
(
2015
).
93.
H.
Wu
,
F.
Ren
,
Z.
Xing
,
X.
Zheng
,
L.
Wu
, and
C.
Jiang
,
J. Appl. Phys.
121
(
8
),
085305
(
2017
).
94.
A.
Ghicov
,
J. M.
Macak
,
H.
Tsuchiya
,
J.
Kunze
,
V.
Haeublein
,
S.
Kleber
, and
P.
Schmuki
,
Chem. Phys. Lett.
419
(
4–6
),
426
(
2006
).
95.
A.
Ghicov
,
J. M.
Macak
,
H.
Tsuchiya
,
J.
Kunze
,
V.
Haeublein
,
L.
Frey
, and
P.
Schmuki
,
Nano Lett.
6
(
5
),
1080
(
2006
).
96.
G.
Wang
,
X.
Xiao
,
W.
Li
,
Z.
Lin
,
Z.
Zhao
,
C.
Chen
,
C.
Wang
,
Y.
Li
,
X.
Huang
,
L.
Miao
,
C.
Jiang
,
Y.
Huang
, and
X.
Duan
,
Nano Lett.
15
(
7
),
4692
(
2015
).
97.
S.
Hoang
,
S.
Guo
,
N. T.
Hahn
,
A. J.
Bard
, and
C. B.
Mullins
,
Nano Lett.
12
(
1
),
26
(
2012
).
98.
S.
Hoang
,
S. P.
Berglund
,
N. T.
Hahn
,
A. J.
Bard
, and
C. B.
Mullins
,
J. Am. Chem. Soc.
134
(
8
),
3659
(
2012
).
99.
X.
Song
,
W.
Li
,
D.
He
,
H.
Wu
,
Z.
Ke
,
C.
Jiang
,
G.
Wang
, and
X.
Xiao
,
Adv. Energy Mater.
8
(
20
),
1800165
(
2018
).
100.
H.
Wu
,
Z.
Wang
,
S.
Jin
,
X.
Cao
,
F.
Ren
,
L.
Wu
,
Z.
Xing
,
X.
Wang
,
G.
Cai
, and
C.
Jiang
,
Int. J. Hydrogen Energy
43
(
14
),
6936
(
2018
).
101.
D.
He
,
X.
Song
,
Z.
Ke
,
X.
Xiao
, and
C.
Jiang
,
Sci. China Mater.
61
(
6
),
878
(
2018
).
102.
X.
Li
,
S.
Liu
,
K.
Fan
,
Z.
Liu
,
B.
Song
, and
J.
Yu
,
Adv. Energy Mater.
8
(
18
),
1800101
(
2018
).
103.
Z.
Li
,
W.
Luo
,
M.
Zhang
,
J.
Feng
, and
Z.
Zou
,
Energy Environ. Sci.
6
(
2
),
347
(
2013
).
104.
Z. D.
Pozun
and
G.
Henkelman
,
J. Chem. Phys.
134
(
22
),
224706
(
2011
).
105.
X.
Yu
,
J.
Liu
,
W.
Yin
,
T.
Wang
,
L.
Quan
,
Y.
Ran
,
J.
Cui
,
L.
Wang
, and
Y.
Zhang
,
Appl. Surf. Sci.
492
,
264
(
2019
).
106.
N.
Kodan
,
K.
Agarwal
, and
B.
Mehta
,
J. Phys. Chem. C
123
(
6
),
3326
(
2019
).
107.
S.
Shen
,
J.
Chen
,
M.
Wang
,
X.
Sheng
,
X.
Chen
,
X.
Feng
, and
S. S.
Mao
,
Prog. Mater. Sci.
98
,
299
(
2018
).
108.
R.
Gao
and
D. P.
Yan
,
Adv. Energy Mater.
10
(
11
),
1900954
(
2020
).
109.
G. W.
An
,
M. A.
Mahadik
,
W.-S.
Chae
,
H. G.
Kim
,
M.
