Solar cells generate renewable energy by converting sunlight into electricity based on the photovoltaic effects. Different types of solar cells have been developed with the employment of versatile organic, inorganic, and hybrid semiconductors as the photoactive layer among which perovskite and solar cells have evidenced enormous progress in recent years. The maximum achievable power conversion efficiencies of perovskite and organic solar cells have now surpassed 25% and 18%, respectively. Nevertheless, the relatively narrow light absorption region of perovskite and large open-circuit voltage loss of organic solar cells hinder their further improvements. Recently, an emerging type of photovoltaic device, an integrated perovskite/organic solar cell, by incorporating perovskites and near-infrared organic semiconductors, has obtained enhanced short-circuit current density while reserving the high open-circuit voltage of perovskite devices. Integrated perovskite/organic solar cells simplify the sophisticated fabrication processes of tandem solar cells by depositing organic semiconductors, which are dissolved in orthogonal solvents directly onto the perovskite layer, offering a novel route to utilize more photons. In this review, we start with the operational mechanism of this new type of solar cell and then introduce various devices through distinctions of the organic layer. We proceed to summarize critical factors that determine efficiency and provide perspectives on directions to optimize, including the device structure and the organic and perovskite layers. This review serves as an ideal guide for the further development of high-performance integrated photovoltaic devices.

1.
L.
Yang
,
A. T.
Barrows
,
D. G.
Lidzey
, and
T.
Wang
, “
Recent progress and challenges of organometal halide perovskite solar cells
,”
Rep. Prog. Phys.
79
,
026501
(
2016
).
2.
S.
Li
,
C.
Li
,
M.
Shi
, and
H.
Chen
, “
New phase for organic solar cell research: Emergence of Y-series electron acceptors and their perspectives
,”
ACS Energy Lett.
5
,
1554
1567
(
2020
).
3.
Y.
Zhang
,
G.
Wu
,
F.
Liu
,
C.
Ding
,
Z.
Zou
, and
Q.
Shen
, “
Photoexcited carrier dynamics in colloidal quantum dot solar cells: Insights into individual quantum dots, quantum dot solid films and devices
,”
Chem. Soc. Rev.
49
,
49
84
(
2020
).
4.
NREL
, https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.(page unavailable) (Last accessed May 10,
2020
).
5.
Q.
Liu
,
Y.
Jiang
,
K.
Jin
,
J.
Qin
,
J.
Xu
,
W.
Li
,
J.
Xiong
,
J.
Liu
,
Z.
Xiao
,
K.
Sun
,
S.
Yang
,
X.
Zhang
, and
L.
Ding
, “
18% efficiency organic solar cells
,”
Sci. Bull.
65
,
272
275
(
2020
).
6.
W.
Shockley
and
H. J.
Queisser
, “
Detailed balance limit of efficiency of p-n junction solar cells
,”
J. Appl. Phys.
32
,
510
519
(
1961
).
7.
A.
Polman
,
M.
Knight
,
E. C.
Garnett
,
B.
Ehrler
, and
W. C.
Sinke
, “
Photovoltaic materials: Present efficiencies and future challenges
,”
Science
352
,
aad4424
(
2016
).
8.
B.
Chen
,
X.
Zheng
,
Y.
Bai
,
N. P.
Padture
, and
J.
Huang
, “
Progress in tandem solar cells based on hybrid organic-inorganic perovskites
,”
Adv. Energy Mater.
7
,
1602400
(
2017
).
9.
E.
Busby
,
J.
Xia
,
Q.
Wu
,
J. Z.
Low
,
R.
Song
,
J. R.
Miller
,
X.
Zhu
,
L. M.
Campos
, and
M. Y.
Sfeir
, “
A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials
,”
Nat. Mater.
14
,
426
433
(
2015
).
10.
M.
Einzinger
,
T.
Wu
,
J. F.
Kompalla
,
H. L.
Smith
,
C. F.
Perkinson
,
L.
Nienhaus
,
S.
Wieghold
,
D. N.
Congreve
,
A.
Kahn
,
M. G.
Bawendi
, and
M. A.
Baldo
, “
Sensitization of silicon by singlet exciton fission in tetracene
,”
Nature
571
,
90
94
(
2019
).
11.
Y.
Hou
,
E.
Aydin
,
M.
De Bastiani
,
C.
Xiao
,
F. H.
Isikgor
,
D.
Xue
,
B.
Chen
,
H.
Chen
,
B.
Bahrami
,
A. H.
Chowdhury
,
A.
Johnston
,
S.
Baek
,
Z.
Huang
,
M.
Wei
,
Y.
Dong
,
J.
Troughton
,
R.
Jalmood
,
A. J.
Mirabelli
,
T. G.
Allen
,
E.
Van Kerschaver
,
M. I.
Saidaminov
,
D.
Baran
,
Q.
Qiao
,
K.
Zhu
,
S.
De Wolf
, and
E. H.
Sargent
, “
Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon
,”
Science
367
,
1135
1140
(
2020
).
12.
S.
Gharibzadeh
,
I. M.
Hossain
,
P.
Fassl
,
B. A.
Nejand
,
T.
Abzieher
,
M.
Schultes
,
E.
Ahlswede
,
P.
Jackson
,
M.
Powalla
,
S.
Schäfer
,
M.
Rienäcker
,
T.
Wietler
,
R.
Peibst
,
U.
Lemmer
,
B. S.
Richards
, and
U. W.
Paetzold
, “
2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS
,”
Adv. Funct. Mater.
30
,
1909919
(
2020
).
13.
A.
Karani
,
L.
Yang
,
S.
Bai
,
M. H.
Futscher
,
H. J.
Snaith
,
B.
Ehrler
,
N. C.
Greenham
, and
D.
Di
, “
Perovskite/colloidal quantum dot tandem solar cells: Theoretical modeling and monolithic structure
,”
ACS Energy Lett.
3
,
869
874
(
2018
).
14.
P.
Cheng
,
Y.
Liu
,
S.-Y.
Chang
,
T.
Li
,
P.
Sun
,
R.
Wang
,
H.-W.
Cheng
,
T.
Huang
,
L.
Meng
,
S.
Nuryyeva
,
C.
Zhu
,
K.-H.
Wei
,
B.
Sun
,
X.
Zhan
, and
Y.
Yang
, “
Efficient tandem organic photovoltaics with tunable rear sub-cells
,”
Joule
3
,
432
442
(
2019
).