Cho
, and
J. S.
Jang
,
Appl. Surf. Sci.
440
,
688
(
2018
).
110.
X.
Zheng
,
S.
Shen
,
F.
Ren
,
G.
Cai
,
Z.
Xing
,
Y.
Liu
,
D.
liu
,
G.
Zhang
,
X.
Xiao
,
W.
Wu
, and
C.
Jiang
,
Int. J. Hydrogen Energy
40
(
15
),
5034
(
2015
).
111.
Y.
Liu
,
S.
Shen
,
F.
Ren
,
J.
Chen
,
Y.
Fu
,
X.
Zheng
,
G.
Cai
,
Z.
Xing
,
H.
Wu
, and
C.
Jiang
,
Nanoscale
8
(
20
),
10642
(
2016
).
112.
H.
Wu
,
L.
Wu
,
S.
Shen
,
Y.
Liu
,
G.
Cai
,
X.
Wang
,
Y.
Qiu
,
H.
Zhong
,
Z.
Xing
,
J.
Tang
,
Z.
Dai
,
C.
Jiang
, and
F.
Ren
,
Int. J. Hydrogen Energy
45
(
16
),
9408
(
2020
).
113.
I. C.
Man
,
H. Y.
Su
,
F.
Calle‐Vallejo
,
H. A.
Hansen
,
J. I.
Martínez
,
N. G.
Inoglu
,
J.
Kitchin
,
T. F.
Jaramillo
,
J. K.
Nørskov
, and
J.
Rossmeisl
,
ChemCatChem
3
(
7
),
1159
(
2011
).
114.
M. B.
Stevens
,
L. J.
Enman
,
A. S.
Batchellor
,
M. R.
Cosby
,
A. E.
Vise
,
C. D. M.
Trang
, and
S. W.
Boettcher
,
Chem. Mater.
29
(
1
),
120
(
2016
).
115.
B.
Zhang
,
X.
Zheng
,
O.
Voznyy
,
R.
Comin
,
M.
Bajdich
,
M.
García-Melchor
,
L.
Han
,
J.
Xu
,
M.
Liu
,
L.
Zheng
,
F. P. G. D.
Arquer
,
C.
Dinh
,
F.
Fan
,
M.
Yuan
,
E.
Yassitepe
,
N.
Chen
,
T.
Regier
,
P.
Liu
,
Y.
Li
,
P. D.
Luna
,
A.
Janmohamed
,
H.
Xin
,
H.
Yang
,
A.
Vojvodic
, and
E. H.
Sargent
,
Science
352
(
6283
),
333
(
2016
).
116.
D.
Yan
,
Y.
Li
,
J.
Huo
,
R.
Chen
,
L.
Dai
, and
S.
Wang
,
Adv. Mater.
29
(
48
),
1606459
(
2017
).
117.
K.
Zhu
,
X.
Zhu
, and
W.
Yang
,
Angew. Chem.-Int. Ed.
58
(
5
),
1252
(
2019
).
118.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Norskov
, and
T. F.
Jaramillo
,
Science
355
(
6321
),
eaad4998
(
2017
).
119.
Z.
He
,
R.
Zhao
,
X.
Chen
,
H.
Chen
,
Y.
Zhu
,
H.
Su
,
S.
Huang
,
J.
Xue
,
J.
Dai
,
S.
Cheng
,
M.
Liu
,
X.
Wang
, and
Y.
Chen
,
ACS Appl. Mater. Interfaces
10
(
49
),
42524
(
2018
).
120.
L.
Wu
,
H.
Wu
,
X.
Wang
,
H.
Zhong
,
Z.
Wang
,
G.
Cai
,
C.
Jiang
, and
F.
Ren
,
Electrochim. Acta
353
,
136475
(
2020
).
121.
L.
Wu
,
F.
Ren
,
G.
Cai
,
Z.
Xing
,
H.
Wu
,
X.
Zheng
,
X.
Wang
, and
C.