15.
Y.
Hu
,
L.
Song
,
Y.
Chen
, and
W.
Huang
, “
Two-terminal perovskites tandem solar cells: Recent advances and perspectives
,”
Sol. RRL
3
,
1900080
(
2019
).
16.
C.
Wang
,
Y.
Bai
,
Q.
Guo
,
C.
Zhao
,
J.
Zhang
,
S.
Hu
,
T.
Hayat
,
A.
Alsaedi
, and
Z.
Tan
, “
Enhancing charge transport in an organic photoactive layer via vertical component engineering for efficient perovskite/organic integrated solar cells
,”
Nanoscale
11
,
4035
4043
(
2019
).
17.
Y.
Liu
,
Z.
Hong
,
Q.
Chen
,
W.
Chang
,
H.
Zhou
,
T.-B.
Song
,
E.
Young
,
Y.
Yang
,
J.
You
,
G.
Li
, and
Y.
Yang
, “
Integrated perovskite/bulk-heterojunction toward efficient solar cells
,”
Nano Lett.
15
,
662
668
(
2015
).
18.
Y.
Liu
and
Y.
Chen
, “
Integrated perovskite/bulk-heterojunction organic solar cells
,”
Adv. Mater.
32
,
1805843
(
2020
).
19.
J.
Wang
,
K.
Liu
,
L.
Hong
,
G.
Ge
,
C.
Zhang
, and
J.
Hou
, “
Selenopheno[3,2-b] thiophene-based narrow-bandgap nonfullerene acceptor enabling 13.3% efficiency for organic solar cells with thickness-insensitive feature
,”
ACS Energy Lett.
3
,
2967
2976
(
2018
).
20.
C.
Yang
,
J.
Zhang
,
N.
Liang
,
H.
Yao
,
Z.
Wei
,
C.
He
,
X.
Yuan
, and
J.
Hou
, “
Effects of energy-level offset between a donor and acceptor on the photovoltaic performance of non-fullerene organic solar cells
,”
J. Mater. Chem. A
7
,
18889
18897
(
2019
).
21.
B.
Kan
,
H.
Feng
,
H.
Yao
,
M.
Chang
,
X.
Wan
,
C.
Li
,
J.
Hou
, and
Y.
Chen
, “
A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss
,”
Sci. China Chem.
61
,
1307
1313
(
2018
).
22.
J. J.
Yuan
,
Y.
Zhang
,
L.
Zhou
,
G.
Zhang
,
H.-L.
Yip
,
T.-K.
Lau
,
X.
Lu
,
C.
Zhu
,
H.
Peng
,
P. A.
Johnson
,
M.
Leclerc
,
Y.
Cao
,
J.
Ulanski
,
Y.
Li
, and
Y.
Zou
, “
Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core
,”
Joule
3
,
1140
1151
(
2019
).
23.
W.
Li
,
M.
Chen
,
J.
Cai
,
E. L. K.
Spooner
,
H.
Zhang
,
R. S.
Gurney
,
D.
Liu
,
Z.
Xiao
,
D. G.
Lidzey
,
L.
Ding
, and
T.
Wang
, “
Molecular order control of non-fullerene acceptors for high-efficiency polymer solar cells
,”
Joule
3
,
819
833
(
2019
).
24.
S.
Xu
,
Z.
Zhou
,
W.
Liu
,
Z.
Zhang
,
F.
Liu
,
H.
Yan
, and
X.
Zhu
, “
A twisted thieno[3,4-b] thiophene-based electron acceptor featuring a 14-π-electron indenoindene core for high-performance organic photovoltaics
,”
Adv. Mater.
29
,
1704510
(
2017
).
25.
H.
Yao
,
Y.
Chen
,
Y.
Qin
,
R.
Yu
,
Y.
Cui
,
B.
Yang
,
S.
Li
,
K.
Zhang
, and
J.
Hou
, “
Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells
,”
Adv. Mater.
28
,
8283
8287
(
2016
).
26.
R. S.
Gurney
,
D. G.
Lidzey
, and
T.
Wang
, “
A review of non-fullerene polymer solar cells: From device physics to morphology control
,”
Rep. Prog. Phys.
82
,
036601
(
2019
).
27.
A.
Pivrikas
,
N. S.
Sariciftci
,
G.
Juška
, and
R.
Österbacka
, “
A review of charge transport and recombination in polymer/fullerene organic solar cells
,”
Prog. Photovoltaics Res. Appl.
15
,
677
696
(
2007
).
28.
B.
Park
and
S.
Il Seok
, “
Intrinsic instability of inorganic–organic hybrid halide perovskite materials
,”
Adv. Mater.
31
,
1805337
(
2019
).
29.
A.
Mei
,
X.
Li
,
L.
Liu
,
Z.
Ku
,
T.
Liu
,
Y.
Rong
,
M.
Xu
,
M.
Hu
,
J.
Chen
,
Y.
Yang
,
M.
Gratzel
, and
H.
Han
, “
A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
,”
Science
345
,
295
298
(
2014
).
30.
F.
Cai
,
J.
Cai
,
L.
Yang
,
W.
Li
,
R. S.
Gurney
,
H.
Yi
,
A.
Iraqi
,
D.
Liu
, and
T.
Wang
, “
Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells
,”
Nano Energy
45
,
28
36
(
2018
).
31.
J.
Shi
,
Y.
Li
,
Y.
Li
,
D.
Li
,
Y.
Luo
,
H.
Wu
, and
Q.
Meng
, “
From ultrafast to ultraslow: Charge-carrier dynamics of perovskite solar cells
,”
Joule
2
,
879
901
(
2018
).
32.
B.
Chen
,
P. N.
Rudd
,
S.
Yang
,
Y.
Yuan
, and
J.
Huang
, “
Imperfections and their passivation in halide perovskite solar cells
,”
Chem. Soc. Rev.
48
,
3842
3867
(
2019
).
33.
Y.
Wang
,
W.
Chen
,
L.
Wang
,
B.
Tu
,
T.
Chen
,
B.
Liu
,
K.
Yang
,
C. W.
Koh
,
X.
Zhang
,
H.
Sun
,
G.
Chen
,
X.
Feng
,
H. Y.
Woo
,
A. B.
Djurišić
,
Z.
He
, and
X.
Guo
, “
Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%
,”
Adv. Mater.
31
,
1902781
(
2019
).
34.
F.
Liu
,
F.
Wu
,
W.
Ling
,
Z.
Tu
,
J.
Zhang
,
Z.
Wei
,
L.
Zhu
,
Q.
Li
, and
Z.
Li
, “
Facile-effective hole-transporting materials based on dibenzo[a,c]carbazole: The key role of linkage position to photovoltaic performance of perovskite solar cells
,”
ACS Energy Lett.
4
,
2514
2521
(
2019
).
35.
T. M.
Clarke
and
J. R.
Durrant
, “
Charge photogeneration in organic solar cells
,”
Chem. Rev.
110
,
6736
6767
(
2010
).
36.
L. M.
Herz
, “
Charge-carrier dynamics in organic-inorganic metal halide perovskites
,”
Annu. Rev. Phys. Chem.
67
,
65
89
(
2016
).
37.
C.
Zuo
and
L.
Ding
, “
Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm
,”
J. Mater. Chem. A
3
,
9063
9066
(
2015
).
38.
S.
Dong
,
Y.
Liu
,
Z.
Hong
,
E.
Yao
,
P.
Sun
,
L.
Meng
,
Y.
Lin
,
J.
Huang
,
G.
Li
, and
Y.
Yang
, “
Unraveling the high open circuit voltage and high performance of integrated perovskite/organic bulk-heterojunction solar cells
,”
Nano Lett.
17
,
5140
5147
(
2017
).
39.
M.
Zhang
,
T.
Li
,
J.
Yu
,
G.
Lu
,
H.
Zhou
, and
X.
Zhan
, “
Integrated perovskite/organic photovoltaics with ultrahigh photocurrent and photoresponse approaching 1000 nm
,”
Sol. RRL
4
,
2000140
(
2020
).
40.
Y.
Zhang
,
W.
Yu
,
W.
Qin
,
Z.
Yang
,
D.
Yang
,
Y.
Xing
,
S.
Liu
, and
C.
Li
, “
Perovskite as an effective Voc switcher for high efficiency polymer solar cells
,”
Nano Energy
20
,
126
133
(
2016
).
41.
W.
Tress
,
M.
Yavari
,
K.
Domanski
,
P.
Yadav
,
B.
Niesen
,
J. P.
Correa Baena
,
A.
Hagfeldt
, and
M.
Graetzel
, “
Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells
,”
Energy Environ. Sci.
11
,
151
165
(
2018
).
42.
C. M.
Proctor
,
M.
Kuik
, and
T.-Q.
Nguyen
, “
Charge carrier recombination in organic solar cells
,”
Prog. Polym. Sci.
38
,
1941
1960
(
2013
).
43.
L.
Ye
,
B.
Fan
,
S.
Zhang
,
S.
Li
,
B.
Yang
,
Y.
Qin
,
H.
Zhang
, and
J.
Hou
, “
Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%
,”
Sci. China Mater.
58
,
953
960
(
2015
).
44.
M.
Cheng
,
C.
Chen
,
K.
Aitola
,
F.
Zhang
,
Y.
Hua
,
G.
Boschloo
,
L.
Kloo
, and
L.
Sun
, “
Highly efficient integrated perovskite solar cells containing a small molecule-PC70BM bulk heterojunction layer with an extended photovoltaic response up to 900 nm
,”
Chem. Mater.
28
,
8631
8639
(
2016
).
45.
K.
Gao
,
Z.
Zhu
,
B.
Xu
,
S. B.
Jo
,
Y.
Kan
,
X.
Peng
, and
A. K. Y.
Jen
, “
Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor
,”
Adv. Mater.
29
,
1703980
(
2017
).
46.
Q.
Guo
,
H.
Liu
,
Z.
Shi
,
F.
Wang
,
E.
Zhou
,
X.
Bian
,
B.
Zhang
,
A.
Alsaedi
,
T.
Hayat
, and
Z.
Tan
, “
Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50%
,”
Nanoscale
10
,
3245
3253
(
2018
).
47.
Q.
Guo
,
Y.
Bai
,
K.
Lang
,
Z.
Yu
,
T.
Hayat
,
A.
Alsaedi
,
E.
Zhou
, and
Z.
Tan
, “
Expanding the light harvesting of CsPbI2Br to near infrared by integrating with organic bulk heterojunction for efficient and stable solar cells
,”
ACS Appl. Mater. Interfaces
11
,
37991
37998
(
2019
).
48.
C.
Chen
,
S.
Wu
,
Y.
Lu
,
C.
Lee
,
K.
Ho
,
Z.
Zhu
,
W.
Chen
, and
C.
Chueh
, “
Enhanced near-infrared photoresponse of inverted perovskite solar cells through rational design of bulk-heterojunction electron-transporting layers
,”
Adv. Sci.
6
,
1901714
(
2019
).
49.
J.
Kim
,
G.
Kim
,
H.
Back
,
J.
Kong
,
I.-W.
Hwang
,
T. K.
Kim
,
S.
Kwon
,
J.-H.
Lee
,
J.
Lee
,
K.
Yu
,
C.-L.
Lee
,
H.
Kang
, and
K.
Lee
, “
High-performance integrated perovskite and organic solar cells with enhanced fill factors and near-infrared harvesting
,”
Adv. Mater.
28
,
3159
3165
(
2016
).
50.
M.
Daboczi
,
J.
Kim
,
J.
Lee
,
H.
Kang
,
I.
Hamilton
,
C.
Lin
,
S. D.
Dimitrov
,
M. A.
McLachlan
,
K.
Lee
,
J. R.
Durrant
, and
J.
Kim
, “
Towards efficient integrated perovskite/organic bulk heterojunction solar cells: Interfacial energetic requirement to reduce charge carrier recombination losses
,”
Adv. Funct. Mater.
30
,
2001482
(
2020
).
51.
W.
Chen
,
H.
Sun
,
Q.
Hu
,
A. B.
Djurišić
,
T. P.
Russell
,
X.
Guo
, and
Z.
He
, “
High short-circuit current density via integrating the perovskite and ternary organic bulk heterojunction
,”
ACS Energy Lett.
4
,
2535
2536
(
2019
).
52.
K.
Hu
,
Z.-K.
Wang
,
L.
Meng
,
K.-L.
Wang
,
Y.
Zhang
, and
L.-S.