Jiang
,
Int. J. Hydrogen Energy
43
(
1
),
64
(
2018
).
122.
X.
Zheng
,
F.
Ren
,
S.
Zhang
,
X.
Zhang
,
H.
Wu
,
X.
Zhang
,
Z.
Xing
,
W.
Qin
,
Y.
Liu
, and
C.
Jiang
,
ACS Appl. Mater. Interfaces
9
(
16
),
14534
(
2017
).
123.
D.
Banham
,
J. Y.
Choi
,
T.
Kishimoto
, and
S.
Ye
,
Adv. Mater.
31
(
31
),
1804846
(
2019
).
124.
I.
Staffell
,
D.
Scamman
,
A. V.
Abad
,
P.
Balcombe
,
P. E.
Dodds
,
P.
Ekins
,
N.
Shah
, and
K. R.
Ward
,
Energy Environ. Sci.
12
(
2
),
463
(
2019
).
125.
M.
Liu
,
Z.
Zhao
,
X.
Duan
, and
Y.
Huang
,
Adv. Mater.
31
(
6
),
1802234
(
2019
).
126.
C.
Zhai
,
M.
Sun
,
L.
Zeng
,
M.
Xue
,
J.
Pan
,
Y.
Du
, and
M.
Zhu
,
Appl. Catal., B
243
,
283
(
2019
).
127.
F.
Liang
,
H.
Tian
,
M.
Jia
, and
J.
Hu
,
J. Power Sources
225
,
9
(
2013
).
128.
Q.
Lin
,
Y.
Wei
,
W.
Liu
,
Y.
Yu
, and
J.
Hu
,
Int. J. Hydrogen Energy
42
(
2
),
1403
(
2017
).
129.
Y.
Sun
,
Y.
Liang
,
M.
Luo
,
F.
Lv
,
Y.
Qin
,
L.
Wang
,
C.
Xu
,
E.
Fu
, and
S.
Guo
,
Small
14
(
3
),
1702259
(
2018
).
130.
L.
Liang
,
M.
Xiao
,
J.
Zhu
,
J.
Ge
,
C.
Liu
, and
W.
Xing
,
J. Energy Chem.
28
,
118
(
2019
).
131.
W. W.
Wang
,
W. Z.
Yu
,
P. P.
Du
,
H.
Xu
,
Z.
Jin
,
R.
Si
,
C.
Ma
,
S.
Shi
,
C. J.
Jia
, and
C. H.
Yan
,
ACS Catal.
7
(
2
),
1313
(
2017
).
132.
R. K.
Singha
,
A.
Shukla
,
A.
Yadav
,
L. S.
Konathala
, and
R.
Bal
,
Appl. Catal., B
202
,
473
(
2017
).
133.
Y.
Yu
,
M.
Zhai
, and
J.
Hu
,
Prog. Nat. Sci.
29
(
5
),
511
(
2019
).
134.
L.
Zhao
,
X. L.
Sui
,
J. Z.
Li
,
J. J.
Zhang
,
L. M.
Zhang
,
G. S.
Huang
, and
Z. B.
Wang
,
Appl. Catal., B
231
,
224
(
2018
).
135.
Y.
Zhou
,
R.
Pasquarelli
,
T.
Holme
,
J.
Berry
,
D.
Ginley
, and
R.
O'Hayre
,
J. Mater. Chem.
19
(
42
),
7830
(
2009
).
136.
Y.
Zhou
,
T.
Holme
,
J.
Berry
,
T. R.
Ohno
,
D.
Ginley
, and
R.
O'Hayre
,
J. Phys. Chem. C
114
(
1
),
506
(
2010
).
137.
K.
Liu
,
Z.
Qiao
,
S.
Hwang
,
Z.
Liu
,
H.
Zhang
,
D.
Su
,
H.
Xu
,
G.
Wu
, and
G.
Wang
,
Appl. Catal., B
243
,
195
(
2019
).
138.
J.
Meng
,
H.
Lei
,
X.