Liao
, “
Organic bulk-heterojunction injected perovskite films for highly efficient solar cells
,”
J. Mater. Chem. C
7
,
6391
6397
(
2019
).
53.
G.
Xu
,
P.
Bi
,
S.
Wang
,
R.
Xue
,
J.
Zhang
,
H.
Chen
,
W.
Chen
,
X.
Hao
,
Y.
Li
, and
Y.
Li
, “
Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss
,”
Adv. Funct. Mater.
28
,
1804427
(
2018
).
54.
Q.
An
,
F.
Zhang
,
J.
Zhang
,
W.
Tang
,
Z.
Deng
, and
B.
Hu
, “
Versatile ternary organic solar cells: A critical review
,”
Energy Environ. Sci.
9
,
281
322
(
2016
).
55.
W.
Li
,
M.
Chen
,
Z.
Zhang
,
J.
Cai
,
H.
Zhang
,
R. S.
Gurney
,
D.
Liu
,
J.
Yu
,
W.
Tang
, and
T.
Wang
, “
Retarding the crystallization of a nonfullerene electron acceptor for high-performance polymer solar cells
,”
Adv. Funct. Mater.
29
,
1807662
(
2019
).
56.
D.
Kearns
and
M.
Calvin
, “
Photovoltaic effect and photoconductivity in laminated organic systems
,”
J. Chem. Phys.
29
,
950
951
(
1958
).
57.
G.
Feng
,
J.
Li
,
Y.
He
,
W.
Zheng
,
J.
Wang
,
C.
Li
,
Z.
Tang
,
A.
Osvet
,
N.
Li
,
C. J.
Brabec
,
Y.
Yi
,
H.
Yan
, and
W.
Li
, “
Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells
,”
Joule
3
,
1765
1781
(
2019
).
58.
F.
Wu
,
W.
Gao
,
L.
Zhu
,
H.
Lu
, and
C.
Yang
, “
Extending photoresponse to the near-infrared region for inverted perovskite solar cells by using a low-bandgap electron transporting material
,”
Sol. RRL
4
,
1900565
(
2020
).
59.
X.
Zhao
,
C.
Yao
,
T.
Liu
,
J. C.
Hamill
,
G. O.
Ngongang Ndjawa
,
G.
Cheng
,
N.
Yao
,
H.
Meng
, and
Y.
Loo
, “
Extending the photovoltaic response of perovskite solar cells into the near-infrared with a narrow-bandgap organic semiconductor
,”
Adv. Mater.
31
,
1904494
(
2019
).
60.
L.
Bian
,
E.
Zhu
,
J.
Tang
,
W.
Tang
, and
F.
Zhang
, “
Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells
,”
Prog. Polym. Sci.
37
,
1292
1331
(
2012
).
61.
Y.
Yan
,
F.
Cai
,
L.
Yang
,
J.
Li
,
Y.
Zhang
,
F.
Qin
,
C.
Xiong
,
Y.
Zhou
,
D. G.
Lidzey
, and
T.
Wang
, “
Light-soaking-free inverted polymer solar cells with an efficiency of 10.5% by compositional and surface modifications to a low-temperature-processed TiO2 electron-transport layer
,”
Adv. Mater.
29
,
1604044
(
2017
).
62.
J.
Fan
,
Y.
Ma
,
C.
Zhang
,
C.
Liu
,
W.
Li
,
R. E. I.
Schropp
, and
Y.
Mai
, “
Thermodynamically self-healing 1D–3D hybrid perovskite solar cells
,”
Adv. Energy Mater.
8
,
1703421
(
2018
).
63.
K.
Gao
,
J.
Miao
,
L.
Xiao
,
W.
Deng
,
Y.
Kan
,
T.
Liang
,
C.
Wang
,
F.
Huang
,
J.
Peng
,
Y.
Cao
,
F.
Liu
,
T. P.
Russell
,
H.
Wu
, and
X.
Peng
, “
Multi-length-scale morphologies driven by mixed additives in porphyrin-based organic photovoltaics
,”
Adv. Mater.
28
,
4727
4733
(
2016
).
64.
K.
Gao
,
L.
Li
,
T.
Lai
,
L.
Xiao
,
Y.
Huang
,
F.
Huang
,
J.
Peng
,
Y.
Cao
,
F.
Liu
,
T. P.
Russell
,
R. A. J.
Janssen
, and
X.
Peng
, “
Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses
,”
J. Am. Chem. Soc.
137
,
7282
7285
(
2015
).
65.
K.
Gao
,
S. B.
Jo
,
X.
Shi
,
L.
Nian
,
M.
Zhang
,
Y.
Kan
,
F.
Lin
,
B.
Kan
,
B.
Xu
,
Q.
Rong
,
L.
Shui
,
F.
Liu
,
X.
Peng
,
G.
Zhou
,
Y.
Cao
, and
A. K. Y.
Jen
, “
Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies
,”
Adv. Mater.
31
,
1807842
(
2019
).
66.
Z.
He
,
B.
Xiao
,
F.
Liu
,
H.
Wu
,
Y.
Yang
,
S.
Xiao
,
C.
Wang
,
T. P.
Russell
, and
Y.
Cao
, “
Single-junction polymer solar cells with high efficiency and photovoltage
,”
Nat. Photonics
9
,
174
179
(
2015
).
67.
V.
Vohra
,
K.
Kawashima
,
T.
Kakara
,
T.
Koganezawa
,
I.
Osaka
,
K.
Takimiya
, and
H.
Murata
, “
Efficient inverted polymer solar cells employing favourable molecular orientation
,”
Nat. Photonics
9
,
403
408
(
2015
).
68.
Q.
Liao
,
Q.
Kang
,
Y.
Yang
,
C.
An
,
B.
Xu
, and
J.
Hou
, “
Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells
,”
Adv. Mater.
32
,
1906557
(
2020
).
69.
Y.
Cui
,
H.
Yao
,
J.
Zhang
,
K.
Xian
,
T.
Zhang
,
L.
Hong
,
Y.
Wang
,
Y.
Xu
,
K.
Ma
,
C.
An
,
C.
He
,
Z.
Wei
,
F.
Gao
, and
J.
Hou
, “
Single-junction organic photovoltaic cells with approaching 18% efficiency
,”
Adv. Mater.
32
,
1908205
(
2020
).
70.
J.
Zhao
,
Y.
Li
,
G.
Yang
,
K.
Jiang
,
H.
Lin
,
H.
Ade
,
W.
Ma
, and
H.
Yan
, “
Efficient organic solar cells processed from hydrocarbon solvents
,”
Nat. Energy
1
,
15027
(
2016
).
71.
L.
Etgar
,
P.
Gao
,
P.
Qin
,
M.
Graetzel
, and
M. K.
Nazeeruddin
, “
A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response
,”
J. Mater. Chem. A
2
,
11586
11590
(
2014
).
72.
J. C.
Bijleveld
,
A. P.
Zoombelt
,
S. G. J.
Mathijssen
,
M. M.
Wienk
,
M.
Turbiez
,
D. M.
de Leeuw
, and
R. A. J.
Janssen
, “
Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics
,”
J. Am. Chem. Soc.
131
,
16616
16617
(
2009
).
73.
W.
Li
,
K. H.
Hendriks
,
W. S. C.
Roelofs
,
Y.
Kim
,
M. M.
Wienk
, and
R. A. J.
Janssen
, “
Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films
,”
Adv. Mater.
25
,
3182
3186
(
2013
).
74.
L.
Dou
,
C.
Chen
,
K.
Yoshimura
,
K.
Ohya
,
W.
Chang
,
J.
Gao
,
Y.
Liu
,
E.
Richard
, and
Y.
Yang
, “
Synthesis of 5H-dithieno[3,2-b:2′,3′-d] pyran as an electron-rich building block for donor–acceptor type low-bandgap polymers
,”
Macromolecules
46
,
3384
3390
(
2013
).
75.
C.-C.
Chen
,
L.
Dou
,
J.
Gao
,
W.-H.
Chang
,
G.
Li
, and
Y.
Yang
, “
High-performance semi-transparent polymer solar cells possessing tandem structures
,”
Energy Environ. Sci.
6
,
2714
(
2013
).
76.
S.
Dai
,
T.
Li
,
W.
Wang
,
Y.
Xiao
,
T.-K.
Lau
,
Z.
Li
,
K.
Liu
,
X.
Lu
, and
X.
Zhan
, “
Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors
,”
Adv. Mater.
30
,
1706571
(
2018
).
77.
Y.
Li
,
J.-D.
Lin
,
X.
Che
,
Y.
Qu
,
F.
Liu
,
L.-S.
Liao
, and
S. R.
Forrest
, “
High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells
,”
J. Am. Chem. Soc.
139
,
17114
17119
(
2017
).
78.
T.
Wang
,
A. J.
Pearson
, and
D. G.
Lidzey
, “
Correlating molecular morphology with optoelectronic function in solar cells based on low band-gap copolymer: Fullerene blends
,”
J. Mater. Chem. C
1
,
7266
(
2013
).
79.
L.
Zhang
and
W.
Ma
, “
Morphology optimization in ternary organic solar cells
,”
Chin. J. Polym. Sci.
35
,
184
197
(
2017
).
80.
M.
Chen
,
Z.
Zhang
,
W.
Li
,
J.
Cai
,
J.
Yu
,
E. L. K.
Spooner
,
R. C.
Kilbride
,
D.
Li
,
B.
Du
,
R. S.
Gurney
,
D.
Liu
,
W.
Tang
,
D. G.
Lidzey
, and
T.
Wang
, “
Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells
,”
Sci. China Chem.
62
,
1221
1229
(
2019
).
81.
T.
Xia
,
Y.
Cai
,
H.
Fu
, and
Y.
Sun
, “
Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells
,”
Sci. China Chem.
62
,
662
668
(
2019
).
82.
D.
Li
,
X.
Chen
,
J.
Cai
,
W.
Li
,
M.
Chen
,
Y.
Mao
,
B.
Du
,
J. A.
Smith
,
R. C.
Kilbride
,
M. E.
O'Kane
,
X.
Zhang
,
Y.
Zhuang
,
P.
Wang
,
H.
Wang
,
D.
Liu
,
R. A. L.
Jones
,
D. G.
Lidzey
, and
T.
Wang
, “
Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency
,”
Sci. China Chem.
(published online).
83.
D.
Qian
,
L.
Ye
,
M.
Zhang
,
Y.
Liang
,
L.
Li
,
Y.
Huang
,
X.
Guo
,
S.
Zhang
,
Z.
Tan
, and
J.
Hou
, “
Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state
,”
Macromolecules
45
,
9611
9617
(
2012
).
84.
X.
Zhu
,
B.
Xia
,
K.
Lu
,
H.
Li
,
R.
Zhou
,
J.
Zhang
,
Y.
Zhang
,
Z.
Shuai
, and
Z.
Wei
, “
Naphtho[1,2-b:5,6-b′]dithiophene-based small molecules for thick-film organic solar cells with high fill factors
,”
Chem. Mater.
28
,
943
950
(
2016
).
85.
J.
Cai
,
H.
Wang
,
X.
Zhang
,
W.
Li
,
D.
Li
,
Y.
Mao
,
B.
Du
,
M.
Chen
,
Y.
Zhuang
,
D.
Liu
,
H.-L.
Qin
,
Y.
Zhao
,
J. A.
Smith
,
R. C.
Kilbride
,
A. J.
Parnell
,
R. A. L.
Jones
,
D. G.
Lidzey
, and
T.
Wang
, “
Fluorinated solid additives enable high efficiency non-fullerene organic solar cells
,”
J. Mater. Chem. A
8
,
4230
4238
(
2020
).
86.
W.
Li
,
J.
Cai
,
Y.
Yan
,
F.
Cai
,
S.
Li
,
R. S.
Gurney
,
D.
Liu
,
J. D.
McGettrick
,
T. M.
Watson
,
Z.
Li
,
A. J.
Pearson
,
D. G.
Lidzey
,
J.
Hou
, and
T.
Wang
, “
Correlating three-dimensional morphology with function in PBDB-T:IT-M non-fullerene organic solar cells
,”
Sol. RRL
2
,
1800114
(
2018
).
87.
R. S.
Gurney
,
W.
Li
,
Y.
Yan
,
D.
Liu
,
A. J.
Pearson
, and
T.
Wang
, “
Morphology and efficiency enhancements of PTB7-Th:ITIC nonfullerene organic solar cells processed via solvent vapor annealing
,”
J. Energy Chem.
37
,
148
156
(
2019
).
88.
H.-C.
Liao
,
C.-C.