Li
,
J.
Qi
,
W.
Zhang
, and
R.
Cao
,
ACS Catal.
9
(
5
),
4551
(
2019
).
139.
H.
Wang
,
L.
Wei
,
C.
Yang
,
J.
Liu
, and
J.
Shen
,
Bioelectrochemistry
131
,
107370
(
2020
).
140.
H.
Jiang
,
J.
Gu
,
X.
Zheng
,
M.
Liu
,
X.
Qiu
,
L.
Wang
,
W.
Li
,
Z.
Chen
,
X.
Ji
, and
J.
Li
,
Energy Environ. Sci.
12
(
1
),
322
(
2019
).
141.
D.
Guo
,
R.
Shibuya
,
C.
Akiba
,
S.
Saji
,
T.
Kondo
, and
J.
Nakamura
,
Science
351
(
6271
),
361
(
2016
).
142.
K. N.
Wood
,
R.
O'Hayre
, and
S.
Pylypenko
,
Energy Environ. Sci.
7
(
4
),
1212
(
2014
).
143.
H.
Wang
,
T.
Maiyalagan
, and
X.
Wang
,
ACS Catal.
2
(
5
),
781
(
2012
).
144.
M.
Inagaki
,
M.
Toyoda
,
Y.
Soneda
, and
T.
Morishita
,
Carbon
132
,
104
(
2018
).
145.
M. J.
Dzara
,
K.
Artyushkova
,
S.
Shulda
,
M. B.
Strand
,
C.
Ngo
,
E. J.
Crumlin
,
T.
Gennett
, and
S.
Pylypenko
,
J. Phys. Chem. C
123
(
14
),
9074
(
2019
).
146.
R.
Fernandes
,
N.
Patel
,
R.
Dholam
,
M.
Adami
, and
A.
Miotello
,
Surf. Coat. Technol.
203
(
17–18
),
2579
(
2009
).
147.
M.
Wang
,
F.
Ren
,
J.
Zhou
,
G.
Cai
,
L.
Cai
,
Y.
Hu
,
D.
Wang
,
Y.
Liu
,
L.
Guo
, and
S.
Shen
,
Sci. Rep.
5
(
1
),
1
13
(
2015
).
148.
C.
Sun
,
P.
Wang
,
H.
Wang
,
C.
Xu
,
J.
Zhu
,
Y.
Liang
,
Y.
Su
,
Y.
Jiang
,
W.
Wu
,
E.
Fu
, and
G.
Zou
,
Nano Res.
12
(
7
),
1613
(
2019
).
149.
S.
Pylypenko
,
A.
Queen
,
T. S.
Olson
,
A.
Dameron
,
K.
O'Neill
,
K. C.
Neyerlin
,
B.
Pivovar
,
H. N.
Dinh
,
D. S.
Ginley
,
T.
Gennett
, and
R.
O'Hayre
,
J. Phys. Chem. C
115
(
28
),
13667
(
2011
).
150.
S.
Pylypenko
,
A.
Queen
,
T. S.
Olson
,
A.
Dameron
,
K.
O'Neill
,
K. C.
Neyerlin
,
B.
Pivovar
,
H. N.
Dinh
,
D. S.
Ginley
,
T.
Gennett
, and
R.
O'Hayre
,
J. Phys. Chem. C
115
(
28
),
13676
(
2011
).
151.
M.
Guo
,
Y.
Cheng
,
Y.
Yu
, and
J.
Hu
,
Appl. Surf. Sci.
416
,
439
(
2017
).
152.
K.
Feng
,
D. T. K.
Kwok
,
D. A.
Liu
,
Z. G.
Li
,
X.
Cai
, and
P. K.
Chu
,
J. Power Sources
195
(
19
),
6798
(
2010
).
153.
K.
Feng
,
Z.
Li
,
X.
Cai
, and
P. K.
Chu
,
Mater. Chem. Phys.
126
(
1–2
),
6
(
2011
).
You do not currently have access to this content.