Ho
,
C.-Y.
Chang
,
M.-H.
Jao
,
S. B.
Darling
, and
W.-F.
Su
, “
Additives for morphology control in high-efficiency organic solar cells
,”
Mater. Today
16
,
326
336
(
2013
).
89.
F.
Zhao
,
C.
Wang
, and
X.
Zhan
, “
Morphology control in organic solar cells
,”
Adv. Energy Mater.
8
,
1703147
(
2018
).
90.
Y.
Yan
,
X.
Liu
, and
T.
Wang
, “
Conjugated-polymer blends for organic photovoltaics: Rational control of vertical stratification for high performance
,”
Adv. Mater.
29
,
1601674
(
2017
).
91.
T.
Wang
,
N. W.
Scarratt
,
H.
Yi
,
I. F.
Coleman
,
Y.
Zhang
,
R. T.
Grant
,
J.
Yao
,
M. W. A.
Skoda
,
A. D. F.
Dunbar
,
R. A. L.
Jones
,
A.
Iraqi
, and
D. G.
Lidzey
, “
Vertical stratification and its impact on device performance in a polycarbazole based copolymer solar cells
,”
J. Mater. Chem. C
3
,
4007
4015
(
2015
).
92.
J. S.
Kim
,
Y.
Lee
,
J. H.
Lee
,
J. H.
Park
,
J. K.
Kim
, and
K.
Cho
, “
High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene)
,”
Adv. Mater.
22
,
1355
1360
(
2010
).
93.
J.
Huang
,
J. H.
Carpenter
,
C.
Li
,
J.
Yu
,
H.
Ade
, and
A. K.-Y.
Jen
, “
Highly efficient organic solar cells with improved vertical donor–acceptor compositional gradient via an inverted off-center spinning method
,”
Adv. Mater.
28
,
967
974
(
2016
).
94.
S.
Feng
,
C.
Zhang
,
Y.
Liu
,
Z.
Bi
,
Z.
Zhang
,
X.
Xu
,
W.
Ma
, and
Z.
Bo
, “
Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells
,”
Adv. Mater.
29
,
1703527
(
2017
).
95.
F.
Pan
,
L.
Zhang
,
H.
Jiang
,
D.
Yuan
,
Y.
Nian
,
Y.
Cao
, and
J.
Chen
, “
As-cast ternary polymer solar cells based on a nonfullerene acceptor and its fluorinated counterpart showing improved efficiency and good thickness tolerance
,”
J. Mater. Chem. A
7
,
9798
9806
(
2019
).
96.
X.
Liu
,
L.
Nian
,
K.
Gao
,
L.
Zhang
,
L.
Qing
,
Z.
Wang
,
L.
Ying
,
Z.
Xie
,
Y.
Ma
,
Y.
Cao
,
F.
Liu
, and
J.
Chen
, “
Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: Side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells
,”
J. Mater. Chem. A
5
,
17619
17631
(
2017
).
97.
T.
Yan
,
W.
Song
,
J.
Huang
,
R.
Peng
,
L.
Huang
, and
Z.
Ge
, “
16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy
,”
Adv. Mater.
31
,
1902210
(
2019
).
98.
B.
Qiu
,
S.
Chen
,
C.
Sun
,
J.
Yuan
,
X.
Zhang
,
C.
Zhu
,
S.
Qin
,
L.
Meng
,
Y.
Zhang
,
C.
Yang
,
Y.
Zou
, and
Y.
Li
, “
Understanding the effect of the third component PC71BM on nanoscale morphology and photovoltaic properties of ternary organic solar cells
,”
Sol. RRL
4
,
1900540
(
2020
).
99.
B.
Wang
,
Y.
Fu
,
Q.
Yang
,
J.
Wu
,
H.
Liu
,
H.
Tang
, and
Z.
Xie
, “
High-efficiency ternary nonfullerene organic solar cells fabricated with a near infrared acceptor enhancing exciton utilization and extending absorption
,”
J. Mater. Chem. C
7
,
10498
10506
(
2019
).
100.
Y.
Cui
,
H.
Yao
,
J.
Zhang
,
T.
Zhang
,
Y.
Wang
,
L.
Hong
,
K.
Xian
,
B.
Xu
,
S.
Zhang
,
J.
Peng
,
Z.
Wei
,
F.
Gao
, and
J.
Hou
, “
Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages
,”
Nat. Commun.
10
,
2515
(
2019
).
101.
L.
Zhan
,
S.
Li
,
T.
Lau
,
Y.
Cui
,
X.
Lu
,
M.
Shi
,
C.-Z.
Li
,
H.
Li
,
J.
Hou
, and
H.
Chen
, “
Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model
,”
Energy Environ. Sci.
13
,
635
645
(
2020
).
102.
K.
Jiang
,
Q.
Wei
,
J. Y. L.
Lai
,
Z.
Peng
,
H. K.
Kim
,
J.
Yuan
,
L.
Ye
,
H.
Ade
,
Y.
Zou
, and
H.
Yan
, “
Alkyl chain tuning of small molecule acceptors for efficient organic solar cells
,”
Joule
3
,
3020
3033
(
2019
).
103.
X.
Song
,
N.
Gasparini
,
L.
Ye
,
H.
Yao
,
J.
Hou
,
H.
Ade
, and
D.
Baran
, “
Controlling blend morphology for ultrahigh current density in nonfullerene acceptor-based organic solar cells
,”
ACS Energy Lett.
3
,
669
676
(
2018
).
104.
Z.
Wang
,
H.
Jiang
,
X.
Liu
,
J.
Liang
,
L.
Zhang
,
L.
Qing
,
Q.
Wang
,
W.
Zhang
,
Y.
Cao
, and
J.
Chen
, “
Significantly enhanced electron transport of a nonfullerene acceptor in a blend film with a high hole mobility polymer of high molecular weight: Thick-film nonfullerene polymer solar cells showing a high fill factor
,”
J. Mater. Chem. A
8
,
7765
7774
(
2020
).
105.
Q.
Wang
,
Z.
Hu
,
Z.
Wu
,
Y.
Lin
,
L.
Zhang
,
L.
Liu
,
Y.
Ma
,
Y.
Cao
, and
J.
Chen
, “
Introduction of siloxane-terminated side chains into semiconducting polymers to tune phase separation with nonfullerene acceptor for polymer solar cells
,”
ACS Appl. Mater. Interfaces
12
,
4659
4672
(
2020
).
106.
T.
Chen
,
K.
Peng
,
Y.
Lin
,
Y.
Su
,
K.
Ma
,
L.
Hong
,
C.
Chang
,
J.
Hou
, and
C.
Hsu
, “
A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells
,”
J. Mater. Chem. A
8
,
1131
1137
(
2020
).
107.
J.
Wan
,
L.
Zhang
,
Q.
He
,
S.
Liu
,
B.
Huang
,
L.
Hu
,
W.
Zhou
, and
Y.
Chen
, “
High-performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor
,”
Adv. Funct. Mater.
30
,
1909760
(
2020
).
108.
D.
Li
,
X.
Zhang
,
D.
Liu
, and
T.
Wang
, “
Aggregation of non-fullerene acceptors in organic solar cells
,”
J. Mater. Chem. A
(published online).
109.
W.
Li
,
Z.
Xiao
,
J. A.
Smith
,
J.
Cai
,
D.
Li
,
R. C.
Kilbride
,
E. L. K.
Spooner
,
O. S.
Game
,
X.
Meng
,
D.
Liu
,
R. A. L.
Jones
,
D. G.
Lidzey
,
L.
Ding
, and
T.
Wang
, “
Enhancing the efficiency of PTB7-Th:COi8DFIC-based ternary solar cells with versatile third components
,”
Appl. Phys. Rev.
6
,
041405
(
2019
).
110.
Y.
Cui
,
C.
Yang
,
H.
Yao
,
J.
Zhu
,
Y.
Wang
,
G.
Jia
,
F.
Gao
, and
J.
Hou
, “
Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor
,”
Adv. Mater.
29
,
1703080
(
2017
).
111.
D.
Luo
,
W.
Yang
,
Z.
Wang
,
A.
Sadhanala
,
Q.
Hu
,
R.
Su
,
R.
Shivanna
,
G. F.
Trindade
,
J. F.
Watts
,
Z.
Xu
,
T.
Liu
,
K.
Chen
,
F.
Ye
,
P.
Wu
,
L.
Zhao
,
J.
Wu
,
Y.
Tu
,
Y.
Zhang
,
X.
Yang
,
W.
Zhang
,
R. H.
Friend
,
Q.
Gong
,
H. J.
Snaith
, and
R.
Zhu
, “
Enhanced photovoltage for inverted planar heterojunction perovskite solar cells
,”
Science
360
,
1442
1446
(
2018
).
112.
J.
Tian
,
Q.
Xue
,
X.
Tang
,
Y.
Chen
,
N.
Li
,
Z.
Hu
,
T.
Shi
,
X.
Wang
,
F.
Huang
,
C. J.
Brabec
,
H.
Yip
, and
Y.
Cao
, “
Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability
,”
Adv. Mater.
31
,
1901152
(
2019
).
113.
H.
Tan
,
F.
Che
,
M.
Wei
,
Y.
Zhao
,
M. I.
Saidaminov
,
P.
Todorović
,
D.
Broberg
,
G.
Walters
,
F.
Tan
,
T.
Zhuang
,
B.
Sun
,
Z.
Liang
,
H.
Yuan
,
E.
Fron
,
J.
Kim
,
Z.
Yang
,
O.
Voznyy
,
M.
Asta
, and
E. H.
Sargent
, “
Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
,”
Nat. Commun.
9
,
3100
(
2018
).
114.
J.
Duan
,
Y.
Zhao
,
X.
Yang
,
Y.
Wang
,
B.
He
, and
Q.
Tang
, “
Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V
,”
Adv. Energy Mater.
8
,
1802346
(
2018
).
115.
F.
Cai
,
Y.
Yan
,
J.
Yao
,
P.
Wang
,
H.
Wang
,
R. S.
Gurney
,
D.
Liu
, and
T.
Wang
, “
Ionic additive engineering toward high-efficiency perovskite solar cells with reduced grain boundaries and trap density
,”
Adv. Funct. Mater.
28
,
1801985
(
2018
).
116.
S.
Yue
,
K.
Liu
,
R.
Xu
,
M.
Li
,
M.
Azam
,
K.
Ren
,
J.
Liu
,
Y.
Sun
,
Z.
Wang
,
D.
Cao
,
X.
Yan
,
S.
Qu
,
Y.
Lei
, and
Z.
Wang
, “
Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells
,”
Energy Environ. Sci.
10
,
2570
2578
(
2017
).
117.
H.
Back
,
G.
Kim
,
J.
Kim
,
J.
Kong
,
T. K.
Kim
,
H.
Kang
,
H.
Kim
,
J.
Lee
,
S.
Lee
, and
K.
Lee
, “
Achieving long-term stable perovskite solar cells via ion neutralization
,”
Energy Environ. Sci.
9
,
1258
1263
(
2016
).
118.
Y.
Zhao
and
K.
Zhu
, “
Efficient planar perovskite solar cells based on 1.8 eV band Gap CH3NH3PbI2Br nanosheets via thermal decomposition
,”
J. Am. Chem. Soc.
136
,
12241
12244
(
2014
).
119.
B.
Ding
,
S.-Y.
Huang
,
Q.-Q.
Chu
,
Y.
Li
,
C.-X.
Li
,
C.
Li
, and
G.-J.
Yang
, “
Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules
,”
J. Mater. Chem. A
6
,
10233
10242
(
2018
).
120.
C.
Liu
,
D.
Zhang
,
Z.
Li
,
W.
Han
,
G.
Ren
,
Z.
Li
,
L.
Shen
,
W.
Guo
, and
W.
Zheng
, “
Incorporating a polar molecule to passivate defects for perovskite solar cells
,”
Sol. RRL
4
,
1900489
(
2020
).
121.
S.
Yuan
,
F.
Qian
,
S.
Yang
,
Y.
Cai
,
Q.
Wang
,
J.
Sun
,
Z.
Liu
, and
S. F.
Liu
, “
NbF5: A novel α-phase stabilizer for FA-based perovskite solar cells with high efficiency
,”
Adv. Funct. Mater.
29
,
1807850
(
2019
).
122.
F.
Qian
,
S.
Yuan
,
Y.
Cai
,
Y.
Han
,
H.
Zhao
,
J.
Sun
,
Z.
Liu
, and
S.
Liu
, “
Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency
,”
Sol. RRL
3
,
1900072
(
2019
).
123.
Q.
Jiang
,
Y.
Zhao
,
X.
Zhang
,
X.
Yang
,
Y.
Chen
,
Z.
Chu
,
Q.
Ye
,
X.
Li
,
Z.
Yin
, and
J.
You
, “
Surface passivation of perovskite film for efficient solar cells
,”
Nat. Photonics
13
,
460
466
(
2019
).
124.
Q.
Jiang
,
L.
Zhang
,
H.
Wang
,
X.
Yang
,
J.
Meng
,
H.
Liu
,
Z.
Yin
,
J.
Wu
,
X.
Zhang
, and
J.
You
, “
Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells
,”
Nat. Energy
2
,
16177
(
2017
).
125.
J.
Zhang
,
S.
Wu
,
T.
Liu
,
Z.
Zhu
, and
A. K.-Y.
Jen
, “
Boosting photovoltaic performance for lead halide perovskites solar cells with BF4 anion substitutions
,”
Adv. Funct. Mater.
29
,
1808833
(
2019
).
126.
W. S.
Yang
,
J. H.
Noh
,
N. J.
Jeon
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. I.
Seok
, “
High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
,”
Science
348
,
1234
1237
(
2015
).
127.
Y.
Zhang
,
Z.
Zhou
,
F.
Ji
,
Z.
Li
,
G.
Cui
,
P.
Gao
,
E.
Oveisi
,
M. K.
Nazeeruddin
, and
S.
Pang
, “
Trash into treasure: δ-FAPbI3 polymorph stabilized MAPbI3 perovskite with power conversion efficiency beyond 21%
,”
Adv. Mater.
30
,
1707143
(
2018
).
128.
N.
Li
,
J.
Liu
,
C.
Li
,
Y.
Li
,
J.
Jia
,
Y.
Wu
,
H.
Yu
,
B.
Yuan
, and
B.
Cao
, “
Zwitterion-stabilizing scalable bladed α-phase Cs0.1FA0.9PbI3 films for efficient inverted planar perovskite solar cells
,”
ACS Sustainable Chem. Eng.
8
,
7020
7030
(
2020
).
129.
Y.
Chen
,
Z.
Yang
,
X.
Jia
,
Y.
Wu
,
N.
Yuan
,
J.
Ding
,
W.-H.
Zhang
, and
S.
Liu
, “
Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer
,”
Nano Energy
61
,
148
157
(
2019
).
130.
Y.
Wang
,
M. I.
Dar
,
L. K.
Ono
,
T.
Zhang
,
M.
Kan
,
Y.
Li
,
L.
Zhang
,
X.
Wang
,
Y.
Yang
,
X.
Gao
,
Y.
Qi
,
M.
Grätzel
, and
Y.
Zhao
, “
Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%
,”
Science
365
,
591
595
(
2019
).
131.
Y.
Wang
,
X.
Liu
,
T.
Zhang
,
X.
Wang
,
M.
Kan
,
J.
Shi
, and
Y.
Zhao
, “
The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant?
,”
Angew. Chem., Int. Ed.
58
,
16691
16696
(
2019
).
132.
H.
Wang
,
H.
Bian
,
Z.
Jin
,
H.
Zhang
,
L.
Liang
,
J.
Wen
,
Q.
Wang
,
L.
Ding
, and
S. F.
Liu
, “
Cesium lead mixed-halide perovskites for low-energy loss solar cells with efficiency beyond 17%
,”
Chem. Mater.
31
,
6231
6238
(
2019
).
133.
Q.
Ye
,
Y.
Zhao
,
S.
Mu
,
F.
Ma
,
F.
Gao
,
Z.
Chu
,
Z.
Yin
,
P.
Gao
,
X.
Zhang
, and
J.
You
, “
Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination
,”
Adv. Mater.
31
,
1905143
(
2019
).
134.
Z.
Guo
,
A. K.
Jena
,
I.
Takei
,
G. M.
Kim
,
M. A.
Kamarudin
,
Y.
Sanehira
,
A.
Ishii
,
Y.
Numata
,
S.
Hayase
, and
T.
Miyasaka
, “
Voc over 1.4 V for amorphous tin oxide-based dopant-free CsPbI2Br perovskite solar cells
,”
J. Am. Chem. Soc.
142
,
9725
9734
(
2020
).
135.
Y.
Wang
,
K.
Wang
,
W. S.
Subhani
,
C.
Zhang
,
X.
Jiang
,
S.
Wang
,
H.
Bao
,
L.
Liu
,
L.
Wan
, and
S.
Liu
, “
Extrinsic ion distribution induced field effect in CsPbIBr2 perovskite solar cells
,”
Small
16
,
1907283
(
2020
).
136.
W.
Zhu
,
Z.
Zhang
,
W.
Chai
,
D.
Chen
,
H.
Xi
,
J.
Chang
,
J.
Zhang
,
C.
Zhang
, and
Y.
Hao
, “
Benign pinholes in CsPbIBr2 absorber film enable efficient carbon-based, all-inorganic perovskite solar cells
,”
ACS Appl. Energy Mater.
2
,
5254
5262
(
2019
).
137.
J.
Duan
,
Y.
Zhao
,
B.
He
, and
Q.
Tang
, “
High-purity inorganic perovskite films for solar cells with 9.72% efficiency
,”
Angew. Chem. Int. Ed.
57
,
3787
3791
(
2018
).
138.
Q.
Wei
,
H.
Bi
,
S.
Yan
, and
S.
Wang
, “
Morphology and interface engineering for organic metal halide perovskite-based photovoltaic cells
,”
Adv. Mater. Interfaces
5
,
1800248
(
2018
).
139.
J.
Zhong
,
W.
Wu
,
J.
Liao
,
W.
Feng
,
Y.
Jiang
,
L.
Wang
, and
D.
Kuang
, “
The rise of textured perovskite morphology: Revolutionizing the pathway toward high-performance optoelectronic devices
,”
Adv. Energy Mater.
10
,
1902256
(
2020
).
140.
Y.
Li
,
L.
Ji
,
R.
Liu
,
C.
Zhang
,
C. H.
Mak
,
X.
Zou
,
H.-H.
Shen
,
S.-Y.
Leu
, and
H.-Y.
Hsu
, “
A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells
,”
J. Mater. Chem. A
6
,
12842
12875
(
2018
).
You do not currently have access to this content.